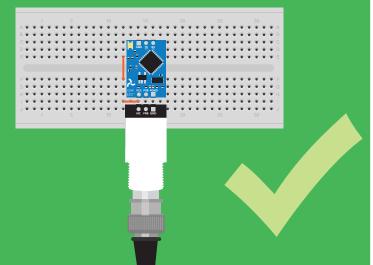


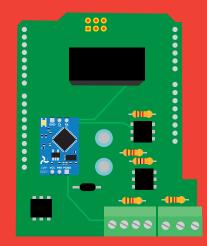
V 4.0

ORP EZOTM Circuit

Reads	ORP	
Range -101	9.9mV – 1019.9mV	GND TX RX (SDA) (SCL)
Accuracy	+/– 1mV	
Max rate	1 reading per sec	
Supported probes	Any type & brand	
Calibration	Single point	
Temp compensation	N/A	
Data protocol	UART & I ² C	
Default I ² C address	98 (0x62)	ORP VCC PRB PGND
Operating voltage	3.3V – 5V	EZO™
Data format	ASCII	COMPLIAN


PATENT PROTECTED

SOLDERING THIS DEVICE VOIDS YOUR WARRANTY.


This is sensitive electronic equipment. Get this device working in a solderless breadboard first. Once this device has been soldered it is no longer covered by our warranty.

This device has been designed to be soldered and can be soldered at any time. Once that decision has been made, Atlas Scientific no longer assumes responsibility for the device's continued operation. The embedded systems engineer is now the responsible party.

Get this device working in a solderless breadboard first!

Do not embed this device without testing it in a solderless breadboard!

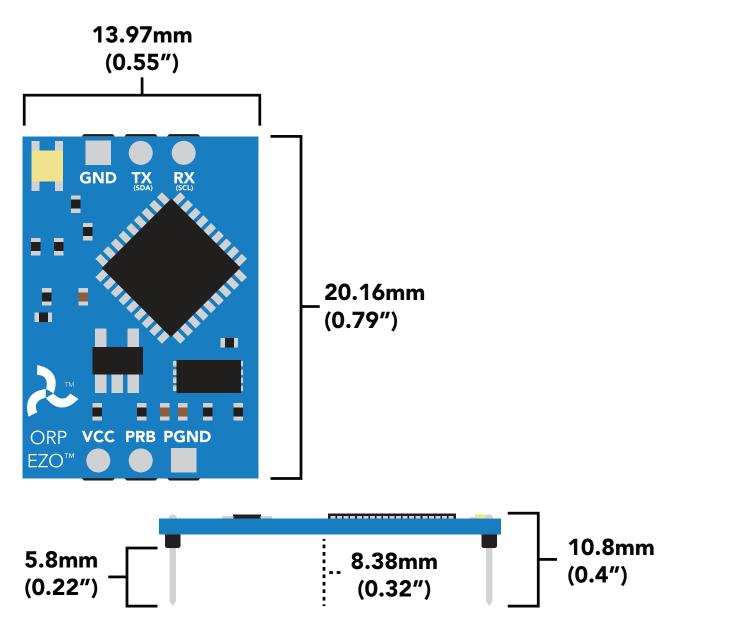
Table of contents

Circuit dimensions	4
Power consumption	4
Absolute max ratings	4
EZO [™] circuit identification	5
Operating principle	6

UART

UART mode	16
Default state	17
Receiving data from device	18
Sending commands to device	19
LED color definition	20
	21
UART quick command page	
LED control	22
Find	23
Continuous reading mode	24
Single reading mode	25
Calibration	26
Export/import calibration	27
Naming device	28
Device information	29
Response codes	30
Reading device status	31
Sleep mode/low power	32
Change baud rate	33
Protocol lock	34
Factory reset	35
Change to I ² C mode	36
Manual switching to I ² C	37
	- 37

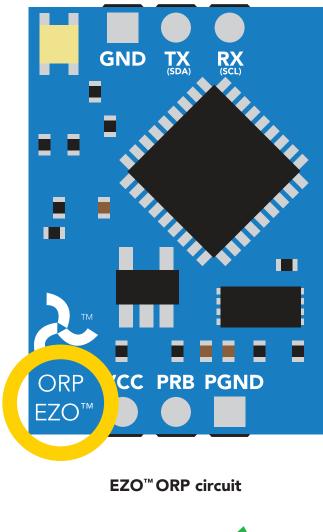
Calibration theory	8
Power and data isolation	9
Correct wiring	11
Available data protocols	14


1²**C**

I ² C mode	39
Sending commands	40
Requesting data	41
Response codes	42
LED color definition	43
I ² C quick command page	44
LED control	45
Find	46
Taking reading	47
Calibration	48
Export/import calibration	49
Device information	50
Reading device status	51
Sleep mode/low power	52
Protocol lock	53
I ² C address change	54
Factory reset	55
Change to UART mode	56
	57
Manual switching to UART	- 37
	50

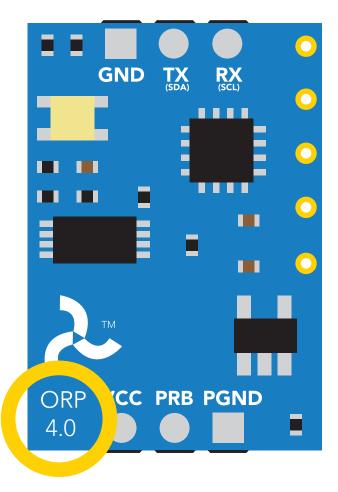
Circuit footprint	58
Datasheet change log	59
Warranty	61

EZO[™] circuit dimensions


	LED	MAX	STANDBY	SLEEP
5V	ON	18.3 mA	16 mA	1.16 mA
	OFF	13.8 mA	13.8 mA	
3.3V	ON	14.5 mA	13.9 mA	0.995 mA
	OFF	13.3 mA	13.3 mA	

Power consumption Absolute max ratings

Parameter	MIN	ТҮР	MAX
Storage temperature (EZO™ ORP)	-65 °C		125 °C
Operational temperature (EZO™ ORP)	-40 °C	25 °C	85 °C
VCC	3.3V	5V	5.5V

