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Facultad de Ingenieŕıas, Departamento de Electrónica y Telecomunicaciones

Medelĺın, Colombia

2021



“... Es muy largo el camino

Para mirar atras

Que más da...”

Joan Manuel Serrat

“One never notices what has been done; one

can only see what remains to be done”

Marie Sk lodowska Curie



Acknowledgements

I want to start by thanking Sebastián Roldán Vasco and Andrés Felipe Orozco Duque, who

accompanied me and guided me in the best way. Also, a special thanks to my family who

always supported me in every step taken. Appreciate that they understood my absence and

silence in important moments for everyone. I have no words to express gratitude to the one

who accompanied me almost from the beginning, who knew how to give me words of en-

couragement and gave me his company. Finally, I want to thank the ITM and the UPB for

supporting this process with technical resources that allowed the completion of this work.

Without this support, none of this would have been possible. I thank the Ministry of Sciences

for the financing of the project 121077758144 of 2017 in which this research is framed.

A special thanks to the one who is no longer with me, but made this possible, I also thank

him for showing me that education changes lives.



vi

Abstract

Swallowing is a complex act that involves different anatomical structures. Neurological or

physical alterations can change this process and produce a symptom known as dysphagia. It

is estimated that it affects around 16% of the population worldwide. The diagnosis of this

symptom focuses on invasive techniques such as videofluoroscopy and fiberoptic endoscopy.

This motivates the development of non-invasive, low-cost, and safe techniques. Recently,

accelerometry (ACC) and surface electromyography (sEMG) signals have been investiga-

ted separately for dysphagia screening purposes, with promising results. â€<However, they

analyze swallowing as a one-dimensional process, ignoring its complexity. Thereby, a metho-

dology was developed for the analysis of ACC and sEMG signals jointly and synchronously.

For this, healthy and dysphagia subjects were given water and yogurt. These signals were

filtered and characterized by the sliding window method. Filtering methods were imple-

mented to select the features that retrieved maximum separability between classes. For all

swallowing tasks evaluated by applying classifiers, areas under the ROC curve (AUC) and

sensitivities higher than 0.85 were obtained. The best-case corresponded to 20mL of water,

with an AUC of 0.91. The implemented methodology made it possible to determine that

multi-sensor fusion improves the results regarding the use of signals independently. The pro-

posed methodology is promising for dysphagia screening in an objective and non-invasive way.

Keywords: accelerometry, biomedical signal processing, classification algorithms, dyspha-

gia, feature extraction, feature selection, electromyography, swallowing



vii

Resumen

La deglución es un acto complejo que involucra diferentes estructuras anatómicas. Las al-

teraciones neurológicas o f́ısicas pueden alterar este proceso y desarrollar un śıntoma cono-

cido como disfagia. Se estima que afecta a alrededor del 16% de la población mundial. El

diagnóstico de este śıntoma se centra en técnicas invasivas como la videofluoroscopia y la

endoscopia de fibra. Esto motiva el desarrollo de técnicas seguras, no invasivas y de bajo

costo. Recientemente, las señales de acelerometŕıa (ACC) y electromiograf́ıa de superficie

(sEMG) se han investigado por separado con fines de tamización de disfagia, con resultados

prometedores, sin embargo, analizan la deglución como un proceso unidimensional, igno-

rando que es complejo e involucra diferentes estructuras. Debido a esto se desarrolló una

metodoloǵıa para el análisis de ambas señales de forma conjunta y sincrónica. Para ello, se

adquirieron señales ACC y sEMG mientras sujetos sanos y con disfagia deglutÃan agua y

yogur. Estas señales se filtraron y caracterizaron mediante el método de ventana deslizante.

Se implementaron métodos de filtro para seleccionar las caracteŕısticas que recuperaron la

máxima separabilidad entre las clases. Para todas las tareas deglutorias evaluadas mediante

la aplicación de clasificadores, se obtuvieron áreas bajo la curva ROC (AUC) y sensibilidades

superiores a 0.85. El mejor de los casos correspondió a 20 ml de agua, con un AUC de 0.91.

La metodoloǵıa implementada permitió determinar que la fusión multisensor mejora los re-

sultados frente al uso de señales de forma independiente, resultando aśı en una metoloǵıa

prometedora para la tamización de la disfagia de forma objetiva y no invasiva.

Palabras clave: acelerometŕıa, algoritmos de clasificación, deglución, disfagia, electro-

miograf́ıa, extracción de caracteŕıticas, selección de caracteŕısticas, procesamiento de

señales biomédicas
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1. Introduction

1.1. Justification

Swallowing is a complex activity that is involved in the digestive process. Its complexity is

due to the fact that it requires coordination of different systems, and it involves physiologi-

cal activities, mainly of the neurological system with the intervention of five cranial nerves,

and the muscular system with approximately thirty muscle pairs in the head, neck and

chest [1, 2, 3]. Disturbances or lack of coordination of these two systems cause a symptom

known as dysphagia. Swallowing has three phases: oral, pharyngeal, and esophageal [4, 5, 6].

Oropharyngeal dysphagia is a symptom of different diseases such as Alzheimer’s, Parkin-

son’s, myasthenia gravis, stroke, among others [2, 7, 8]. Patients diagnosed with dysphagia

are commonly affected by malnutrition, dehydration, and laryngeal aspiration [9, 2, 7].

There is international concern around preventable deaths and respiratory illnesses from

dysphagia [10]. Some research papers estimate the prevalence of dysphagia in approximately

16 to 22% of the general population [7]. The prevalence in primary care is greater in women

than in men [11, 12], which makes it important to consider that factors such as race, sex, and

culture (associated with diet and eating habits) can become a risk factor for dysphagia. Si-

milarly, the pathologies associated with dysphagia have variable epidemiological data. China

evaluated dysphagia in Parkinson’s disease and estimated that approximately 87.1% of the

population studied has dysphagia [13]. For intellectual disabilities, a tentative indication of

the prevalence of dysphagia was found to be close to 8.15% [14]. In the case of stroke, it is

estimated that about 47% of patients develop dysphagia for a short period, however, in a

few of these patients dysphagia persists [15]. Appropriate and early diagnosis or treatment

increases the life expectancy of patients [16].

There are three types of tests that assess swallowing of patients: screening (e.g. Eating As-

sessment Tool-10 (EAT-10)), clinical bedside swallow examinations (e.g. 3 oz water test),

and instrumental tests such as the fiberoptic endoscopic evaluation of swallowing (FEES),

which in some cases can cause discomfort, retching, vomiting, perforation of the mucosa,

adverse reactions to topical anesthetics, among others [17]. Or the videofluoroscopic swallow

study (VFSS), considered the instrumental gold standard, that is invasive, requires X-ray

doses [18], which limits the follow-up evaluation. Furthermore, the cost per session is esti-

mated between 200 and 500 USD [19].



1.2 Swallowing 3

1.2. Swallowing

Is the process where food and drink are ingested and transported to the stomach while

preventing aspiration into the airway [20, 5, 21]. Swallowing involves different anatomical

structures and physiologic processes at muscular, mechanical, and neurological levels. It al-

so involves respiratory, digestive, and neurological systems. Coordination of the swallowing

process is paramount to protect the respiratory system, including the coordination of the

brain stem, cortical central pathways, and nervous systems [5]. The swallowing takes place

in the upper gastrointestinal tract and involves three phases, where the bolus is formed and

carried to the stomach. These are described below.

Oral: This is the first phase of swallowing. Consists of different muscular activations

that help break the foods, mix them with saliva, bolus formation, and transporting

them from the mouth to the pharynx. This phase involves oral, supra, and infrahyoid

muscles [22, 23, 24, 25]. In the oral phase, the following events occur:

• Mouth opening

• Entry of food into the mouth

• Chewing

• Bolus formation

• Stimulation of the tonsillar pillars

Pharyngeal: Involves a process with voluntary and involuntary control. The pharyn-

geal phase initiates when the bolus reaches the pharynx and started pharyngeal peris-

talsis, relaxation of the upper esophageal sphincter, and closure of the glottis, protec-

ting the airway from aspiration [23, 25].

Esophageal: It is considered the last phase of swallowing. In this phase, the bolus is

carried from the esophagus to the lower esophageal sphincter [23, 25]. It is characterized

by the following events:

• Esophageal peristalsis

• Relaxation of the lower esophageal sphincter

• The pharynx and larynx return to their normal position

• The air enters the lower airways again.
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1.3. Dysphagia

Normal swallowing can be affected by alterations in anatomical structures, aging, radia-

tion therapy, or neurological diseases. These alterations can produce a symptom known as

dysphagia, which is characterized to affect the oral-transit time, the motility in all swallo-

wing phases, and to produce piecemeal deglutition in solids and liquids [26, 27, 28, 29, 30].

Dysphagia is present in any phase of swallowing (oral, pharyngeal, or esophageal). Com-

monly, the dysphagia in oral and pharyngeal phases are analyzed jointly as oropharyngeal

dysphagia. Oropharyngeal dysphagia is commonly associated with different diseases of cen-

tral neurogenic or neuromuscular etiology (see Table 1-1).

Table 1-1. Common etiologies of oropharyngeal dysphagia

Central neurogenic etiology Neuromuscular etiology

Ischemic stroke Inflammatory myopathies

Hemorrhagic stroke Muscular dystrophy

Multiple sclerosis Myasthenia gravis

Motor neuron disease Neuropathy

Dementia

Traumatic brain injury

Neuromyelitis

Cerebral palsy

The identification of risk factors in patients and the early diagnosis of dysphagia is impor-

tant because it allows the design of treatments that are tailored to the needs of patients,

and reduce the complications that can occur such as malnutrition, dehydration, aspiration

pneumonia, and eventually, the death [31]. Although there is no cure for dysphagia, patients

treated by multidisciplinary teams have shown improvements in their quality of life [32].

1.3.1. Diagnosis of dysphagia

Involves different techniques and methodologies. The instrumental tests are based on costly

methods with associated risks; the screening and clinical bedside swallow examination are

dependent on the experience of the treating personnel. The methods include:

Screening

• Physical exploration: Evaluates different structures and functions of swallowing.

It seeks to determine alterations in the dentition, oral mucosa, presence of masses,

or modifications in salivation. Likewise, aspects such as changes in the face-caudal

and evaluation of motor and sensory functions are analyzed [33].
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• Eating Assessment Tool-10: Recently the EAT-10 has gained popularity, due to

its simplicity, and because it is applicable in a variety of swallowing disorders.

The use of EAT-10 has shown that it is a useful tool to establish the severity of

the patients [34, 33].

Clinical bedside swallow examination

• Evan’s methylene blue test: Is used in patients of tracheostomy, it uses methy-

lene blue in the tongue and evaluates the secretions in the next hours. It allows

identifying aspirations, by evaluating if saliva passes from the pharynx to the

trachea [33].

• Blood glucose in bronchial secretions: Evaluates aspirations in tracheostomized

patients, looking for the presence of glucose in secretions [33].

Instrumental diagnosis

• Fiberoptic endoscopic evaluation of swallowing (FEES): Evaluates the swallowing,

by introducing an endoscope while the patient eats food. The main limitations

of the method are the space where the test is performed, which must be aseptic;

the patient must be anesthetized, and it is not always possible to complete the

test due to patient discomfort [35, 7]. It also has limitations such as that in

some cases the patient may present cough, discomfort, gagging and/or vomiting,

adverse reactions to the topical anesthetic or the methylene blue, anterior or

posterior epistaxis, laceration of mucosal, or vasovagal episodes, also, only study

the pharyngeal phase [17].

• Video Fluoroscopic Swallowing Study (VFSS): It is considered the instrumental

gold standard for the diagnosis of dysphagia. The test consists of bringing patients

to doses of X-rays while they consume food with barium as a contrast medium.

The test evaluates the different phases of swallowing, and it allows to identify the

existence of reflux, bronchoaspiration, slowness, among other important patholo-

gical aspects [18].

• Manometry: The manometry consists of inserting a pressure-sensitive probe th-

rough the mouth or nose. The test is mainly used to diagnose esophageal dyspha-

gia, in some cases, it is used to diagnose oropharyngeal dysphagia, especially when

upper esophageal sphincter dysfunction is suspected. The method is invasive [33].

• Radioisotope transit: The technique is mainly used for the diagnosis of esopha-

geal dysphagia, in the oropharyngeal dysphagia is not considered a sensitive and

specific test [33].
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1.4. State of the art

1.4.1. Electromyography

It is a widely used technique for the study of polarization and depolarization of muscle cells

[36]. Needle or surface electrodes can be used, the latter being a non-invasive alternative

known as surface electromyography (sEMG), where silver chloride electrodes (Ag/AgCl) are

placed on the muscle regions of interest [37]. sEMG has been proposed as a technique that

can provide useful information about swallowing [38]. It is a reproducible and inexpensive

test [33]. The most commonly evaluated muscles in swallowing are the temporal muscle,

which is mainly responsible for chewing; the orbicularis oris muscle, which has two portions,

marginal portion, and labial portion, and is responsible for closing and opening the lips; in

addition, the suprahyoid muscles, i.e. digastric anterior and posterior belly, geniohyoid, sty-

lohyoid and mylohyoid muscles, which contribute mainly to the functions of the tongue and

the laryngeal ascent; and finally the infrahyoid muscles, i.e. the sternohyoid, sternothyroid,

thyrohyoid and omohyoid, which are attached to the hyoid bone and are responsible for its

ascent and descent, as well the larynx; [39, 40, 38, 41, 42, 43]. Figure 1-1 shows the supra

and infrahyoid muscles.

Sternohyoid

Omohyoid

Thyrohyoid

Sternothyroid

(a) Infrahyoid muscles

DigastricGeniohyoid

StylohyoidMylohyoid

(b) Suprahyoid muscles

Figure 1-1. Location of the suprahyoid and infrahyoid muscles, and the cricoid cartilage.

Modified from [44]

Most of the researches carried out in the field of sEMG to evaluate swallowing has focused

on the analysis of the amplitude and timing of muscular activation with visual and statistical

techniques [45, 46, 47]. Some researches have focused on the analysis of the mastication pro-

cess [45] and the identification of normal muscular behavior [46]. Furthermore, the evaluation

of the submental muscles in patients with Huntington’s disease who present swallowing dif-

ficulties is highlighted [47]. Many researchers have focused on identifying the onset (start)
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and offset (end) of the swallow-related signal and muscle activation times using statistics, in

addition to the evaluation of the correlation between the muscle pairs analyzed [48, 49, 42].

However, the automatic evaluation of dysphagia is scarce.

The frequency content of muscle activity has been widely reported, and it has been esta-

blished that the highest energy spectral density is located between 10 and 500 Hz [50, 51].

However, it has been found that swallowing muscles seem to have a limited bandwidth.

According to Restrepo-Agudelo et al. (2017), the optimal filtering range for the sEMG sig-

nal of infrahyoid muscles is between 130 and 180 Hz [52]. However, in other studies filters

with cut-off frequencies between 90 and 250 Hz have been implemented for these muscle

groups [38]. Similarly, some signal filtering stages consisted of the implementation of Wave-

let filters [38, 52].

