Publicación:
Aplicación de algoritmos de deep leanging en un sistema embebido para el control de una mano robótica

dc.contributor.advisorMadrigal Mesa, Carlos Andrés
dc.contributor.advisorErives, Héctor
dc.contributor.authorCuervo Restrepo, Juan Camilo
dc.contributor.authorChavarro Hurtado, Harlinsson Javier
dc.date.accessioned2024-02-27T18:33:11Z
dc.date.available2024-02-27T18:33:11Z
dc.date.issued2018
dc.description.abstractLos sistemas embebidos son muy útiles para aplicaciones, ya que son compactos y sencillos de aprender a programar, pero a pesar de estas características tiene un problema, el cual son muy limitados debido a su baja capacidad de procesamiento para llevar a cabo tareas de Deep Learning. Otros de los problemas es el comportamiento de los módulos de PWM de las Raspberry no es óptimo, debido a que no es capaz de mantener un periodo constante, por ende, cada uno de los actuadores mantiene un pequeño movimiento mientras están energizados. En el presente trabajo de investigación se fundamentó en implementar una arquitectura de redes neuronales profundas - Deep Learning (DNN, por sus siglas en inglés) sobre el sistema embebido Raspberry pi, el cual se encarga de controlar una mano robótica. ¿Pero cómo lo hace? Por medio de una cámara se adquiere una imagen del objeto a detectar, y el DNN se encarga de reconocer el objeto y entregar el rectángulo delimitante sobre la imagen. Luego se procede a ordenar la activación de los mini servos para hacer cerrar los dedos de la mano robótica de una manera precisa para lograr agarrar el objeto adecuadamente. Para un mejor rendimiento del Deep Learning en la Raspberry se utiliza un modelo pre entrenado con pocas clases, es decir, un modelo que es capaz de reconocer pocos objetos. La programación se realizó en Python, apoyándonos con librerías como OpenCV y Caffe, ya que estas fueron las que dieron mejores resultados sobre la Raspberry pi. Se probaron otros modelos de librerías diferentes, pero requerían de mucho procesamiento o simplemente no funcionaban sobre el sistema operativo Raspbian de la Raspberry Pi. Para el diseño de la mano robótica nos apoyamos de un modelo ya existente, al cual se le realizo modificaciones para una mejor movilidad, se redimensionaron piezas y se añadieron nuevos modelos, también se cambiaron algunos materiales para dar mayor rendimiento al movimiento de la mano, el diseño del color se escogido de tal manera que resaltara a la vista del público. Actualmente hay muchas personas apostándole al Deep Learning sobre dispositivos embebidos, ya que estos dispositivos dependiendo de las aplicaciones son mucho más flexibles al implementar determinadas tareas debido a su tamaño reducido y bajo costo.spa
dc.description.degreelevelpregradospa
dc.description.degreenameIngeniero Mecatrónicospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Instituto Tecnológico Metropolitanospa
dc.identifier.reponamereponame:Repositorio Institucional Instituto Tecnológico Metropolitanospa
dc.identifier.repourlrepourl:https://repositorio.itm.edu.co/
dc.identifier.urihttps://hdl.handle.net/20.500.12622/6350
dc.language.isospaspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.publisher.grantorInstituto Tecnológico Metropolitanospa
dc.publisher.programIngeniería Mecatrónicaspa
dc.relation.urihttp://creativecommons. org/licenses/by-nc-nd/4.0/spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.localAcceso abiertospa
dc.subjectRaspberry Pi, Deep Learning, Python, Mano robóticaspa
dc.subject.keywordsRaspberry Pi, Deep Learning, Python, Robotic handspa
dc.subject.lembRedes neuronales (computadores), inteligencia artificial, robóticaspa
dc.titleAplicación de algoritmos de deep leanging en un sistema embebido para el control de una mano robóticaspa
dc.title.translatedApplication of deep leanging algorithms in an embedded system for the control of a robotic handspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.localTrabajo de grado de pregradospa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
JuanCamilo_CuervoRestrepo_HarlinssonJ_ChavarroHurtado_2018.pdf
Tamaño:
963.67 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Cargando...
Miniatura
Nombre:
Carta_autorizacion_JuanC_CuervoR_HarlinssonJ_ChavarroH_2018.pdf
Tamaño:
118.66 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta autorización

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.37 KB
Formato:
Item-specific license agreed upon to submission
Descripción: