Publicación: Un modelo de aprendizaje profundo para mejorar la calidad de imágenes médicas de resonancia magnética de la mama
Portada
Citas bibliográficas
Código QR
Autores
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor
Fecha
Citación
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen en español
Las redes de aprendizaje profundo (Deep Learning) basadas en redes neuronales artificiales son técnicas de aprendizaje de máquinas que han tomado notable atención por parte de la comunidad académica y la industria en recientes años. Específicamente, esto se debe al buen desempeño que han obtenido los modelos de aprendizaje profundo en diversas aplicaciones que abarcan el procesamiento de señales (como fisiológicas o de audio) o de imágenes (como las resonancias magnéticas). El interés en esta área ha llevado a que el aprendizaje profundo sea uno de los enfoques de estudio en diversos proyectos de investigación, algunos de los cuales se enfocan en el mejoramiento de la calidad de las imágenes médicas. En este trabajo se propone el uso de una estrategia basada en técnicas de aprendizaje profundo para mejorar la calidad de imágenes médicas obtenidas por resonancia magnética. Específicamente, en el trabajo se ha utilizado una base de datos de imágenes denominada Qin_breast. Como resultado, este trabajo contribuye al desarrollo de herramientas que pueden facilitar al personal médico el análisis e interpretación de imágenes de resonancia magnética de la mama que pueden ayudar a hacer diagnósticos más precisos.