Other studies have reported methodologies to detect muscle activation in swallowing through

automation techniques. Restrepo-Agudelo et al. (2017) evaluated the automatic burst de-

tection using the Teager-Kaiser energy operator (TKEO) in combination with digital filters

for segmentation purposes. They found that the proposed method and the Wavelet decom-

position have similar performance [52]. Similarly, Roldan-Vasco et al. (2018) proposed the

application of the discrete Wavelet transform to reduce the detection of false negatives and

to improve the signal segmentation process. In this article, the proposed method was com-

pared together with the TKEO, obtaining an improvement in the detection of swallows [38].

Artificial intelligence techniques have been recently implemented for the automatic analysis

of swallowing. Roldan-Vasco et al. (2018) proposed the automatic detection of swallowing

phases of healthy subjects through the use of Artificial Neural Networks (ANN) and Sup-

port Vector Machines (SVM) considering different segments of the signal previously labeled

as oral phase, pharyngeal phase, and background noise. This was applied to multichannel

sEMG signals. It was found that the feature space that best describes the behavior is made

up of the log-detector feature, the difference in the absolute standard deviation, the percen-

tage of myopulse, and the mean frequency. By applying an SVM, they achieved a F1-score

of 92.03% [41].

Recently, studies on swallowing have evaluated different muscle groups individually and

together, showing that sEMG can be a useful tool for the study of swallowing and dyspha-

gia [49, 53, 42, 38, 41]. However, there are still open questions regarding the use of the

technique, such as: does individual muscle evaluation allow to understand muscle dynamics

in patients with dysphagia? How is the information from the different muscles involved in

swallowing? Is sEMG an adequate tool for screening? [33, 39]
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1.4.2. Accelerometry based cervical auscultation (ACC)

Is used to generate records of the movement of different anatomical structures of interest.

The main advantage of ACC is that it is a non-invasive method, and it has a low cost;

however, the sensor size and placement can be a limitation. ACC is a useful technique in

the detection of movement of the cricoid cartilage during swallowing, since the hyoid bone is

shifted upwards and forwards to close the airway and to generate the esophageal opening [54].

In the ACC signal acquisition, an accelerometer is placed on the cricoid cartilage parallel to

the spine and perpendicular to the coronal plane [55]. Some studies use triaxial accelerome-

ters, which allow to identify movements in the anteroposterior (AP), superior-inferior (SI),

and medial-lateral (ML) axes [56, 57]. However, most studies only use sensors that allow

to analyze ascent-descent and anteroposterior movements, since these are the predominant

movements in swallowing (upwards and backward movement of larynx) [58, 59, 60, 61].

One of the most important aspects of studying swallowing with ACC is signal filtering. For

this, different filtering methodologies have been developed for the elimination of thermal,

mechanical, and electrical noise generated by the acquisition systems. Furthermore, wavelet

based filters have been implemented to eliminate low-frequency noise associated with head

movements [57, 62, 63, 64].

The segmentation of ACC signals, as in the sEMG signals, is based on visual analysis. The

ACC signal has a high stochastic component, and its probability density function is conside-

red to be Gaussian [61]. From this assumption, the behavior of the signal in specific segments

is given by the estimation of the mean, from which a threshold is determined that allows to

find large changes in the signal that are considered as swallows [65, 61].

Most of the works on ACC in swallowing focus on feature analysis that allows to describe

the movement of the cricoid cartilage during swallowing, in addition to the application of

classification algorithms for the detection of atypical swallows. Feature extraction methods

are usually implemented in the domain of time, frequency, and time-frequency [60, 66]. For

the feature extraction process, the use of empirical sliding windows has been implemen-

ted, with an usual overlap of 50% [60, 67, 68, 69, 70]. In the feature extraction of ACC

signals, the studies highlight the identification of spontaneous cough, induced cough, or

speech [66, 71, 72, 73, 56].

Most of the ACC related researches have been carried out at the University of Pittsburgh,

where the implementation of different classification models has been proposed, for instan-

ce, the application of Linear Discriminant Analysis for the detection of abnormal swallows

retrieved a sensitivity of 90.4% and a specificity of 60.0% [74]. SVM and ANN optimized
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with genetic algorithms to detect swallows and cough, retrieved an accuracy greater than

99% for the detection of cough and induced cough [72]. Bayesian classifiers, which have

been used to classify aspirations in normal swallowing in people with dysphagia, achieved an

accuracy of 90% [57]. In addition, deep learning systems have been implemented seeking to

track the movement of the hyoid bone using VFSS images and ACC signals, and they found

that accelerometers describe correctly the trajectory of the hyoid bone [54]. Such works have

implemented VFSS simultaneously with ACC [56]. However, in Colombia, the replication

of this methodology has limitations due to legal restrictions for conducting invasive tests in

healthy people.

The ACC is in the exploratory phase and still has open questions, such as, what incidence

do age and gender have on swallowing? How do gender and age affect the appearance of

signs of dysphagia? What feature extraction techniques are feasible to improve the detection

of abnormal swallows? Is the evaluation of swallowing sounds from vibrations captured by

accelerometers useful in research with patients with dysphagia? [60, 57, 63].

1.4.3. Multi-sensor fusion

Even though the swallowing assessment generally uses one source of information, in some

cases, like in sEMG this source is represented in the acquisition of signals from several mus-

cles simultaneously.

Considering that different anatomical structures are involved in swallowing, it is important

to perform multimodal analysis instead of evaluate a single information source. Researches

of multimodal analysis are limited, however, they stand out studies that integrate sEMG

and bioimpedance analysis (BIA). Schultheiss et al. (2014) proposed the use of sEMG and

BIA for the detection of aspirations with an SVM, considering information collected from

healthy subjects and patients with swallowing disorders. They performed segmentation of

the signals, obtaining an accuracy of 99.3%, a sensitivity of 96.1%, and specificity of 97.1%

in the classification of swallows [75].

The ACC has been also acquired in combination with acoustic signals measured by stethos-

copes or microphones that capture the glottic closure [56]. However, the works developed to

date have focused on the use of sound signal for segmentation processes, instead of determi-

ning the complementarity of the information provided by both sensors [59, 56].

Some algorithms have been developed for the automatic segmentation of ACC signals th-

rough neural networks considering different sources of information, particularly signals from

mechanomyography and nasal cannula, showing that the use of multimodal sources in the
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specific analysis ACC signal yields better results than individual analysis [67]. This leaves

an open field for research on the integration of both signals [68, 63].

1.5. Problem statement

The reference techniques for the diagnosis of dysphagia are invasive, depend on the expertise

of the medical staff, and have limited availability due to the cost of the equipment and the

test itself. It is also difficult to follow up with patients. This is in addition to the fact that

swallowing involves different neuromuscular structures and mechanical changes. Making ne-

cessary recollecting information from different sources.

Accordingly, it is necessary to evaluate non-invasive techniques that are simple to implement

in clinical practice, such as electromyography and accelerometry. Although such signals ha-

ve been preliminarily addressed, they have not been validated in robust and heterogeneous

databases, where different causes (etiologies) of dysphagia are considered, also, they usually

analyze a single dimension of swallowing, disregarding the complexity of the process in terms

of anatomical structures and physiological changes.

ACC and sEMG researches of swallowing analysis, have contributed to the feature extrac-

tion, however, at present, there does not exist a consensus on the best features to describe

the act of swallowing. At present, multimodal researches are few and are a broad alternative

that should be explored.

1.6. Objectives

1.6.1. General objectives

To develop a methodology for integration of ACC and sEMG signals for swallowing analysis

in patients with dysphagia.

1.6.2. Specific objectives

To design a synchronous acquisition scheme for ACC and sEMG signals during swa-

llowing tasks, for offline storage and analysis.

To extract features of both signals in time, frequency, and time-frequency domains

and to evaluate such feature spaces to obtain maximum separability between healthy

individuals and dysphagic patients.
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To compare and evaluate the feature spaces and multimodal classification models to

discriminate healthy and dysphagic states, by assessment of different performance mea-

sures in a database of patients with dysphagia and healthy controls.



2. Materials and methods

This chapter presents a description of the methodology implemented in the research. It

describes technical aspects of the equipment and instruments used, the study population,

and the steps followed to obtain the results presented in this research. Figure 2-1 shows a

summary of the methodology.

Signal

ACC+sEMG, ACC, sEMG

Segments or full signal

Feature extraction Feature selection Classification

Figure 2-1. General methodology

2.1. Subjects

2.1.1. Healthy subjects

The healthy population consisted mainly of subjects with no history of dental pathologies or

that modified swallowing, emphasizing that they did not present diagnosed pathologies that

could give rise to dysphagia, as well as that they did not present a history of it. For this, the

subjects considered healthy were evaluated using medical criteria. It was also considered the

capacity to develop swallowing activities naturally.

2.1.2. Dysphagic subjects

The second group is made up of the population with dysphagia. For the conformation of this

group, there was the participation of a neurologist, who, through medical criteria, and the

medical history of the patients determined the person’s participation in the research. In this

population group, it was mainly sought that the patients presented confirmed swallowing

difficulty, and that, to a large extent, they were able to follow orders.

Table 2-1 presents the inclusion and exclusion criteria of healthy and dysphagic subjects
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Table 2-1. Inclusion and exclusion criteria of control and dysphagic population
Healthy people Dysphagic people

Inclusion

criteria

Being over 18 years old. Being over 18 years old.

Not having a diagnosis of dysphagia. Presence of oral or oropharyngeal dysphagia.

Do not consume medications that modify

the texture of saliva or oral secretions.

Presence of a confirmed diagnosis of central

neurogenic etiology (ischemic stroke, hemorrhagic

stroke, multiple sclerosis, motor neuronal disease,

dementia, ECT, neuromyelitis, cerebral palsy).

Not present central, peripheral or

neuromuscular neurological pathology.

Presence of confirmed neuromuscular etiology

diagnosis (inflammatory myopathies, myasthenia

gravis, muscular dystrophy, neuropathy).

Not having head and neck cancer or

obstructive pulmonary disease.

Absence of surgical procedures in the

lower 2/3 of the face or neck

Exclusion

criteria

Presence of dental pathologies. Presence of esophageal dysphagia.

Presence of congenital malformations

in the mouth
Presence of mechanical dysphagia.

Diagnosis or history of sicca syndrome,

Sjögren’s disease type.

Irradiated facial or cervical skin

(under active treatment for cancer).

Presence of active inflammatory processes

inside the oral cavity.

Presence of edema or bruises at the orofacial

and cervical level that prevent the application

of sensors.

Diagnosed cognitive impairment.
Recent (last three months) surgical dissection

(surgical type procedure) on neck skin.

Diagnosed cardiorespiratory compromise.
Presence of severe hypoxemia (peripheral blood

oxygen saturation less than 80%).

Deep brain stimulation implants.

Thirty healthy individuals and 30 dysphagic patients were recruited for train, matched by sex

and age. It was determined that there is no statistical difference compared to the gender of

the participants using a χ2 test, that showed a p-value of 1. The patients were aged between

19 and 65 years and the healthy subjects between 25 and 76 years, a t-student test was

applied that determined with a p-value of 0.61 that there is no statistical difference between

the ages of the two population group. Likewise, a second group was selected for validation,

made up of 11 healthy subjects with ages between 52 and 21 years and 11 dysphagic subjects

with ages between 85 and 61 years. Table 2-2 shows the demographic data.

All patients were evaluated neurologically and phonoaudilogically to confirm their condition.

The EAT-10 test was also applied, where patients with scores higher than three were selected

for the study.
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Table 2-2. Demographic data. The average age and deviation of each group are reported.

Where: M is male, and F female
Train Test

M/F Age of M Age of F M/F Age of M Age of F

Controls 15/15 31.60 ± 8.49 38.4 ± 14.59 5/6 35.40 ± 13.16 25.60 ± 11.13

Patients 15/15 39.90 ± 15.98 50.87 ± 12.71 6/5 69.50 ± 7.61 72.00 ± 9.11

Central neurogenic etiology

Cerebral palsy 2/1 - - 0/0 - -

Cerebrovascular disease 2/1 - - 0/2 - -

Rubinstein-Taybi syndrome 1/0 - - 0/0 - -

Mytocondrial myopathy 0/1 - - 0/0 - -

Dermatomysitis 0/1 - - 0/0 - -

Cognitive disorder 0/1 - - 0/0 - -

Cerebellar ataxia 1/0 - - 0/0 - -

Traumatic brain injury 4/0 - - 0/1 - -

Parkinson’s disease 1/0 - - 2/2 - -

Dementia 0/0 - - 1/0 - -

Neuromuscular etiology

Muscular dystrophy 3/0 - - 0/0 - -

Mutiple sclerosis 1/6 - - 1/0 - -

Amyotropic latral sclerosis 0/4 - - 2/0 - -

2.2. Data acquisition

2.2.1. Surface electromyography

The sEMG signal was recorded using the Noraxon Ultium EMG, with three EMG Sensor.

This device makes it easy to acquire electromyographic signals wirelessly with M3 software

and myoMUSCLE module. Table 2-3 shows the main characteristics of the Noraxon Ultium

EMG. 3M 2228 Ag/AgCl surface electrodes were used with an interelectrode distance of 2

cm [40]. The signals were recorded with a sampling rate of 2 kHz and were used band-pass

filters between 10-500 Hz.

Table 2-3. Main characteristics of Noraxon Ultium EMG
Specification Value

Internal sampling resolution 24-bit

Baseline noise < 1 µV

CMRR <-100 dB

Input impedance >1,000 mΩ

Resolution (0 to 5,000 µV ) 0.3 µV

Resolution (5,000 to 24,000 µV ) 1.1 µV
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2.2.2. Accelerometry

The NI-USB 6215 DAQ multifunction device from National Instruments was used to record

the ACC signal. Four analog input channels were used for data acquisition (ACC and cervical

auscultation) and one digital output channel for synchronization with the electromyograph.

Table 2-4 shows the main characteristics of the device. The MODAC software registered

with the number 13-70-441 developed by the research team was also used together with the

sensor mma7362 analog sensor. This allows you to view and store signals with a sampling

rate of 10 kHz, as well as stop and resume acquisition and, if necessary, use the webcam to

record subjects in the swallow test.

Table 2-4. NI-USB 6215 DAQ Multifunction device highlights

Feature Value

Bus connector USB 2.0

Analog inputs 16

Differential analog inputs 8

Maximum sampling rate 250 kS/s

Analog input resolution 16 bits

Absolute accuracy analog input 2690 µV

Analog input impedance 60 V Channel-to-ground insulation

2.2.3. Synchronization

Considering that the signals were acquired using two independent devices, a synchronization

strategy was implemented. The synchronization process consists of the generation of a digi-

tal pulse in the MODAC software. This is saved together with the ACC signals. The digital

pulse is recorded by the Noraxon Ultium EMG, and it is stored with sEMG signals in the

M3 software. Synchronization was achieved by aligning the pulses of both registers offline

(see Figure 2-2).

The initial pulse marks the beginning of the swallowing task. It is important to bear in mind

that it was sought to have segments of background noise between each of the tasks. In the

same way, a second pulse would be in charge of marking the end of the swallowing activity.
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(a)

(b)

(c)

(d)

Figure 2-2. Synchronization diagram by means of pulses in the ACC and sEMG signals.