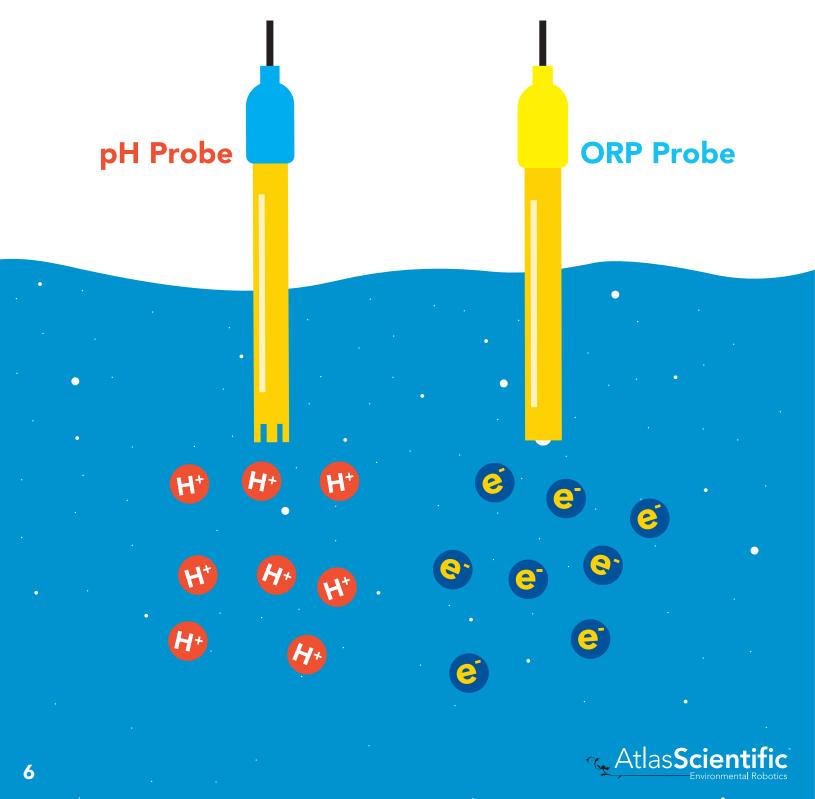


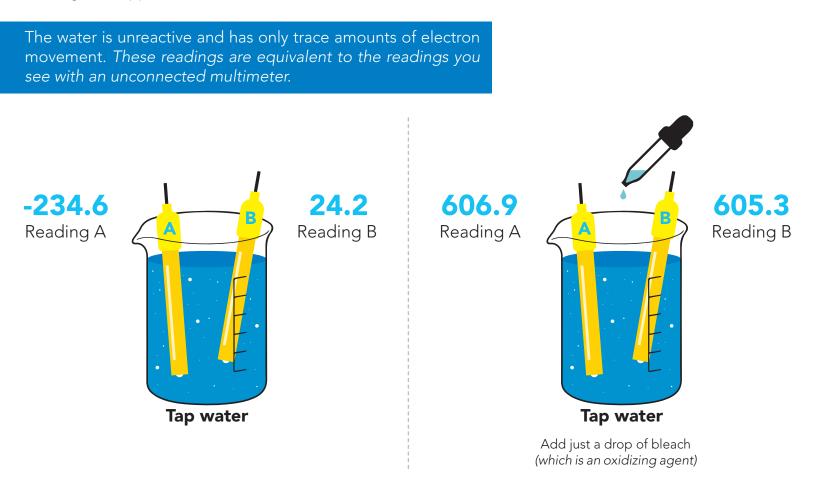
EZO[™] circuit identification

Viewing correct datasheet

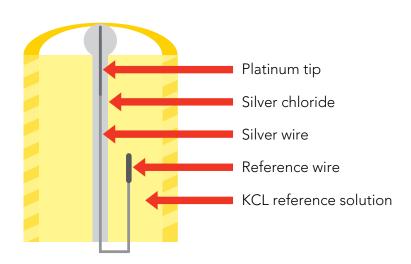
Legacy ORP circuit

Viewing incorrect datasheet


Click here to view legacy datasheet

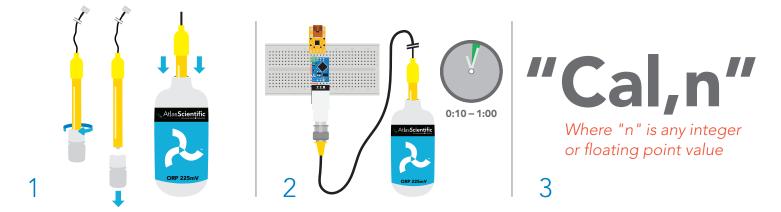

Operating principle

ORP stands for **oxidation/reduction potential**. Oxidation is the loss of electrons and reduction is the gain of electrons. The output of the probe is represented in millivolts and can be positive or negative.


Just like a pH probe measures hydrogen ion activity in a liquid; an ORP probe measures electron activity in a liquid. The ORP readings represents how strongly electrons are transferred to or from substances in a liquid. Keeping in mind that the readings do not indicate the amount of electrons available for transfer.

When reading the ORP of a liquid that has very few electrons available for transfer ORP readings can appear to be inconsistent.

An ORP probe has a platinum tip that is connected to a silver wire, surrounded by silver chloride. That silver wire is then connected to a KCL reference solution. Because platinum is an unreactive metal it can "silently observe" the electron activity of the liquid without becoming apart of whatever reaction is occurring in the liquid.


Calibration theory

Calibration should be done at least once per year.

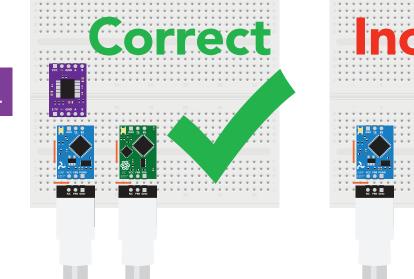
If the ORP that's being read is continuously on the extremes of the scale (around -900mV or +900mV) calibration may have to be done more often. The exact frequency of calibration will have to be determined by your engineering team.