Where (a) is the ACC signals with the synchronization pulse, (b) is the sEMG signals with

their respective synchronization pulse, and (c) and (d) are both signals synchronized through

the pulses

2.2.4. Signal recording

The implemented protocol consisted of supplying three different volumes and two consisten-

cies of liquids. Included 5, 10, and 20mL of water and yogurt, in addition to a dry swallow

(W5, W10, W20, Y5, Y10, Y20, and S) following the order that can be seen in the Figure

2-3

Figure 2-3. Acquisition protocol for ACC and sEMG signals.

The evaluated subjects were placed in an upright sitting position. Pairs of Ag/AgCl elec-
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trodes were placed in a differential configuration. These were placed in the right and left

suprahyoid muscles, as well as in the right infrahyoid muscle, leaving the left infrahyoid free

for the accommodation of the accelerometer. The accelerometer was placed in the cricoid

cartilage, parallel to the cervical spine, perpendicular to the coronal plane. Figure 2-4 shows

the general diagram of their location.

Left

Suprahynoid

Accelerometer

Placement

(cricoid cartilage)

Right

Suprahynoid

Right

infrahynoid

Figure 2-4. Location of sEMG electrodes and accelerometer for data collection.

In some cases, it was not possible to record all swallowing tasks of the subjects studied, for

safety purposes. Table 2-5 shows the number of signals available per swallowing task in each

of the population groups.

Table 2-5. Number of analyzed boluses per population group

W5 W10 W20 S Y5 Y10 Y20

Controls 30 29 27 30 30 30 30

Patients 28 26 22 28 29 27 25

Total 58 55 49 58 59 57 55

2.3. Pre-processing

A four-stage filtering scheme was applied. It was implemented a filter for detrend, a notch

filter at 60 Hz, as well as band pass filters, and wavelet denoising was applied for ACC and

sEMG signals. The parameters of each signal are presented below.
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2.3.1. ACC pre-processing

The filtering of the ACC signal was carried out with a band-pass filter between 0.1-3000 Hz,

and the best parameters for the implementation of wavelet denoising were explored.

Wavelet denoising

Wavelet denoising is a filtering technique for the elimination of high-frequency noise. The

technique decomposes the signal into bands containing noise information, obtaining the wave-

let coefficients. These coefficients are modified by a threshold, that allows the reconstruction

of the filtered signal. The assumption of Gaussianity is a constraint. This method is based

on the discrete wavelet. The following parameters must be optimized:

The mother wavelet that will be used to perform the decomposition. The following

wavelets were assessed: Coiflets (coif2 to coif5), Daubechies (db2 to db9) and Symlets

(sym3 to sym6).

Decomposition levels: Number of information bands to analyze, in this case, from 2 to

9.

Threshold selection rule (TPTR): Determines the rule for threshold selection. Where

rigsure uses a quadratic loss function for the soft threshold estimator, sqtwolog uses

a universal threshold defined as
√
2 ln(length(x)), heursure uses a mix of the abo-

ve methods, considering the signal-to-noise ratio (SNR), and minimaxi uses a fixed

threshold.

Type of thresholding (SORH): soft thresholding (s), hard thresholding (h). Where the

hard threshold sets the values below the threshold to 0, while the soft threshold sets

the same values to 0, but additionally subtracts the threshold from the values that

exceed it [76].

Multiplicative threshold rescaling (SCAL): no rescaling (one), is the basic model; res-

caling using a single estimation of level noise based on first-level coefficients (sln),

changes the scale by a single noise estimate from the first level coefficients; rescaling

using a level-dependent estimation of level noise (mln), scales by level-dependent noise

estimation.

For the application of this filtering step, in ACC signals, strange artifacts were identified

and background noise segments, that would not be part of swallowing. They were also iden-

tified swallowing segments. Which were obtained by manual segmentation (see Figure 2-5).

Different parameters were evaluated for the elimination of noise in each segment obtained.

The spectrogram of each of the segments was calculated, averaged, and used to compute the
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SNR. The optimal parameters to filter the ACC signal were determined to maximize the

SNR.

Swallowing

SI

ML

AP

Noise

Figure 2-5. Typical ACC signal. Noise and swallowing events are highlighted

2.3.2. EMG pre-processing

In the sEMG signals, the band-pass filter was applied between 25 and 450 Hz in combination

with wavelet denoising with a Daubechies 5 mother wavelet (db5) with five decomposition

levels, parameters reported in previous researches [52].

2.4. Feature extraction

It consists of mathematically determining the behavior of the signals. Feature extraction

processes are usually implemented in the time, frequency, and time-frequency domains, as

well as information-theoretic features.

2.4.1. Time domain

It consists of obtaining descriptors that represent the behavior of a certain signal over time.

This method provides information on the morphology and complexity of the signal. The cha-

racteristics calculated in this domain are sensitive to noise, so it is necessary to implement

filtering techniques [77], however, its calculation is simple and of low computational cost.

The table 2-6 shows the features in the time domain that were used.
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Table 2-6. Time domain features. Abbreviations: n is the number of points evaluated; si:

i-th element of the vector; x̄: mean of the vector; ϵ: amplitude threshold
Feature Description Equation

Variance

The variance is the second

statistical moment, represent

how far the data is from

the mean [78].

σ2
n = 1

n

∑n
i=1 (si − x̄)2

Root Mean

Square

It is a measure of amplitude

and estimates the energy

content in the signal. It is used

to calculate the mean in data

sets that take negative values [78].

RMS =
√

1
n

∑n
i=1 s

2
i

Integral
Index to detect muscle

activity [79].
integral =

∑n
i=1 |si|

Wavelength

Calculate the complexity

of the different wave

segments [80].

WL =
∑n−1

i=1 |si+1 − si|

Difference absolute

standard deviation

value

Calculates the RMS

of the wavelength [81].
DASDV =

√
1

n−1

∑n−1
i=1 (si+1 − si)2

Zero-Crossing

Indicates the number of times

that the signal goes through 0

and changes the sign. In

some cases used a threshold,

and indicates the number of

times the signal goes through [78].

ZC =
∑N−1

i=1 (si × si+1 < 0) ∩ ϵ (|si − si+1|)

Willison amplitude

Calculates the number of

times the absolute value

of two consecutive samples

exceeds a threshold [78].

WAMP =
∑n

i=1 f(|si − si+1|)

f(x) =

{
1, s ≥ ϵ

0, in any other case

Myopulse

percentage rate

It is calculated assigning values

of 1 when the absolute value

of the signal exceeds a threshold

ϵ, used mainly in sEMG [82].

MYOP = 1
n

∑n
i=1[f(si)]

f(s) =

{
1, s ≥ ϵ

0, in any other case

Teager-Kaiser

The Teager-Kaiser energy operator

quantifies rapid energy changes in

signals with a single frequency

variable in time.

TKEO = s2i − si+1si−1

LOG Detector
It is an indicator of the force

with which a muscle is activated [78].
LOG = exp

(
1
N

∑N
i=1 log (|si|)

)
The implemented threshold was defined by ϵ = mean + h × std calculated in the first 50 ms, where h

was 3 for the sEMG signals, and 1.2 for ACC, the latter taking into account that previously thresholds

of 2.5 have been reported, however, the use of half of this gave better results [83, 84]
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2.4.2. Frequency domain

It is implemented to determine specific changes in the frequency components of the signals

or time series. To do this, tools such as Fast Fourier Transform (FFT) are used, which allows

a signal to be broken down into its frequency components. Table 2-7 shows the features used

in the frequency domain.

Table 2-7. Frequency domain features. Abbreviations: fi: frequency of the spectrum in i;

M : size of the power spectral density Pj: power spectrum; ULC: upper-cutoff frequency

of the low frequency band; LLC: lower-cutoff frequency of the low frequency band; UHC:

upper-cutoff frequency of the high frequency band; LHC: lower-cutoff frequency of the high

frequency band. Definitions are taken from [78]

Feature Description Equation

Frequency ratio

Calculates the relationship between

the low-frequency and high-frequency

components.

FR =
∑ULC

j=LLC Pj

/∑UHC
j=LHC Pj

Mean power
Calculates the mean power of the

power spectrum of the analyzed signal.
MNP =

∑M
j=1 Pj

/
M

Mean frequency
Calculate the average of the

frequencies present in a signal.
MNF =

∑M
j=1 fjPj

/∑M
j=1 Pj

Median frequency
Divides the spectrum into two

regions with equal amplitude.
MDF = 1

2

∑M
j=1 Pj

Peak frequency
It is the maximum frequency

found.
PKF = max{Pj}, j = 1, . . . ,M

2.4.3. Time-frequency domain

The representation of signals in time-frequency allows us to understand their behavior in

both domains. transformation techniques such as the Short-Time Fourier Transform (STFT)

or the wavelet transform are implemented for its analysis. Table 2-8 shows the calculated

time-frequency features.

Table 2-8. Time-frequency features. Abbreviations: DL: number of decomposition levels;

EADL
: relative energy of the final approximation coefficient: j-th relative energy of thej-th

detail coefficient.
Features Description Equation

Wavelet energy
Evaluates the energy contained

in different scale ranges [85].
ET = 1

100

(
EADL

+
∑DL

j=1 EDj

)
Wavelet entropy

Gives information on the degree

of disorder in which the signal

is found [86].

Went = −ET log2ET
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2.4.4. Information-theoretic features

They are features that allow you to have information about the regularity and complexity

of the data. For this case, the discrete-time series is required to change to its phase state.

The phase state is represented as follows:

Xm(i) = [xi xi+τ · · · xi+(m−1)τ ] (2-1)

Where Xm(i) is the state of the system at the discrete-time i, xi is the i-th sample of the

signal, τ is the reconstruction delay and m is the embedding dimension [87]. The embedded

space is used to compute the sample entropy and the Largest Lyapunov exponent. Table 2-9

shows the Information-theoretic features used in this work.

Table 2-9. Non-linear features. Abbreviations: r: tolerance for accepting matches (when the

distance between two trajecto-ries is smaller than r); Am(r) and Bm(r): probabilities that

two trajectories willmatch for m + 1; m: points; n: is the algorithm iteration; k: number of

blocks into which the signal is broken down; f(sn): iterated mapping sn+1; n: is the algorithm

iteration.
Features Description Equation

Sample entropy

It is a measure used to

evaluate the temporal complexity

of signals, generally physiological.

The SampEnt defines a tolerance (r)

for accepting matches (if the

distance between two trajectories is

smaller than r), and Am(r) and

Bm(r) are the probabilities that

two trajectories match for m+ 1

and m points, respectively [88].

SampEn(m, r) = ĺımN→∞

[
−lnAm(r)

Bm(r)

]

Lempel-Ziv

Complexity

Is extracted by computation

of the complex envelope of the signal.

Afterward, such an envelope is

binarized by thresholding.

Finally, the count of different

binary patterns is carried out [89].

LZC = k log100 n
n

Largest Lyapunov

exponent

It is a measure of dynamic systems,

which characterizes the separation

rate infinitesimally close

trajectories [87]

λ (x0) = ĺımn→∞
1
n

∑n−1
i=0 ln |f ′ (si)|
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2.4.5. Statistical moments and signal segmentation for the feature

extraction

The feature extraction process returns features that represent the behavior of the signal

in each of the domains analyzed. The feature extraction of ACC and sEMG signals was

performed by the implementation of a sliding window scheme with overlap (see Figure 2-6).

From this process, each feature is represented by a vector is obtained. The length of such

vector (Nf ) depends on the length of the original signal (N), the size of the window (Nw),

and the step size (∆), follows:

Nf =
N −Nw

∆
+ 1 (2-2)

The parameters used for the implementation of the sliding window were frames of 100 and

250 ms for ACC and sEMG respectively, with 50% overlap. Information-theoretic features

were not extracted from sEMG signals due to window size restrictions.

Windows length

Step

Figure 2-6. Sliding window in ACC signals.

To obtain numerical values that represent the behavior of the vector obtained from the sli-

ding window, each of the first four statistical moments, the maximum and minimum are

usually calculated, thus obtaining six features per feature vector. The corresponding equa-

tion for each of the four moments is presented below.

Mean (µ)

µ =
1

n

n∑
i=1

si (2-3)

Variance (V AR(S))

Var(S) =
1

n

n∑
i=1

(si − µ)2 (2-4)
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Skewness (γ)

γ =
µ3

σ3
(2-5)

where µ3 is the third moment around the mean and σ is the standard deviation

Kurtosis (β)

β =
µ4

σ4
(2-6)

where µ4 is the fourth central moment.

The feature extraction was performed using different signal lengths. It was used the full

signal, and segments of 1000, 750, and 500 ms. The segmentation consisted of the identifi-

cation of the swallowing center, it was used SI channel for reference, and open windows of

half the desired signal time on each side (see Figure 2-7). Each segment, as well as the full

signal, were evaluated by means of the previously exposed methodology (sliding window and

calculation of the first four statistical moments and the minimum and maximum). When

fixed-size signal segments were used for feature extraction (1 s, 750 ms, and 500 ms), the

segments outside these times were discarded for the to feature extraction processes. With

this process, it was sought to determine the optimal window size for the analysis of the

swallowing tasks.

500 ms 500 ms

1000 ms

Swallowing centerSI

Figure 2-7. Segmentation example for a 1000 ms window from the superior-inferior channel.

Red areaswere discarded o were disregarded for feature extraction.

It is important to note that the swallowing tasks were analyzed individually, obtaining one

feature space for each task, which would be made up of ACC and sEMG features, a process

known as “early fusion”. Figure 2-8 shows a summary of the process described above.
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Figure 2-8. Graphical representation of feature extraction scheme.

2.5. Feature selection

Feature extraction processes ease the interpretation of the phenomenon under study. Ho-

wever, not all the features describe the phenomenon correctly. Thus, it is recommended to

implement feature selection methods, considering, that to a large extent the classification

results depend on the use of the appropriate features.

Filtering methods for feature selection depend on statistical scores that relate the feature to

the classes. As an advantage, they do not depend on the classification algorithm [90]. Below

is a description of the methods used.

Based on Principal Component Analysis method (PCA)

Feature 1

F
e
a
t
u
r
e
 2

PCA 2nd dimension

PCA 1st dimension

Figure 2-9. Graphical representation of principal components analysis
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It is a technique widely used and applied to different fields. Through this technique the

representation of feature spaces is sought from the main components of the vectors that

make up the feature space (see figure 2-9). Although in the strict sense this is not a feature

selection method, it can be used as such from the score of the variance of the vectors of the

original feature space [91, 92].

The method finds new features spaces from the normalized linear combination of each of the

features (X1, X2, . . . , Xp) of the original set, thus:

Z1 = ϕ11X1 + ϕ21X2 + . . .+ ϕp1Xp (2-7)

The ϕ defines the component, representing the directions of the maximum variance of the

vectors. ϕ can be interpreted as the importance of each of the variables as a function of their

covariance and can be used to score each of the variables in the input set. The fact that the

linear combination is normalized implies that:

p∑
j=1

ϕ2
j1 = 1 (2-8)

Minimum Redundancy - Maximum Relevance (mRMR)

The method seeks to identify the relevance of each of the characteristics calculated with res-

pect to a target variable or label. The features are considered good if they present a degree

of balance in their relevance and redundancy, seeking maximum relevance and minimum

redundancy [93].

Using the mutual information (MI) of the features, which, unlike the correlation coefficient

that only evaluates linear dependencies, the MI can find linear and non-linear dependencies,

the mRMR determines which features can be eliminated (see Figure 2-10) [94].

The mRMR criterion combines the equations of max-relevance (D), where characteristics

that are considered relevant to the classification problem are selected (Equation 2-10) and

the min-redundancy (R), considering that the features selected may contain redundant in-

formation (Equation 2-11) to solve an optimization problem as can be seen in Equation 2-12

I(x; y) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y) log
p(X,Y )(x, y)

p(X)(x)p(Y )(y)
(2-9)
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max D(S, c), D =
1

|S|
∑
si∈S

I (xi; c) (2-10)

min R(S), R =
1

|S|2
∑

xi,xj∈S

I (xi, xj) (2-11)

max Φ(D,R),Φ = D −R (2-12)

Where I is the mutual information, (x, y) are random variables, p(x), p(y), p(x, y) are pro-

bability density functions, xi are the individual features, c is the class, S is the feature set

with m features

Figure 2-10. Graphical representation of the mutual information I(x, y). H denotes the

entropy of the random variables x or y.

Receiver Operating Characteristic (ROC) curve

The use of the ROC curves for the feature selection consists of calculating the area under

the curve (AUC) that each one of the features, keeping in mind the classes. This technique

is easy to apply and is widely used when dealing with bi-class problems. To find the features

to be used, a threshold is determined based on the AUC that must be exceeded. Figure

2-11 shows the area under the curve of six different characteristics in a bi-class classification

problem. To calculate the AUC, the rate of true positives and false positives is considered,

which are described in Section 2.6.3.
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ROC curve
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Mean DASDV SI, AUC = 0.486

Random chance

Figure 2-11. ROC curve of six different features in a classification problem

The feature selection consisted of the implementation of the filter methods described above,

which allow reducing the feature spaces without reliance on a classifier. Furthermore, one

feature space per individual domain was considered for analysis.

Three classification scenarios were considered: one using only ACC signals; another with

sEMG only; and finally, another with the combination of both sources of information.

ROC: Features with an AUC greater than 0.6, 0.7 and 0.8 were extracted (ROC 0.6,

ROC 0.7 and ROC 0.8).

PCA: Select the components so that the variance found is greater than 0.8

mRMR: The number of characteristics was selected automatically taking into account

the mutual information regarding the label.

2.6. Classification and optimization

2.6.1. Classification

In the Machine Learning field, it is possible to find algorithms that allow determining the

membership of the data to one of the classes. This process is known as classification, it can

be bi-class, or multi-class, depending on the number of possible outputs of the algorithm.

The methods implemented in this work are listed below.
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Support Vector Machines

Are algorithms used in classification and regression problems. In the case of classification,

SVM’s are designed mainly for bi-class problems, however, they can also be applied to multi-

class problems [95].

The SVM algorithm estimates hyperplanes where the support vectors can be located and

the classes are separated, looking for each of the classes to be located on each side of the

hyperplane. This is accomplished by yi (w · xi + b) ≥ 1 i = 1, · · · , N ; where N is the

number of data, xi is the training set, yi is the class, and w and b are parameters that

satisfy the algorithm. However, linear separability is not always possible, so the classification

problem turns into:

yi(w · xi + b) ≥ 1− ξi i = 1, · · · , N (2-13)

where ξi ≥ 0 allows points that have been misclassified. Finally, the SVM classification

problem is sought to be solved through the optimization that is given by:

minw,b,ζ
1
2
wTw + C

∑n
i=1 ζi

subject to yi
(
wTϕ (xi) + b

)
≥ 1− ζi

ζi ≥ 0, i = 1, . . . , n

(2-14)

To solve this problem, the aim is to maximize the margin, with a penalization when a

sample is poorly classified or within or at the limit of the margin. Ideally we have that

yi
(
wTϕ (xi) + b

)
≥ 1 in perfectly separable problems, but this is not always possible, for

which allows some samples to be at a distance ζi from the margin. In addition, the training

data is mapped in a higher-dimensional space defined by the function ϕ.

Normally, the problems to be solved by means of SVM’s do not have linear behaviors and

have more than two features. To solve this problem, the features are projected to a space

of greater dimensionality that favors the separation of classes. This is achieved by kernel

functions.

In Figure 2-12 it is possible to see a general diagram of the support vectors and the hyper-

plane, where it is observed that the method uses the samples that are closest to the margin,

which contributes to the decrease in the cost of the algorithm.
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Class -1 (y=-1)

Class 1 (y=1)

Support vectors

Margin

Figure 2-12. Graphical representation of the support vectors and the separation hyperplane
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Figure 2-13. Representation of a neural network with one hidden layer
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It is a supervised machine learning model where, from input sets, that are located in what is

known as input layers, and by performing weighted sums and applying a non-linear activation

function between layers (see Equation 2-15), the probability is obtained of belonging to one

class or another. In Figure 2-13 there is a graphic representation of an MLP. MLP, unlike

logistic regression models, can have hidden layers with different activation functions. The

calculation is carried out in three steps, the initial one where the output of the previous

neuron is multiplied by its weight, in the second step the weighted sum is performed, and

finally, the activation function is applied [96], Figure 2-14 shows each of the steps that

are carried out internally in neurons. In bi-class problems, a sigmoid function is usually

implemented in the last layer, since it works especially well in classification problems.

ui =
m∑
i=1

(wi · xi) + b y1 = f(ui) (2-15)

In
p
u
ts

Wj,i

O
u
tp

u
t

a
i

f

Σ

Figure 2-14. Neuron structure

Where w are the weights, x the output of the previous layer neuron, b is the bias, and f(ui)

is the non-linear activation function. There are different activation functions that can be

implemented in MLP models, below are the formulas of some of them.

Rectified linear unit function (ReLU)

f(x) = max(0, x) (2-16)

Where x is the input to the neuron

Hyperbolic tangent activation function (tanh)

f(x) = tanh(x) (2-17)

Logistic sigmoid function:

σ(x) =
1

1 + e−x
(2-18)
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Extreme Gradient Boosting (XG Boost)

It is a machine learning method where several decision trees are trained, each of them

depends on the residual δ and on the previous tree. In addition to, a cost function that seeks

to minimize the error of each of the trees. In each iteration, the algorithm optimizes the XG

Boost and minimizes the prediction error. The predictions in the algorithm iterations are

calculated like this: ŷ
(k)
i = ŷ

(k−1)
i + fk (xi). And the output of the algorithm is determined

by the weighted sum of each of its trees [97], as can be seen in the formula below.

ŷi =
K∑
k=1

fk (xi) , fk ∈ F (2-19)

Where F is the function spaces of each of the trained trees, and k denotes the number

of trained trees. It is important to consider that the decision trees produce a continuous

variable as an output, so the classification depends on the probability function given by

p (yi = 1 | xi) = σ (ŷi (xi)) where σ is the sigmoid function. Figure 2-15 is a graphical repre-

sentation of the XG Boost model.
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Figure 2-15. XGBoost graphical representation
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k-nearest neighbors (KNN)

The algorithm finds the closest neighbors of the sample to be classified. The algorithm cal-

culates the distance between this point and the k points that are part of the set of training,

and calculates the mode of the classes of each of the closest points. According to this mode,

the class to which the new point belongs is determined. The main recommendation is to use

odd k in order to avoid bi-mode problems (see Figure 2-16). There are different methods for

calculating the distance, below is the mathematical formulation of Euclidean distance, the

method used in this work:

d(p, q) =

√√√√ n∑
i=1

(pn − qn)
2 (2-20)

Where pn and qn are Cartesian coordinates in n -dimensional Euclidean space

Class -1

Class 1

Test sample

Figure 2-16. KNN graphical representation

2.6.2. Optimization

The algorithms of feature selection, machine learning, and deep learning include different

parameters and hyperparameters, the best selection in these aspects entails the generation of

the best results. Various methods have been created that seek the choice of the best hyperpa-

rameters, such as the grid search. This method consists of determining the parameters under

which the algorithm that we want to optimize will work, and under the grid search scheme,

all possible combinations of these defined parameters are evaluated, seeking to maximize or

minimize a metric defined from the beginning [98].
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Stratified cross-validation with 10 outer and 5 inner partitions was performed for four dif-

ferent classifiers. For each of them, a grid-search was implemented with the AUC as an

optimization criterion, and the F1-score, accuracy, precision, and sensitivity were also cal-

culated. The parameters optimized for the grid search are described below.

SVM: Kernel: Radial basis function, sigmoid and linear. C: 10−4 to 104. γ: 10−4 to

10−4.

MLP: Solver: Adam and stochastic gradient descent. Learning rate (α): 10−4 to 104.

Hidden layers: (10,1), (10, 10), (10, 50), (50,), (50, 10), (50, 50), (50, 100), (100,1),

(100, 50), (100, 100). Activation functions: ReLU, tanh, and logistic

XG Boost: Depth of tree: 2, 5, 10, 20, 30, 50 and 100. Weights Balance: 1, 10, 25, 50,

75, 99, 100 and 1000.

KNN: Neighbors: 3, 5, and 7.

2.6.3. Model selection

In the classification processes, performance measures were determined to identify the rate

of successes or failures of the classifier. The confusion matrix shows the true-positive (TP),

false-positive (FP), true-negative (TN), and false-negative (FN). Figure 2-17 shows how a

confusion matrix is presented.

Figure 2-17. Structure of matrix confusion
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The TP, FP, FN, and TN, allow to evaluate of the performance of the proposed algorithm

by different metrics, as described below:

Precision: it is the ratio of true positives among all true results

Precision =
TP

TP + FP
(2-21)

Sensitivity: seeks to find the proportion of true positives that were correctly identified

Sensitivity =
TP

TP + FN
(2-22)

F1 score: it is the measure of precision that a test has, it combines the precision and

completeness values of the results of an algorithm.

F1score = 2× Precision× Sensitivity

Precision+ Sensitivity
(2-23)

Accuracy: It is the proportion of true results among the total of cases examines

Accuracy =
TP + TN

TP + TN + FP + FN
(2-24)

ROC-AUC: Its definition is found in Section 2.5. In this case, is calculated to determine

the performance of the implemented classification algorithms

Once the results of the implemented classifiers were obtained and evaluated, the models

that presented the highest AUC were chosen per swallowing task. If two models, retrieved

the same AUC, the best one was selected as the one with the highest sensitivity. The most

common combination of hyperparameters found in each partition of the selected models was

selected, seeking to evaluate the models again.

Figure 2-18 illustrates the summary of the methodology.
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Generalization error

Recording signal

ACC+sEMG, ACC, sEMG

Figure 2-18. Methodological flowchart.



3. Results

3.1. Acquisition of ACC signal

3.1.1. Custom software MODAC

According to the design requirements established by the research team, software called MO-

DAC was developed, which allows the capture of ACC signals, and cervical auscultation, the

visualization of signals in real-time, and storage for offline analysis. The software was tested

by researchers and used in healthy and pathological subjects.

The main features of the designed software are provided next.

Main window

Figure 3-1. MODAC main window
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The software incorporates a module for the acquisition of ACC signals synchronously with

video images. Also, a module for the acquisition of ACC and cervical auscultation signals.

In the same way, a module was incorporated that allows, using impulses, the segmentation

of the sEMG signals. Figure 3-1 shows the main window of the designed software.

Synchronization

The synchronization tool consists of a digital button on the MODAC. In this case, the digital

button is in charge of generating the impulse that is stored in the MODAC and sent through

the NI-USB 6215 DAQ to the Noraxon.

sEMG segmentation

The MODAC incorporates a module of pulse generation that allows having an indicator

of the onset and offset of the sEMG signal. This is useful as it allows the segmentation of

swallowing tasks offline for further analysis. Figure 3-2 shows the design of this module. In

this module, the user has the Start button, which allows generating a new file with the name

of the subject evaluated. It also has two buttons that allow to pause, resume and end the

process, and a button that sends the segmentation pulse for the sEMG signals.

Figure 3-2. Syncrhonization module

ACC acquisition

The MODAC main module allows the acquisition of ACC and cervical auscultation signals.

It also allows the generation of pulses for the synchronization and segmentation of offline

signals. Figure 3-3 shows the functioning of MODAC software were the ACC acquisition

and performed cervical auscultation.
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Figure 3-3. MODAC front panel during ACC signal acquisition process

3.2. Pre-processing

The sEMG signal was filtered by a Butterworth-type band pass filter of order 5 with cu-

toff frequencies between 25-450 Hz. In addition, wavelet denoising was implemented using

a db 5-type mother wavelet with 5 decomposition levels, the threshold selection rule was

minimaxi, the type of thresholding was soft and the multiplicative threshold rescaling mln

[99].

The ACC signals were filtered by implementing a bandpass filter type Butterworth between

0.1-3000 Hz. This filter is implemented with a low cutoff frequency in order to eliminate very

low-frequency noise and DC components.

The individual analysis of the ACC signals allowed to identify behaviors not related to

swallowing. Their elimination was achieved through the manual implementation of wavelet

denoising after the identification and segmentation of swallows and non-swallows.

3.2.1. Wavelet denoising

The search for optimal parameters for the filtering of the ACC signals yielded to increase

the signal-to-noise ratio. It showed that the use of certain wavelets (db 2 to 6 and Symlet 3
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to 5), as well as the implementation of 7, 8, and 9 decomposition levels, reduced the SNR. It

was identified that the rule sqtwolog for threshold selection and the multiplicative threshold

rescaling sln did not improve the signal quality. Table 3-1 shows the number of signals that

improved their SNR using different combination of parameters with db2.

Table 3-1. Number of signals that increase their SNR. Considering db2 wavelet mother,

heursure threshold selection rule, s type of thresholding. Varying the levels between 7, 8,

and 9 and the mln and one multiplicative threshold rescaling

Signal Levels
Multiplicative

threshold rescaling

Number of

signals

AP

7
mln 36

one 66

8
mln 33

one 50

9
mln 128

one 78

SI

7
mln 34

one 52

8
mln 27

one 52

9
mln 150

one 76

ML

7
mln 31

one 50

8
mln 32

one 53

9
mln 161

one 64

The numer of signals that showed an increase in SNR was used as a criterion to select the

best combination of parameters. The db2 mother wavelet and 9 decomposition levels impro-

ved the results, equally, the heursure threshold selection rule, soft type of thresholding, and

the multiplicative threshold rescaling mln also contribute positively to the improvement of

the quality of the ACC signals. Figure 3-4 shows the scalogram of an identified swallowing

segment, as well as filtered and unfiltered noise.
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(a) Spectrogram of the swallow-related segment.

Bandpass filtering

(b) Swallow segment spectrogram identified in ACC

signal. Wavelet denoising

(c) Spectrogram of the noise-related segment. Band-

pass filtering

(d) Noise segment spectrogram identified in ACC sig-

nal. Wavelet denoising

Figure 3-4. ACC spectrograms of swallow and noise, with bandpass filters (a, c), and with

optimized wavelet denoising (b, d)

3.3. Feature extraction and feature selection

To obtain the results, feature spaces were created from the full signal, and 1 s, 750 ms, and

500 ms signals considering the application or not application of denoising wavelet. It was

also considered the multi-sensor fusion (ACC + sEMG) and the independent information of

the signals (ACC and sEMG).