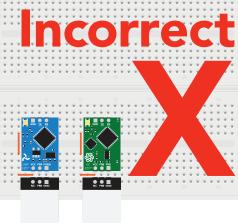
The Atlas Scientific EZO[™] class ORP circuit has a flexible calibration protocol, allowing single point calibration to any off the shelf calibration solution.

Single point calibration

- 1. Remove soaker bottle and place probe in ORP calibration solution.
- 2. Let the probe sit in calibration solution untill readings stabalize (10 60 seconds).
- 3. Calibrate to the value of the calibration solution using the command "Cal,n".

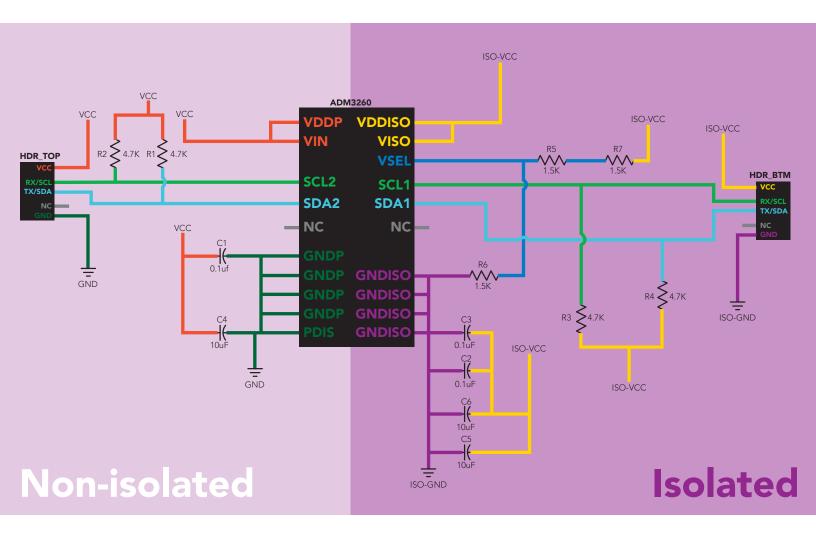
(If you are using the Atlas Scientific ORP calibration solution, calibrate to 225mV; "Cal,225").


Power and data isolation


The Atlas Scientific EZO[™] ORP circuit is a very sensitive device. This sensitivity is what gives the ORP circuit its accuracy. This also means that the ORP circuit is capable of reading micro-voltages that are bleeding into the water from unnatural sources such as pumps, solenoid valves or other probes/sensors.

When electrical noise is interfering with the ORP readings it is common to see rapidly fluctuating readings or readings that are consistently off. To verify that electrical noise is causing inaccurate readings, place the ORP probe in a cup of water by itself. The readings should stabilize quickly, confirming that electrical noise was the issue.

When reading ORP and Conductivity or Dissolved Oxygen together, it is **strongly recommended** that the EZO^M ORP circuit is electrically isolated from the EZO^M Conductivity or Dissolved Oxygen circuit.

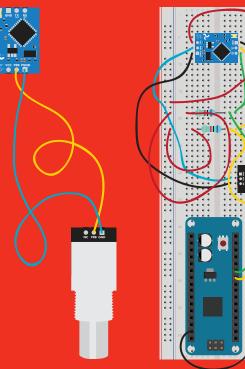

Basic EZO™ Inline Voltage Isolator

Without isolation, Conductivity and Dissolved Oxygen readings will effect ORP accuracy.

This schematic shows exactly how we isolate data and power using the ADM3260 and a few passive components. The ADM3260 can output isolated power up to 150 mW and incorporates two bidirectional data channels.