Each feature space obtained from the above considerations was reduced with the three pro-

posed methods (mRMR, PCA, and ROC with thresholds of 0.6, 0.7, and 0.8) in addition

to considering each domain calculated as an independent feature space (time, frequency,

time-frequency, and information-theoretic features for ACC signals). It is important to note

that it was not possible to obtain a ROC 0.8 feature space in all possible scenarios.

All the feature spaces were evaluated by the four described classifiers (SVM, MLP, XG Boost,

and KNN). This was done for each of the swallowing tasks. Given the large number of results

obtained, this section will analyze the feature spaces that provided the best results, which

are presented in Section 3.4

The feature spaces that showed the best results, were analyzed independently, by ACC axis

and sEMG channel. Figure 3-5 shows, the percentage of features that belong to each of

the analyzed channels, only for sEMG+ACC, because the best results were achieved in this
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scenario.

Figure 3-5 shows that at least two ACC channels and all sEMG channels were necessary

to discriminate between healthy individuals and dysphagic patients properly. However, in

most cases, the presence of ACC features was greater than sEMG features. Analyzing the

consistencies independently, and taking into account that different methods of feature selec-

tion were chosen for the swallowing tasks, it was found that ACC related features contribute

only to 34.21% of the selected space for 5mL of yogurt. Otherwise, the AP channel contri-

butes to the 50% and 63.89% of the whole feature space for 10mL of yogurt and 20lmL

of water, respectively. The AP channel also contributes with a high percentage in the other

consistencies analyzed. Otherwise, the 20mL of water was the only bolus that allowed the

complete elimination of one of the information channels, i.e. the ML channel. However, it

was evidenced that this channel was important for other swallowing tasks. It was expected

that this channel provides a lower proportion of features, considering that the movement

analyzed is not too evident in the swallowing task, in contrast to the AP movement, which is

easy to identify during swallowing and, as expected, provides a large amount of information.

Regarding to sEMG channels, it was not possible to identify a clear pattern. For the RIH

channel, it was identified that swallowing tasks with volumes of 5 and 20mL required more

features compared to the other sEMG channels. Something similar happens for 10mL, but

with LSH. This is contrary to what would be expected regarding the behavior of these chan-

nels since a similar behavior would be expected for all swallowing tasks. However, it should

be noted that for the 10mL swallowing tasks, the RIH channel provided a very reduced

amount of information compared to the other volumes.

Accelerometry contributes in most cases with more features regarding the measurements

computed in the infrahyoid and suprahyoid muscles by means of sEMG. It is highlighted

that the cricoid cartilage favors the protection of the airways, in addition to serving as fixa-

tion for the laryngeal muscles, therefore, its function is noteworthy, and may be related to

this fact.
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Figure 3-5. Percentage of features per channel analyzed, considering the feature spaces with

the highest classification performance.

Table 3-2 shows the number of features selected for each of the swallowing tasks, and the

features number per domain. More features are required for characterization of swallowing

tasks of 5 ml, compared to the other volumes. This applies also for water in comparison
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Table 3-2. Number of features per swallowing task and feature domain

Task
Feature

selection
Time Frequency Time-Frequency Non-linear Total features

Y5 ROC 0.6 102 39 69 4 214

Y10 MRMR 7 1 3 3 14

Y20 MRMR 10 4 5 1 20

S ROC 0.7 72 9 14 6 101

W5 ROC 0.6 183 59 121 20 383

W10 ROC 0.7 60 9 15 4 88

W20 ROC 0.7 9 7 20 0 36

to yogurt.

The above can also be evidenced in Figure 3-6. It can be seen that the skewness and kurtosis

provide lesser information than the mean, standard deviation, maximum and minimum of

the analyzed feature. In addition, it is noteworthy that in the two cases where the number

of features is small (10 and 20mL of yogurt) the feature spaces were selected by mRMR,

while for the other cases the selected method was the ROC with thresholds of 0.6 and 0.7.

According to the number of features required for the classification of each swallowing task,

it can be seen that for low volume more features are required.
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Figure 3-6. Number of features selected per statistical moments, minimum and maximum,

according to swallowing task
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Likewise, a difference is observed in the number of features necessary to identify healthy or

dysphagic subjects from the consistencies evaluated. In the case of water, it was necessary to

have a greater number of features than yogurt. It should be considered that for 10 and 20mL

of yogurt, the feature selection method that provided the best AUC was mRMR, and the

method eliminates redundant features and contributes to the reduction of dimensionality in

a notorious way. A possible explanation for this result may be that swallowing thin liquids

in dysphagic population demands additional maneuvers to protect the airway [100, 101].

According to Boiron et al. (1997) there are differences in the duration of swallowing tasks

considering density and volume, reporting shorter duration for dense liquids such as yogurt

and longer duration for clear liquids such as water, in addition to the difference in duration

for the volume of swallowing task [102]. This factor could be related to the need to have a

greater number of features for the discrimination of disphagic subjects.

3.4. Classification

The feature extraction process retrieved 522 ACC features (180 of time, 90 of frequency, 198

of time-frequency, and 54 of non-linear dynamics). In the same way, 396 features of sEMG

were calculated (180 of time, 90 of frequency, and 126 of time-frequency). Each of the fea-

ture spaces obtained for each of the swallowing tasks was evaluated using different methods

for feature selection. In addition, each domain was evaluated separately, as an independent

feature space.

The results were evaluated with the AUC, because this work is intended for dysphagia scree-

ning, and it seeks for sensitivity-precision trade-off. The best classification results obtained

for each swallowing task are presented below. The tasks were evaluated with four classifiers,

and three scenarios were considered (ACC, sEMG, and ACC+sEMG), as well as with and

without wavelet denoising before the feature extraction.

Although the classifiers were implemented on feature spaces obtained from signal segments,

the segmentation process is manual. For this reason, results that can be comparable taking

into account the AUC and the sensitivity achieved in the complete signal will be presented.

Classification results for each consistency are explained next.
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1. Yogurt 5mL (Y5)

Table 3-3 show that the maximum AUC is 0.90 ± 0.14 with a sensitivity of 0.87 ± 0.17,

using a 750 ms signal without wavelet denoising before feature extraction. For such

case, the result was obtained from the implementation of the ROC based feature re-

duction, with a threshold of 0.6 and an MLP as a classification algorithm.

Furthermore, the use of the full signal, regardless of the use of wavelet denoising, pro-

vides comparable results, with AUC of 0.88 ± 0.16 and a sensitivity of 0.87 ± 0.23 for

wavelet denoising and AUC of 0.87 ± 0.11 with a sensitivity of 0.87 ± 0.17 without

wavelet denoising. In both cases, these results were obtained by implementing a KNN

and features selected by the ROC with a threshold of 0.8 and 0.7, respectively. It is

important to note that the kNN for this swallowing task retrieves comparable results

to the other algorithms, which reduces the computational cost.

Table 3-3. Classification results Y5 (Full signal, 1 s, 750 ms, 500 ms). The best results are

highlighted

Signal size
Wavelet

denoising
Signal Classifier

Feature

selection
AUC F1 score Accuracy Precision Sensitivity

ACC+sEMG KNN ROC 0.6 0.88 ± 0.16 0.87 ± 0.19 0.88 ± 0.16 0.89 ± 0.18 0.87 ± 0.23

ACC XGBoost MRMR 0.82 ± 0.17 0.84 ± 0.14 0.82 ± 0.17 0.81 ± 0.20 0.90 ± 0.16✓
sEMG MLP ROC 0.8 0.75 ± 0.20 0.70 ± 0.30 0.75 ± 0.20 0.74 ± 0.33 0.70 ± 0.33

ACC+sEMG KNN ROC 0.7 0.87 ± 0.11 0.86 ± 0.11 0.86 ± 0.11 0.88 ± 0.15 0.87 ± 0.17

ACC SVM ROC 0.7 0.80 ± 0.15 0.80 ± 0.14 0.80 ± 0.15 0.80 ± 0.19 0.83 ± 0.18

Full signal

%
sEMG SVM ROC 0.6 0.77 ± 0.20 0.76 ± 0.20 0.76 ± 0.20 0.76 ± 0.22 0.80 ± 0.23

ACC+sEMG XGBoost MRMR 0.80 ± 0.13 0.82 ± 0.10 0.80 ± 0.13 0.78 ± 0.17 0.90 ± 0.16

ACC KNN ROC 0.6 0.72 ± 0.14 0.64 ± 0.19 0.73 ± 0.14 0.89 ± 0.18 0.55 ± 0.27✓
sEMG XGBoost MRMR 0.77 ± 0.12 0.79 ± 0.10 0.76 ± 0.11 0.73 ± 0.15 0.90 ± 0.16

ACC+sEMG SVM ROC 0.6 0.82 ± 0.15 0.83 ± 0.16 0.83 ± 0.15 0.80 ± 0.19 0.88 ± 0.19

ACC XGBoost MRMR 0.75 ± 0.14 0.79 ± 0.12 0.75 ± 0.14 0.69 ± 0.14 0.93 ± 0.14

1 s

%
sEMG SVM ROC 0.6 0.80 ± 0.19 0.80 ± 0.18 0.79 ± 0.20 0.80 ± 0.22 0.83 ± 0.18

ACC+sEMG XGBoost ROC 0.7 0.78 ± 0.18 0.81 ± 0.16 0.78 ± 0.18 0.73 ± 0.20 0.95 ± 0.16

ACC XGBoost Time-Frequency 0.74 ± 0.18 0.78 ± 0.16 0.74 ± 0.18 0.70 ± 0.21 0.92 ± 0.18✓
sEMG XGBoost ROC 0.7 0.83 ± 0.22 0.86 ± 0.18 0.83 ± 0.23 0.80 ± 0.23 0.97 ± 0.11

ACC+sEMG MLP ROC 0.6 0.90 ± 0.14 0.89 ± 0.14 0.90 ± 0.14 0.93 ± 0.14 0.87 ± 0.17

ACC XGBoost MRMR 0.68 ± 0.13 0.71 ± 0.12 0.68 ± 0.13 0.64 ± 0.10 0.82 ± 0.20

750 ms

%
sEMG MLP ROC 0.6 0.83 ± 0.21 0.83 ± 0.20 0.83 ± 0.21 0.84 ± 0.24 0.87 ± 0.23

ACC+sEMG XGBoost MRMR 0.73 ± 0.18 0.75 ± 0.15 0.73 ± 0.18 0.76 ± 0.22 0.83 ± 0.24

ACC SVM ROC 0.6 0.72 ± 0.14 0.64 ± 0.28 0.71 ± 0.13 0.68 ± 0.28 0.67 ± 0.35✓
sEMG XGBoost MRMR 0.73 ± 0.14 0.76 ± 0.12 0.73 ± 0.15 0.72 ± 0.21 0.87 ± 0.17

ACC+sEMG KNN ROC 0.6 0.73 ± 0.12 0.70 ± 0.13 0.73 ± 0.11 0.82 ± 0.19 0.67 ± 0.22

ACC MLP ROC 0.6 0.63 ± 0.26 0.58 ± 0.33 0.64 ± 0.25 0.57 ± 0.33 0.60 ± 0.38

500 ms

%
sEMG SVM Time 0.73 ± 0.14 0.64 ± 0.26 0.73 ± 0.14 0.79 ± 0.33 0.60 ± 0.31
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2. Yogurt 10mL (Y10)

Table 3-4 presents the best results obtained for the 10mL of yogurt task. In this

case, a maximum AUC of 0.85 was obtained in two cases. In the first case, the AUC

was 0.85 ± 0.15 and a sensitivity of 0.93 ± 0.14, obtained through the extraction of

features applied to the full signal and wavelet denoising. The classification method

used to achieve this result was the XGBoost applied on the set of features obtained

by applying mRMR. In the second case, a AUC of 0.85 ± 0.17 was obtained with a

sensitivity of 0.90 ± 0.16, however in this case the result was obtained with 1 second of

the signal with the implementation wavelet denoising, features reduced by ROC with

a threshold of 0.6 and a XGBoost, like the previous case.

Table 3-4. Classification results Y10 (Full signal, 1 s, 750 ms, 500 ms). The best results are

highlighted

Signal size
Wavelet

denoising
Signal Classifier

Feature

selection
AUC F1 Accuracy Precision Sensitivity

ACC+sEMG XGBoost MRMR 0.85 ± 0.15 0.85 ± 0.15 0.84 ± 0.17 0.82 ± 0.21 0.93 ± 0.14

ACC XGBoost ROC 0.7 0.80 ± 0.15 0.79 ± 0.17 0.79 ± 0.16 0.78 ± 0.20 0.87 ± 0.23✓
sEMG XGBoost ROC 0.6 0.70 ± 0.15 0.65 ± 0.27 0.69 ± 0.16 0.66 ± 0.31 0.73 ± 0.34

ACC+sEMG MLP MRMR 0.84 ± 0.17 0.82 ± 0.18 0.84 ± 0.17 0.90 ± 0.22 0.78 ± 0.19

ACC SVM MRMR 0.78 ± 0.19 0.75 ± 0.22 0.79 ± 0.19 0.84 ± 0.22 0.73 ± 0.30

Full signal

%
sEMG KNN ROC 0.6 0.77 ± 0.25 0.77 ± 0.26 0.77 ± 0.26 0.73 ± 0.27 0.83 ± 0.27

ACC+sEMG XGBoost ROC 0.7 0.85 ± 0.17 0.86 ± 0.15 0.84 ± 0.18 0.85 ± 0.21 0.90 ± 0.16

ACC KNN ROC 0.6 0.66 ± 0.12 0.60 ± 0.16 0.67 ± 0.12 0.73 ± 0.24 0.55 ± 0.21✓
sEMG KNN ROC 0.7 0.74 ± 0.14 0.72 ± 0.15 0.74 ± 0.14 0.77 ± 0.22 0.75 ± 0.24

ACC+sEMG MLP ROC 0.6 0.77 ± 0.25 0.75 ± 0.24 0.77 ± 0.25 0.82 ± 0.26 0.77 ± 0.31

ACC KNN ROC 0.6 0.65 ± 0.28 0.59 ± 0.33 0.66 ± 0.27 0.66 ± 0.37 0.60 ± 0.37

1 s

%
sEMG KNN ROC 0.6 0.80 ± 0.17 0.75 ± 0.21 0.80 ± 0.17 0.90 ± 0.21 0.70 ± 0.28

ACC+sEMG XGBoost MRMR 0.82 ± 0.23 0.77 ± 0.32 0.81 ± 0.23 0.78 ± 0.34 0.83 ± 0.36

ACC MLP ROC 0.6 0.73 ± 0.17 0.64 ± 0.28 0.74 ± 0.16 0.73 ± 0.34 0.60 ± 0.30✓
sEMG SVM ROC 0.6 0.73 ± 0.20 0.68 ± 0.30 0.73 ± 0.19 0.65 ± 0.31 0.77 ± 0.35

ACC+sEMG XGBoost MRMR 0.83 ± 0.16 0.82 ± 0.18 0.82 ± 0.17 0.79 ± 0.20 0.90 ± 0.22

ACC XGBoost MRMR 0.78 ± 0.16 0.80 ± 0.14 0.77 ± 0.16 0.71 ± 0.18 0.93 ± 0.14

750 ms

%
sEMG SVM ROC 0.6 0.81 ± 0.22 0.78 ± 0.26 0.81 ± 0.22 0.78 ± 0.24 0.78 ± 0.29

ACC+sEMG MLP PCA 0.79 ± 0.15 0.71 ± 0.29 0.80 ± 0.13 0.81 ± 0.32 0.68 ± 0.34

ACC XGBoost MRMR 0.70 ± 0.17 0.71 ± 0.17 0.69 ± 0.17 0.67 ± 0.20 0.80 ± 0.23✓
sEMG KNN ROC 0.7 0.72 ± 0.17 0.70 ± 0.20 0.71 ± 0.17 0.73 ± 0.24 0.75 ± 0.29

ACC+sEMG MLP ROC 0.6 0.80 ± 0.19 0.73 ± 0.31 0.82 ± 0.17 0.80 ± 0.32 0.70 ± 0.32

ACC KNN MRMR 0.78 ± 0.18 0.76 ± 0.21 0.79 ± 0.18 0.78 ± 0.21 0.77 ± 0.26

500 ms

%
sEMG KNN ROC 0.6 0.75 ± 0.28 0.72 ± 0.32 0.76 ± 0.28 0.77 ± 0.35 0.70 ± 0.32
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3. Yogurt 20mL (Y20)

Table 3-5 shows the results obtained with 20mL of yogurt, where a AUC of 0.92 ± 0.10

and sensitivity of 0.95 ± 0.16 were achieved. Results were obtained without wavelet

denoising, and a XGBoost classifier was applied to a reduced feature space by MRMR.

Although an AUC and sensitivity were lower than those presented for this swallowing

activity, the implementation of classifiers on 750 ms signals provides a result that can

be taken into account. For this case, with the implementation of the wavelet filter prior

to the feature extraction, as well as the reduction of the features space through MRMR

and XGBoost, they provide an AUC of 0.82 ± 0.18 and a sensitivity of 0.88 ± 0.19.

Table 3-5. Classification results Y20 (Full signal, 1 s, 750 ms, 500 ms). The best results are

highlighted

Signal size
Wavelet

denoising
Signal Classifier

Feature

selection
AUC F1 score Accuracy Precision Sensitivity

ACC+sEMG XGBoost MRMR 0.84 ± 0.21 0.82 ± 0.23 0.84 ± 0.21 0.85 ± 0.25 0.82 ± 0.24

ACC MLP PCA 0.82 ± 0.16 0.80 ± 0.16 0.81 ± 0.18 0.87 ± 0.22 0.8 ± 0.22✓
sEMG XGBoost MRMR 0.79 ± 0.16 0.73 ± 0.29 0.79 ± 0.14 0.67 ± 0.28 0.82 ± 0.34

ACC+sEMG XGBoost MRMR 0.92 ± 0.10 0.92 ± 0.12 0.93 ± 0.10 0.92 ± 0.14 0.95 ± 0.16

ACC KNN ROC 0.7 0.86 ± 0.11 0.84 ± 0.13 0.85 ± 0.12 0.89 ± 0.18 0.85 ± 0.20

Full signal

%
sEMG KNN ROC 0.7 0.84 ± 0.19 0.84 ± 0.19 0.83 ± 0.19 0.83 ± 0.24 0.88 ± 0.19

ACC+sEMG MLP ROC 0.6 0.81 ± 0.15 0.78 ± 0.18 0.81 ± 0.16 0.87 ± 0.22 0.75 ± 0.23

ACC MLP ROC 0.6 0.71 ± 0.21 0.56 ± 0.41 0.73 ± 0.18 0.57 ± 0.42 0.58 ± 0.44✓
sEMG KNN ROC 0.7 0.78 ± 0.14 0.71 ± 0.19 0.78 ± 0.14 0.88 ± 0.19 0.65 ± 0.27

ACC+sEMG MLP Time-Frequency 0.77 ± 0.19 0.74 ± 0.20 0.77 ± 0.19 0.82 ± 0.25 0.73 ± 0.25

ACC XGBoost MRMR 0.72 ± 0.20 0.70 ± 0.20 0.70 ± 0.21 0.71 ± 0.28 0.77 ± 0.26

1 s

%
sEMG XGBoost ROC 0.7 0.76 ± 0.16 0.76 ± 0.14 0.75 ± 0.18 0.78 ± 0.24 0.82 ± 0.20

ACC+sEMG XGBoost MRMR 0.82 ± 0.18 0.82 ± 0.17 0.81 ± 0.20 0.82 ± 0.24 0.88 ± 0.19

ACC XGBoost MRMR 0.68 ± 0.19 0.69 ± 0.19 0.67 ± 0.20 0.67 ± 0.26 0.78 ± 0.24✓
sEMG XGBoost MRMR 0.78 ± 0.22 0.78 ± 0.19 0.76 ± 0.22 0.74 ± 0.25 0.88 ± 0.19

ACC+sEMG XGBoost Time 0.77 ± 0.19 0.73 ± 0.21 0.77 ± 0.19 0.83 ± 0.24 0.73 ± 0.30

ACC KNN MRMR 0.78 ± 0.19 0.77 ± 0.19 0.77 ± 0.19 0.74 ± 0.21 0.83 ± 0.24

750 ms

%
sEMG MLP ROC 0.6 0.70 ± 0.16 0.57 ± 0.34 0.73 ± 0.13 0.65 ± 0.39 0.57 ± 0.38

ACC+sEMG XGBoost MRMR 0.74 ± 0.22 0.75 ± 0.19 0.72 ± 0.23 0.66 ± 0.23 0.92 ± 0.18

ACC XGBoost MRMR 0.78 ± 0.16 0.8 ± 0.14 0.77 ± 0.17 0.73 ± 0.21 0.93 ± 0.14✓
sEMG MLP ROC 0.7 0.73 ± 0.18 0.58 ± 0.36 0.75 ± 0.17 0.69 ± 0.4 0.57 ± 0.41

ACC+sEMG XGBoost MRMR 0.79 ± 0.15 0.76 ± 0.18 0.78 ± 0.16 0.78 ± 0.22 0.82 ± 0.25

ACC MLP ROC 0.6 0.78 ± 0.18 0.70 ± 0.30 0.78 ± 0.18 0.74 ± 0.33 0.72 ± 0.34

500 ms

%
sEMG KNN ROC 0.8 0.77 ± 0.18 0.64 ± 0.37 0.77 ± 0.18 0.66 ± 0.39 0.67 ± 0.41
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4. Dry swallowing (S)

Table 3-6 shows the analyses corresponding to dry swallowing, where a AUC of 0.88

± 0.14, and sensitivity of 0.90 ± 0.16 were obtained. This result was achieved by im-

plementing an SVM with a reduced feature space using ROC 0.7 over the complete

signals without wavelet denoising. However, the implementation of denoising wavelet

contributes in the same way to obtain important results regarding the classification

of healthy or dysphagic subjects. The sensitivity, obtained with features selected with

ROC 0.7 from the full signal with wavelet denoising, and an MLP as classifier were of

0.97 ± 0.11 and the AUC of 0.87 ± 0.15.

Table 3-6. Classification results S (Full signal, 1 s, 750 ms, 500 ms). The best results are

highlighted

Signal size
Wavelet

denoising
Signal Classifier

Feature

selection
AUC F1 score Accuracy Precision Sensitivity

ACC+sEMG MLP ROC 0.7 0.87 ± 0.15 0.89 ± 0.11 0.87 ± 0.15 0.85 ± 0.17 0.97 ± 0.11

ACC SVM ROC 0.7 0.87 ± 0.11 0.86 ± 0.11 0.87 ± 0.11 0.89 ± 0.14 0.87 ± 0.17✓
sEMG SVM NONE 0.73 ± 0.20 0.76 ± 0.15 0.73 ± 0.20 0.77 ± 0.23 0.80 ± 0.17

ACC+sEMG SVM ROC 0.7 0.88 ± 0.14 0.88 ± 0.14 0.88 ± 0.14 0.88 ± 0.15 0.9 ± 0.16

ACC SVM MRMR 0.80 ± 0.15 0.81 ± 0.15 0.80 ± 0.15 0.80 ± 0.17 0.83 ± 0.18

Full signal

%
sEMG KNN ROC 0.6 0.80 ± 0.15 0.78 ± 0.16 0.80 ± 0.15 0.89 ± 0.18 0.73 ± 0.21

ACC+sEMG KNN ROC 0.6 0.80 ± 0.19 0.78 ± 0.22 0.80 ± 0.19 0.84 ± 0.21 0.77 ± 0.27

ACC KNN MRMR 0.68 ± 0.18 0.68 ± 0.18 0.68 ± 0.18 0.74 ± 0.24 0.67 ± 0.22✓
sEMG XGBoost ROC 0.6 0.77 ± 0.14 0.79 ± 0.12 0.77 ± 0.14 0.79 ± 0.20 0.83 ± 0.18

ACC+sEMG MLP ROC 0.6 0.77 ± 0.16 0.72 ± 0.28 0.77 ± 0.16 0.74 ± 0.31 0.73 ± 0.31

ACC XGBoost MRMR 0.68 ± 0.12 0.68 ± 0.16 0.68 ± 0.12 0.67 ± 0.15 0.73 ± 0.26

1 s

%
sEMG KNN ROC 0.6 0.78 ± 0.16 0.76 ± 0.20 0.78 ± 0.16 0.81 ± 0.18 0.77 ± 0.27

ACC+sEMG XGBoost Frequency 0.70 ± 0.15 0.77 ± 0.11 0.70 ± 0.15 0.64 ± 0.11 0.97 ± 0.11

ACC SVM ROC 0.7 0.68 ± 0.15 0.71 ± 0.15 0.68 ± 0.15 0.66 ± 0.16 0.80 ± 0.23✓
sEMG KNN ROC 0.7 0.63 ± 0.11 0.61 ± 0.16 0.63 ± 0.11 0.68 ± 0.19 0.63 ± 0.29

ACC+sEMG MLP ROC 0.7 0.77 ± 0.18 0.78 ± 0.18 0.77 ± 0.18 0.78 ± 0.21 0.83 ± 0.24

ACC SVM MRMR 0.72 ± 0.11 0.69 ± 0.15 0.72 ± 0.11 0.78 ± 0.2 0.67 ± 0.22

750 ms

%
sEMG SVM MRMR 0.73 ± 0.20 0.70 ± 0.20 0.73 ± 0.20 0.85 ± 0.21 0.67 ± 0.27

ACC+sEMG SVM MRMR 0.83 ± 0.18 0.82 ± 0.20 0.83 ± 0.18 0.83 ± 0.19 0.83 ± 0.24

ACC KNN ROC 0.7 0.68 ± 0.12 0.67 ± 0.13 0.68 ± 0.12 0.77 ± 0.21 0.67 ± 0.22✓
sEMG KNN ROC 0.7 0.72 ± 0.19 0.72 ± 0.19 0.72 ± 0.19 0.73 ± 0.22 0.73 ± 0.21

ACC+sEMG SVM ROC 0.6 0.75 ± 0.20 0.72 ± 0.24 0.75 ± 0.20 0.74 ± 0.21 0.73 ± 0.31

ACC KNN ROC 0.6 0.72 ± 0.18 0.68 ± 0.22 0.72 ± 0.18 0.74 ± 0.19 0.67 ± 0.27

500 ms

%
sEMG XGBoost ROC 0.7 0.75 ± 0.12 0.78 ± 0.10 0.75 ± 0.12 0.75 ± 0.18 0.87 ± 0.17
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5. Water 5mL (W5)

For 5mL of water (see Table 3-7), it was evidenced that the best case achieved a ROC

0.9 ± 0.09 and a sensitivity of 0.87 ± 0.17. Obtained over the full signals without the

implementation of wavelet denoising, a MLP as a classification method, and selection

method ROC 0.6.

Likewise, the classification using 500 ms signals showed that they can a good option,

considering that it reached an AUC of 0.83 ± 0.16 and a sensitivity of 0.86 ± 0.24

by implementing wavelet denoising on a reduced feature space using ROC 0.6 and an

MLP as a classifier.

Table 3-7. Classification results W5 (Full signal, 1 s, 750 ms, 500 ms). The best results are

highlighted

Signal size
Wavelet

denoising
Signal Classifier

Feature

selection
AUC F1 score Accuracy Precision Sensitivity

ACC+sEMG SVM MRMR 0.86 ± 0.16 0.8 ± 0.30 0.86 ± 0.15 0.85 ± 0.32 0.78 ± 0.33

ACC XGBoost ROC 0.8 0.81 ± 0.12 0.81 ± 0.13 0.81 ± 0.12 0.8 ± 0.14 0.85 ± 0.20✓
sEMG XGBoost ROC 0.7 0.80 ± 0.15 0.82 ± 0.13 0.79 ± 0.16 0.8 ± 0.22 0.90 ± 0.16

ACC+sEMG MLP ROC 0.6 0.90 ± 0.09 0.89 ± 0.10 0.90 ± 0.09 0.95 ± 0.11 0.87 ± 0.17

ACC XGBoost NONE 0.77 ± 0.12 0.79 ± 0.11 0.76 ± 0.11 0.71 ± 0.12 0.90 ± 0.16

Full signal

%
sEMG KNN Time 0.87 ± 0.13 0.82 ± 0.19 0.86 ± 0.13 0.97 ± 0.11 0.77 ± 0.27

ACC+sEMG MLP ROC 0.6 0.80 ± 0.15 0.76 ± 0.19 0.79 ± 0.15 0.85 ± 0.20 0.73 ± 0.26

ACC MLP ROC 0.6 0.79 ± 0.16 0.8 ± 0.16 0.79 ± 0.16 0.75 ± 0.19 0.88 ± 0.19✓
sEMG XGBoost MRMR 0.73 ± 0.14 0.74 ± 0.12 0.73 ± 0.14 0.71 ± 0.16 0.80 ± 0.17

ACC+sEMG KNN ROC 0.7 0.77 ± 0.16 0.76 ± 0.17 0.76 ± 0.17 0.79 ± 0.22 0.77 ± 0.22

ACC SVM ROC 0.6 0.66 ± 0.13 0.51 ± 0.3 0.67 ± 0.12 0.66 ± 0.39 0.45 ± 0.31

1 s

%
sEMG KNN ROC 0.6 0.78 ± 0.11 0.78 ± 0.10 0.78 ± 0.12 0.82 ± 0.20 0.80 ± 0.17

ACC+sEMG KNN ROC 0.7 0.73 ± 0.2 0.72 ± 0.19 0.73 ± 0.19 0.79 ± 0.24 0.73 ± 0.26

ACC XGBoost ROC 0.6 0.63 ± 0.18 0.64 ± 0.17 0.64 ± 0.18 0.65 ± 0.22 0.67 ± 0.21✓
sEMG KNN ROC 0.7 0.73 ± 0.20 0.72 ± 0.19 0.73 ± 0.19 0.79 ± 0.24 0.73 ± 0.26

ACC+sEMG KNN ROC 0.6 0.75 ± 0.21 0.67 ± 0.31 0.75 ± 0.21 0.77 ± 0.35 0.63 ± 0.33

ACC KNN ROC 0.7 0.74 ± 0.18 0.73 ± 0.20 0.75 ± 0.18 0.76 ± 0.21 0.78 ± 0.29

750 ms

%
sEMG KNN ROC 0.7 0.73 ± 0.18 0.68 ± 0.21 0.73 ± 0.18 0.84 ± 0.24 0.67 ± 0.31

ACC+sEMG MLP ROC 0.6 0.83 ± 0.16 0.82 ± 0.18 0.83 ± 0.16 0.87 ± 0.17 0.83 ± 0.24

ACC KNN ROC 0.7 0.72 ± 0.19 0.71 ± 0.22 0.71 ± 0.20 0.68 ± 0.20 0.77 ± 0.27✓
sEMG XGBoost MRMR 0.68 ± 0.2 0.64 ± 0.27 0.68 ± 0.20 0.68 ± 0.33 0.67 ± 0.31

ACC+sEMG KNN MRMR 0.77 ± 0.16 0.73 ± 0.21 0.76 ± 0.16 0.82 ± 0.20 0.73 ± 0.31

ACC XGBoost ROC 0.6 0.65 ± 0.21 0.69 ± 0.22 0.65 ± 0.21 0.60 ± 0.19 0.83 ± 0.28

500 ms

%
sEMG KNN AUC 0.6 0.71 ± 0.21 0.67 ± 0.22 0.70 ± 0.21 0.78 ± 0.27 0.65 ± 0.28
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6. Water 10mL (W10)

Table 3-8 shows that the implementation of an SVM on a feature space obtained from

the full signal without the wavelet denoising and reduced by the ROC 0.7 method

retrieves a AUC of 0.88 ± 0.16 with a sensitivity of 0.87 ± 0.23.

It is also evident that the results obtained from the analysis of a feature space ob-

tained with ROC 0.7 from the complete signal with the implementation of denoinsig

wavelet can be comparable with an AUC of 0.87 ± 0.17 and a sensitivity of 0.83 ± 0.24.

Table 3-8. Classification results W10 (Full signal, 1 s, 750 ms, 500 ms). The best results

are highlighted

Size signal
Wavelet

denoising
Signal Classifier

Feature

selection
AUC F1 score Accuracy Precision Sensitivity

ACC+sEMG MLP ROC 0.7 0.87 ± 0.17 0.85 ± 0.20 0.86 ± 0.18 0.90 ± 0.21 0.83 ± 0.24

ACC SVM ROC 0.7 0.87 ± 0.11 0.85 ± 0.11 0.86 ± 0.11 0.87 ± 0.17 0.87 ± 0.17✓
sEMG XGBoost MRMR 0.71 ± 0.17 0.69 ± 0.19 0.71 ± 0.17 0.72 ± 0.23 0.73 ± 0.25

ACC+sEMG SVM ROC 0.7 0.88 ± 0.16 0.86 ± 0.19 0.87 ± 0.16 0.88 ± 0.19 0.87 ± 0.23

ACC XGBoost MRMR 0.83 ± 0.16 0.81 ± 0.18 0.82 ± 0.16 0.79 ± 0.19 0.87 ± 0.23

Full signal

%
sEMG KNN ROC 0.6 0.77 ± 0.27 0.74 ± 0.29 0.77 ± 0.27 0.83 ± 0.28 0.72 ± 0.31

ACC+sEMG MLP ROC 0.6 0.74 ± 0.19 0.72 ± 0.21 0.75 ± 0.17 0.76 ± 0.22 0.75 ± 0.29

ACC MLP ROC 0.6 0.62 ± 0.13 0.53 ± 0.29 0.64 ± 0.15 0.58 ± 0.37 0.55 ± 0.34✓
sEMG MLP MRMR 0.72 ± 0.19 0.6 ± 0.34 0.72 ± 0.18 0.73 ± 0.41 0.57 ± 0.38

ACC+sEMG KNN ROC 0.7 0.73 ± 0.16 0.73 ± 0.13 0.74 ± 0.15 0.83 ± 0.23 0.77 ± 0.26

ACC XGBoost ROC 0.6 0.68 ± 0.19 0.68 ± 0.17 0.66 ± 0.19 0.63 ± 0.19 0.82 ± 0.25

1 s

%
sEMG XGBoost MRMR 0.76 ± 0.14 0.78 ± 0.10 0.77 ± 0.12 0.76 ± 0.17 0.85 ± 0.20

ACC+sEMG KNN ROC 0.6 0.75 ± 0.20 0.67 ± 0.29 0.73 ± 0.20 0.75 ± 0.33 0.70 ± 0.37

ACC KNN MRMR 0.68 ± 0.18 0.53 ± 0.33 0.69 ± 0.16 0.71 ± 0.40 0.5 ± 0.39✓
sEMG XGBoost MRMR 0.61 ± 0.18 0.63 ± 0.16 0.60 ± 0.17 0.59 ± 0.17 0.72 ± 0.22

ACC+sEMG KNN ROC 0.6 0.78 ± 0.27 0.75 ± 0.33 0.78 ± 0.27 0.79 ± 0.33 0.73 ± 0.34

ACC XGBoost MRMR 0.72 ± 0.21 0.72 ± 0.22 0.71 ± 0.21 0.71 ± 0.23 0.75 ± 0.24

750 ms

%
sEMG XGBoost MRMR 0.73 ± 0.20 0.7 ± 0.27 0.74 ± 0.16 0.66 ± 0.28 0.77 ± 0.32

ACC+sEMG MLP ROC 0.6 0.78 ± 0.22 0.71 ± 0.31 0.76 ± 0.24 0.81 ± 0.35 0.72 ± 0.35

ACC MLP ROC 0.7 0.68 ± 0.22 0.69 ± 0.18 0.66 ± 0.22 0.68 ± 0.26 0.75 ± 0.18✓
sEMG XGBoost MRMR 0.68 ± 0.21 0.68 ± 0.17 0.66 ± 0.21 0.7 ± 0.25 0.77 ± 0.27

ACC+sEMG KNN Time domain 0.74 ± 0.19 0.69 ± 0.30 0.75 ± 0.17 0.7 ± 0.30 0.73 ± 0.34

ACC XGBoost ROC 0.7 0.82 ± 0.13 0.83 ± 0.12 0.82 ± 0.12 0.82 ± 0.16 0.88 ± 0.19

500 ms

%
sEMG KNN ROC 0.7 0.72 ± 0.23 0.73 ± 0.18 0.72 ± 0.21 0.73 ± 0.24 0.77 ± 0.21
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7. Water 20mL (W20)

For the 20mL of water task (see Table 1), a AUC of 0.91 ± 0.15 and a sensitivity

of 0.92 ± 0.18, were obtained by implementing the ROC 0.6. The used features were

obtained through the feature extraction applied on 750 ms signals, with the wavelet

denoising and an MLP classifier. However, the analysis of other results is necessary.

For this case, it was found that the classification of healthy and diphagic subjects from

the full signal reached an AUC of 0.89 ± 0.12 and a sensitivity of 0.78 ± 0.24 with

wavelet denoising and an AUC of 0.89 ± 0.22 and a sensitivity of 0.82 ± 0.34 without

wavelet denoising.

Table 3-9. Classification results W20 (Full signal, 1 s, 750 ms, 500 ms). The best results

are highlighted

Signal size
Wavelet

denoising
Signal Classifier

Feature

selection
AUC F1 score Accuracy Precision Sensitivity

✓ ACC+sEMG KNN ROC 0.6 0.89 ± 0.12 0.86 ± 0.16 0.90 ± 0.11 1.00 ± 0.00 0.78 ± 0.24

ACC KNN ROC 0.8 0.80 ± 0.17 0.73 ± 0.31 0.82 ± 0.15 0.79 ± 0.33 0.72 ± 0.34

sEMG KNN ROC 0.8 0.73 ± 0.17 0.73 ± 0.16 0.73 ± 0.18 0.77 ± 0.25 0.78 ± 0.24

% ACC+sEMG KNN ROC 0.6 0.89 ± 0.22 0.85 ± 0.32 0.90 ± 0.19 0.90 ± 0.32 0.82 ± 0.34

ACC MLP Time-Frequency 0.75 ± 0.17 0.73 ± 0.19 0.76 ± 0.16 0.72 ± 0.21 0.77 ± 0.25

Full signal

sEMG KNN ROC 0.7 0.78 ± 0.19 0.76 ± 0.21 0.78 ± 0.20 0.78 ± 0.24 0.80 ± 0.27

✓ ACC+sEMG XGBoost ROC 0.7 0.77 ± 0.24 0.73 ± 0.33 0.77 ± 0.23 0.68 ± 0.34 0.82 ± 0.34

ACC XGBoost ROC 0.7 0.69 ± 0.16 0.64 ± 0.27 0.72 ± 0.14 0.65 ± 0.31 0.7 ± 0.35

sEMG XGBoost ROC 0.7 0.82 ± 0.17 0.79 ± 0.20 0.82 ± 0.18 0.85 ± 0.20 0.80 ± 0.27

% ACC+sEMG MLP ROC 0.6 0.72 ± 0.3 0.65 ± 0.40 0.72 ± 0.29 0.68 ± 0.43 0.63 ± 0.39

ACC XGBoost MRMR 0.71 ± 0.18 0.72 ± 0.18 0.70 ± 0.19 0.63 ± 0.19 0.87 ± 0.22

1 s

sEMG XGBoost Time-Frequency 0.72 ± 0.12 0.70 ± 0.13 0.70 ± 0.14 0.68 ± 0.20 0.83 ± 0.27

✓ ACC+sEMG MLP ROC 0.7 0.91 ± 0.15 0.92 ± 0.14 0.92 ± 0.14 0.94 ± 0.12 0.92 ± 0.18

ACC SVM ROC 0.7 0.79 ± 0.16 0.79 ± 0.13 0.79 ± 0.15 0.82 ± 0.20 0.83 ± 0.22

sEMG XGBoost MRMR 0.76 ± 0.15 0.73 ± 0.16 0.76 ± 0.16 0.8 ± 0.22 0.75 ± 0.27

% ACC+sEMG SVM ROC 0.6 0.78 ± 0.17 0.66 ± 0.37 0.78 ± 0.18 0.68 ± 0.39 0.7 ± 0.42

ACC KNN ROC 0.7 0.75 ± 0.18 0.69 ± 0.30 0.76 ± 0.16 0.67 ± 0.30 0.73 ± 0.34

750 ms

sEMG KNN ROC 0.7 0.70 ± 0.19 0.61 ± 0.28 0.71 ± 0.18 0.68 ± 0.33 0.60 ± 0.33

✓ ACC+sEMG KNN ROC 0.7 0.82 ± 0.15 0.77 ± 0.29 0.84 ± 0.13 0.78 ± 0.31 0.82 ± 0.34

ACC XGBoost ROC 0.7 0.74 ± 0.17 0.75 ± 0.18 0.76 ± 0.16 0.72 ± 0.21 0.85 ± 0.24

sEMG XGBoost MRMR 0.86 ± 0.19 0.83 ± 0.24 0.86 ± 0.19 0.87 ± 0.22 0.83 ± 0.27

% ACC+sEMG MLP ROC 0.6 0.83 ± 0.12 0.81 ± 0.17 0.84 ± 0.13 0.87 ± 0.16 0.83 ± 0.27

ACC MLP ROC 0.6 0.79 ± 0.16 0.77 ± 0.2 0.82 ± 0.15 0.85 ± 0.21 0.75 ± 0.26

500 ms

sEMG SVM ROC 0.7 0.82 ± 0.17 0.75 ± 0.3 0.82 ± 0.15 0.68 ± 0.3 0.85 ± 0.34

It is important to note that in all swallowing tasks, classifiers were analyzed for the ACC

and sEMG signals independently and together. However, the best results were given by the

fusion of signals. If each of the possible cases is analyzed, considering the length of the sig-

nals and the application of wavelet denoising, in a few cases the analysis of ACC or sEMG

independently provides the best result.



3.4 Classification 53

Figure 3-7 summarizes the previous results according to the AUC achieved for each swa-

llowing task. Although it only shows the achieved AUC, in some cases, the sensitivity was

necessary to figure out which of the methods was the best.
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0.0

0.2

0.4

0.6

0.8

F
S
W

1
W

1
n
W

0
.7

5
W

0
.5

W

F
S
n
W

0
.7

5
n
W

0
.5

n
W

A
U

C

(f) Classification results for W20
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(g) Classification results for S

Figure 3-7. Graphic representation of the highest AUC highest. Where: FSW is Full signal

with wavelet denoising, FSnW is Full signal without wavelet denoising, 1W is 1 s of signal

with wavelet denoising, 1nW is 1 s of signal without wavelet denoising, 0.75W is 750 ms of

signal with wavelet denoising, 0.75nW is 750 ms of signal without wavelet denoising, 0.5W is

500 ms of signal with wavelet denoising, 0.5nW is 500 ms of signal without wavelet denoising
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From the results obtained, it stands out that for 20mL of water and 5mL of yogurt, the

highest AUC was obtained using 750 ms signal segments. Some authors have reported dif-

ferences in the swallowing process of men and women in terms of its duration, with men

taking the longest to swallow. Furthermore, these differences can also be seen with respect

to anthropological and demographic variables [103]. However, Matthew et al. (1999) estima-

ted that the duration of swallowing apnea is 0.75 ± 0.14 seconds, an event that is directly

related to the movement of the cricoid cartilage since it moves to favor the protection of the

respiratory tract [103, 104]. It should also be noted that, although several authors report

that swallowing lasts approximately 2.5 s, this is for the three stages that compose it, while

this research analyzes the oral and pharyngeal stages.

The results obtained from the feature extraction of the ACC and sEMG signals of segments

of the original signal are important. Previous research found that calculating descriptors in

percentages of the original data produced identical results. In the case of the time domain,

it was determined that with 20% of the data and for the frequency, that with a third of

them the results represented the behavior of the complete signal in swallowing [55]. It is

also important to consider that using time windows focused on swallowing would eliminate

unnecessary information and, using a sliding window, the calculation of descriptors on the

changes in the signal at the time of swallowing is given.

Likewise, it can be seen that for 20mL of water and yogurt the highest AUC is reached

compared to the others swallowing. It could be related to the findings of Maria das Graças

et al. (2012). They showed that 20 mL of water commonly produces piecemeal deglutition

in patients with dysphagia. This observation was consistent in more than 80% of patients.

Thus, this amount of water was called as dysphagia limit, i.e. the limit of liquid that de-

mands partitioning of boluses only in the dysphagic population [105].

Swallowing is a complex process, where different dimensions are related that allow facilita-

ting its understanding, however, most studies, based on biosignals, do so considering a single

dimension. Two of the most important dimensions in swallowing are related to the kinema-

tics, which is analyzed through cervical auscultation or accelerometers located in the cricoid

cartilage, and the electrophysiological dimension, which is analyzed by mechanomyography,

surface electromyography, or needle electromyography.

This work implemented conventional classification algorithms from features extracted by

means of overlapping sliding windows on ACC and sEMG signals. Which allowed, from the

point of view of signal analysis, the improvement of the quality of the information collected

and the reduction of bias and uncertainty [106]. Likewise, the implementation of multiple

sensors for the analysis of the same swallowing process allows an understanding of the in-

formation considering the two previous dimensions. The existing studies where multimodal
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techniques are used are not comparable with our results, considering that they use different

sources of information than those used here, complete registers are not compared, the popu-

lation used is usually healthy or dysphagic, normal swallows are compared with abnormal

swallows, or manual segmentation of signals is implemented, a process that was not applied

in this study.

However, a research implemented an SVM with information from sEMG and bioimpedance

signals to detect swallows in healthy and dysphagic people. A sensitivity of 96.1% and a

precision of 96.6% were obtained in healthy individuals. Likewise, the results showed a de-

crease in the metrics, obtaining 84.1% and 84.5%, respectively, in the dysphagic population

[75]. It should be considered that this study used a methodology based on two sources of

information, however, the main objective is not related to the identification of healthy and

dysphagic subjects but to the detection of swallows. Nevertheless, the results obtained in this

work, which sought the identification of healthy and dysphagic subjects through swallowing

tasks, were shown to be superior in most cases.

Secondly, many accelerometry researchers implement microphones to perform cervical aus-

cultation. However, these studies use a healthy or dysphagic population, but not both groups,

and their main objective is usually the detection of normal or abnormal swallowing [107, 108].

For example, Mohammadi et al. used an SVM and neural networks to detect different actions

through ACC, achieving an accuracy of 99.26 ± 0.12% to discriminate voluntary cough and

accelerometry signals at rest and an accuracy of 90.20 ± 3.60% and 80.30 ± 10.50% when

classifying cough and induced cough from other artifacts. From this research it stands out

that some results presented could be considered outstanding, however, it is important to note

that these were obtained from a single population group and different activities that could

be related to swallowing were compared. For example, coughing often occurs in patients with

aspiration or penetration. The foregoing means that these results cannot be comparable, but

they do mark a starting point in the integration of signals in swallowing.

3.5. Model selection

According to the previous results, there is not a classification model that clearly overcomes

the other in terms of performance. So, the three models with their corresponding optimized

hyperparametes were used for tests purposes. Such test was performed with 22 individuals

exposed in the Section 2.6.3, who did not were included in the training stage.

Tables 3-10, 3-11 and 3-12 show the mode of the combination of hyperparameters for each

model and swallowing task, as well as the parameters implemented for the feature extraction

for the test subjects.
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Table 3-10. Parameters for feature extraction and MLP hyperparameters

Task Activation Alpha Hidden layer sizes Solver Signal size Wavelet denoising

Y5 tanh 1 10 SGD 750 ms %

W5 ReLU 0,0001 10 adam Full signal %

W20 ReLU 0,0001 20 adam 750 ms ✓

Table 3-11. Parameters for feature extraction and XGBoost hyperparameters

Task Max depth Weights balancing Signal size Wavelet denoising

Y10 5 1 Full signal ✓
Y20 2 10 Full sugnal ✓

Table 3-12. Parameters for feature extraction and SVM hyperparameters

Task C γ Kernel Signal size Wavelet denoising

S 10 0,001 rbf Full signal %

W10 1 0,01 rbf Full signal %

According to the selected models, the MLP was the best classification model for three of the

swallowing tasks. On the other hand, SVM and XGBoost, provided each, a good result in

two cases. Although KNN, did not achieve the highest performance in any of the swallowing

tasks, it provides good results for some cases. It should not be completely excluded from

future research.

Table 3-13 shows the behavior of the algorithms for each test subject. Some subjects we-

re classified correctly in all their swallowing tasks. It is important to clarify that the test

subjects were chosen without considering the sex, age, or underlying pathology of the pa-

tients.Although this can reduce the performance of the algorithms, it also provides more

generalized results.
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Table 3-13. Classification of test subjects

Group ID Y5 Y10 Y20 S W5 W10 W20

1 % ✓ % ✓ % ✓ %

2 ✓ % ✓ % ✓ ✓ %

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

4 % ✓ % % % % %

5 ✓ % ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ ✓ ✓ %

7 % % % ✓ ✓ ✓ %

8 ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 % ✓ ✓ % ✓ % %

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls

11 ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 % ✓ ✓ ✓ % ✓ %

2 ✓ ✓ ✓ ✓ ✓ % –

3 ✓ ✓ ✓ ✓ ✓ ✓ %

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 % ✓ – ✓ ✓ ✓ –

6 ✓ % ✓ ✓ ✓ ✓ ✓

7 % ✓ ✓ ✓ ✓ ✓ ✓

8 % % % % % % ✓

9 ✓ ✓ ✓ ✓ ✓ ✓ %

10 ✓ % ✓ % % % ✓

Patients

11 ✓ ✓ – ✓ – – –

Table 3-14 and Figure 3-8 summarize the performance measures obtained in the test data-

base. Accordingly, the 20mL of water task demands the highest difficulties for discrimination

between healthy and dysphagic states.

The swallowing tasks corresponding to 20mL of yogurt and saliva provided the best classi-

fication results for the test subjects, achieving an AUC of 0.81 and a sensitivity of 0.89 for

20mL of yogurt and 0.77 and 0.82 for the saliva. These tasks were usually completed in most

patients, even in patients with severe dysphagia or with feeding tubes where dry swallows

are performed. This is important to keep in mind for future developments and for clinical

applications.
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Table 3-14. Performance measures with the test database. Highlighted results are where

the algorithm reached a value greater than 0.8.

Task AUC F1 score Accuracy Precision Sensitivity

Y5 0.64 0.64 0.64 0.64 0.64

Y10 0.73 0.73 0.73 0.73 0.73

Y20 0.81 0.80 0.80 0.73 0.89

S 0.77 0.78 0.77 0.75 0.82

W5 0.76 0.74 0.76 0.78 0.70

W10 0.76 0.74 0.76 0.78 0.70

W20 0.54 0.53 0.53 0.45 0.62

T
r
u
e
 P

o
s
it

iv
e
 R

a
t
e

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3-8. ROC curve of each swallowing task for test subjects

Defining a single methodology for the identification of healthy or dysphasic subjects is a

complex process that requires further analysis. However, it is evident that the proposed

methodology is correct in relation to obtaining swallowing information through different

sources (ACC and sEMG) and the feature extraction from such signals. It is important to

consider that the features sets used for each of the swallowing activities differ among them,
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both in number and in the features selected.

According to the results obtained, the performance of specific swallowing tasks provides

valuable information for the identification of dysphagic subjects, these tasks are especially

related to the limit volumes of dysphagia (20mL) and therefore it is advisable to evaluate

these swallowing tasks, seeking that patients do not undergo long protocols and present fa-

tigue.

The general methodology could be based on three stages: 1) Recording of ACC and sEMG

signals in predefined swallowing tasks (20mL of water and yogurt especially). 2) Feature

extraction by implementing overlapping sliding windows (time and frequency domain and

information-theoretic features). 3) Evaluation of the subject’s information from the models

defined for each of the swallowing tasks.



4. Conclusions and contributions

4.1. Conclusions

This research evaluated sEMG and ACC signals, in healthy and dysphagic subjects. The

results made it possible to determine that multi-sensor fusion contributes positively to the

improvement of the classification, compared with the classification results using the signals

individually. It was observed that in all swallowing tasks the highest AUC reached exceeds

0.85, achieving an AUC higher than 0.9 for the swallowing tasks of 5 and 20mL of yogurt and

water. The results obtained in this study equal and even exceed the results of studies that

have implemented multimodal techniques based on cervical auscultation and ACC or sEMG

and bioimpedance, as well as studies where these two dimensions are analyzed individually.

However, it should be noted that these results are not completely comparable, since they

use different bio-signals.

The use of the feature spaces formed by each of the domains, the total of the features, or

the one obtained by the application of principal component analysis with semantics are not

recommended for the identification of subjects with dysphagia. However, the feature selec-

tion methods showed two possible cases that should be considered and that are important

to highlight. The implementation of feature selection through Receiver Operating Characte-

ristic using thresholds at 0.6 and 0.7 is an appropriate technique to implement in swallowing

tasks where a high number of features are required for classification, such as 5mL of yogurt,

5, 10 and 20mL of water and saliva. In the case of 10 and 20mL of water, the number of

required features was much less and could be obtained through the implementation of Mini-

mum Redundancy - Maximum Relevance. The clear liquid (water) showed that the number

of necessary features for classification was much higher than in thick liquids (yogurt). It was

also evidenced that the mean, the standard deviation, the maximum and minimum, contri-

buted with more features than the skewness and kurtosis.

The feature extraction in signals of 750 ms contributed positively to the classification per-

formance in some swallowing tasks (5mL of yogurt, and 20mL of water). In addition, for

the cases where signals of 1 s 750 ms, and 500 ms were analyzed, most of the results ex-

ceeded an AUC of 0.7, comparable with the results reported as best. Thus, this is a valid

methodology to implement for the development of classification algorithms. Furthermore, it

can be considered that the swallowing act falls within this time window, and the adjacent
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segments do not provide relevant information.

The results obtained in function of AUC showed certain stability between the different

applied models, which shows more dependence on the feature spaces than on the applied

classification models. Furthermore, this allows, to reduce the overfitting of the models.

One test was applied on 22 subjects, using the best feature spaces and selected classification

models, this test showed that the implemented methodology is an option to consider for the

development of screening techniques for people with dysphagia, in addition to being econo-

mical and non-invasive.

The use of the statistical moments, as well as the minimum and the maximum in the process

of feature extraction allowed to show that, although all these descriptors provide important

information for the identification of healthy and dysphagic subjects, the mean, variance,

minimum, and maximum are recommended.

In another way, the MODAC is an important instrumental contribution developed for the

acquisition of ACC signals and their synchronization with the sEMG signals in the swallo-

wing tasks.

From this work, it stands out that, according to our knowledge, it is one of the first works

where the electrophysiological and kinematic dimension in swallowing tasks are analyzed,

in addition to using a database with a healthy and dysphagic population. Being the main

contribution of this work, the contribution to the construction of the state of the art in

dysphagia and the multimodal analysis of it

4.2. Limitations and future works

The segmentation of signals from the kinematic events detected using the accelerometer lo-

cated in the cricoid cartilage was carried out using visual inspection, which introduces errors

in said process. Therefore, it is considered important to generate automatic segmentation

algorithms validated using instrumental tests such as the VFFS that would allow obtaining

direct information on the swallowing process and correlating it with our source information.,

seeking to improve the results obtained.

The main limitation of this work is the size of the database and the heterogeneous etiologies

of dysphasic subjects. Therefore, it is considered important to evaluate the proposed metho-

dology in a broader database that preserves the match by age and sex.



A. Appendix: MODAC block diagram

Figure A-1. MODAC block diagram for acquiring EMG synchronized ACC signals
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[34] Demir, N., Serel Arslan, S., Ä°nal, Ö., Karaduman, A.A.: Reliability and Validity of

the Turkish Eating Assessment Tool (T-EAT-10). Dysphagia 31 (2016) 644–649

[35] Langmore, S.E., Kenneth, S.M., Olsen, N.: Fiberoptic endoscopic examination of swa-

llowing safety: A new procedure. Dysphagia 2 (1988) 216–219



66 References

[36] Vigotsky, A.D., Halperin, I., Lehman, G.J., Trajano, G.S., Vieira, T.M.: Interpre-

ting signal amplitudes in surface electromyography studies in sport and rehabilitation

sciences. Frontiers in Physiology 8 (2018)

[37] Hess, U., Arslan, R., Mauersberger, H., Blaison, C., Dufner, M., Denissen, J.J., Ziegler,

M.: Reliability of surface facial electromyography. Psychophysiology 54 (2017) 12–23

[38] Roldan-Vasco, S., Perez-Giraldo, E., Orozco-Duque, A.: Continuous Wavelet Trans-

form for Muscle Activity Detection in Surface EMG Signals During Swallowing. Volume

916 of Communications in Computer and Information Science. Springer International

Publishing (2018)

[39] Vaiman, M.: Standardization of surface electromyography utilized to evaluate patients

with dysphagia. Head and Face Medicine 3 (2007) 1–7

[40] Cadavid-Arboleda, S., Ramirez-Arbelaez, L., Perez-Giraldo, E., Restrepo-Agudelo, S.,

Roldan-Vasco, S., Suarez-Escudeto, J.C., G, C.M., Bedoya-Londoño, C., Martinez-

Moreno, L., Orozco-Duque, A.: Assessment of Surface Electromyography During Oro-

facial Praxis in Healthy Subjects. IFMBE Proceedings 60 (2017) 520–523

[41] Roldan-Vasco, S., Restrepo-Agudelo, S., Valencia-Martinez, Y., Orozco-Duque, A.: Au-

tomatic detection of oral and pharyngeal phases in swallowing using classification al-

gorithms and multichannel EMG. Journal of Electromyography and Kinesiology 43

(2018) 193–200

[42] Begnoni, G., Cadenas de Llano-Pérula, M., Willems, G., Pellegrini, G., Musto, F., De-

llavia, C.: Electromyographic analysis of the oral phase of swallowing in subjects with

and without atypical swallowing: A case-control study. Journal of Oral Rehabilitation

46 (2019) 927–935

[43] Perlman, A.L., D, P.: Electromyography in oral and pharyngeal motor disorders. GI

Motility online (2006) 1–31

[44] Haggstrom, M.: Medical gallery of mikael haggstrom 2014. WikiJournal of Medicine

1 (2014) 1–53

[45] Ashiga, H., Takei, E., Magara, J., Takeishi, R., Tsujimura, T., Nagoya, K., Inoue, M.:

Effect of attention on chewing and swallowing behaviors in healthy humans. Scientific

Reports 9 (2019) 1–9

[46] Ding, R., Larson, C.R., Logemann, J.A., Rademaker, A.W.: Surface electromyographic

and electroglottographic studies in normal subjects under two swallow conditions: Nor-

mal and during the Mendelsohn manuever. Dysphagia 17 (2002) 1–12



References 67

[47] Reyes, A., Cruickshank, T., Thompson, J., Ziman, M., Nosaka, K.: Surface electromyo-

graph activity of submental muscles during swallowing and expiratory muscle training

tasks in Huntington’s disease patients. Journal of Electromyography and Kinesiology

24 (2014) 153–158

[48] Fassicollo, C.E., Machado, B.C.Z., Garcia, D.M., de Feĺıcio, C.M.: Swallowing changes
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[73] Sejdić, E., Falk, T.H., Steele, C.M., Chau, T.: Vocalization removal for improved auto-

matic segmentation of dual-axis swallowing accelerometry signals. Medical Engineering

and Physics 32 (2010) 668–672

[74] Steele, C.M., Mukherjee, R., Kortelainen, J.M., Pölönen, H., Jedwab, M., Brady, S.L.,

Theimer, K.B., Langmore, S., Riquelme, L.F., Swigert, N.B., Bath, P.M., Goldstein,

L.B., Hughes, R.L., Leifer, D., Lees, K.R., Meretoja, A., Muehlemann, N.: Development

of a Non-invasive Device for Swallow Screening in Patients at Risk of Oropharyngeal

Dysphagia: Results from a Prospective Exploratory Study. Dysphagia 34 (2019) 698–

707

[75] Schultheiss, C., Schauer, T., Nahrstaedt, H., Seidl, R.O.: Automated detection and

evaluation of swallowing using a combined emg/bioimpedance measurement system.

Scientific World Journal 2014 (2014)

[76] Khmag, A., Al-Haddad, S.A.R., Hashim, S.J.B., et al.: Additive and multiplicative

noise removal based on adaptive wavelet transformation using cycle spinning. American

Journal of Applied Sciences 11 (2014) 316
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