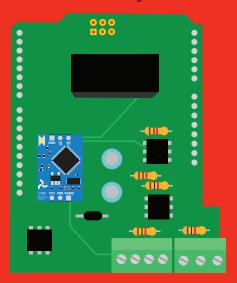

This technology works by using tiny transformers to induce the voltage across an air gap. PCB layout requires special attention for EMI/EMC and RF Control, having proper ground planes and keeping the capacitors as close to the chip as possible are crucial for proper performance. The two data channels have a $4.7k\Omega$ pull up resistor on both the isolated and non-isolated lines (R1, R2, R3, and R4) The output voltage is set using a voltage divider (R5, R6, and R,7) this produces a voltage of 3.7V regardless of your input voltage.

Isolated ground is different from non-isolated ground, these two lines should not be connected together.


Correct wiring

Incorrect wiring

Extended leads

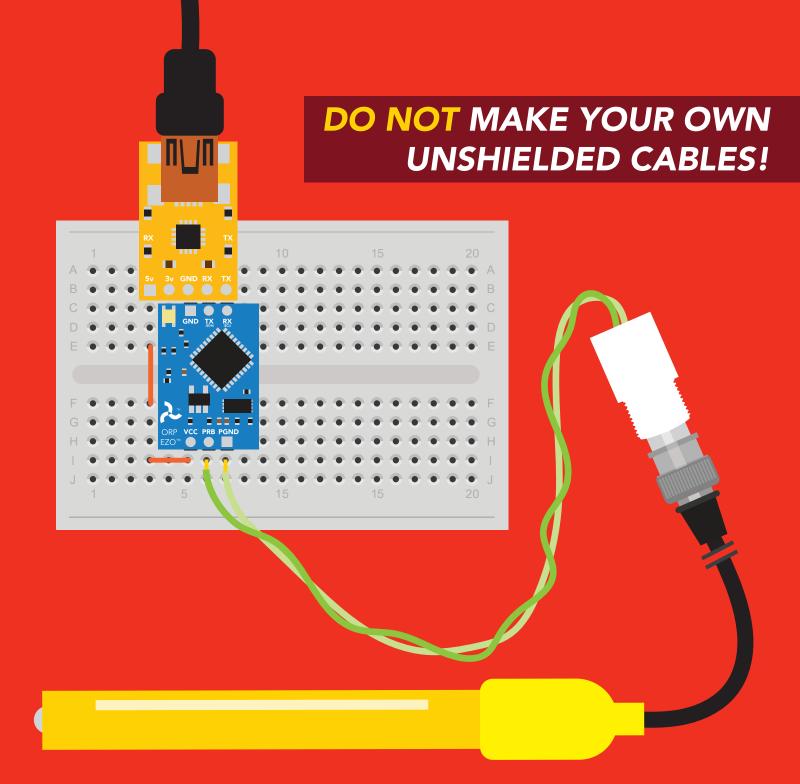

Sloppy setup

Perfboards or Protoboards

NEVER use Perfboards or Protoboards

*Embedded into your device

*Only after you are familar with EZO[™] circuits operation



NEVER EXTEND THE CABLE WITH CHEAP JUMPER WIRES!

п∖л

ONLY USE SHIELDED CABLES. REFER TO THIS DOCUMENT!

Default

1²C

X Unavailable data protocols SPI Analog RS-485 Mod Bus 4-20mA

UART mode

Settings that are retained if power is cut

Baud rate Calibration Continuous mode Device name Enable/disable response codes Hardware switch to I²C mode LED control Protocol lock Software switch to I²C mode


Settings that are **NOT** retained if power is cut

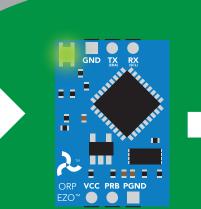
Find Sleep mode

UART mode no parity

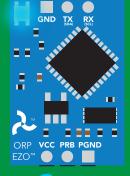
8 data bits

Data format

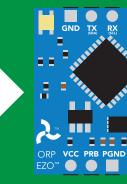
Reading	ORP
Units	mV
Encoding	ASCII
Format	string
Terminator	carriage returr


Data type **Decimal places** Smallest string Largest string

floating point 1 2 characters 40 characters

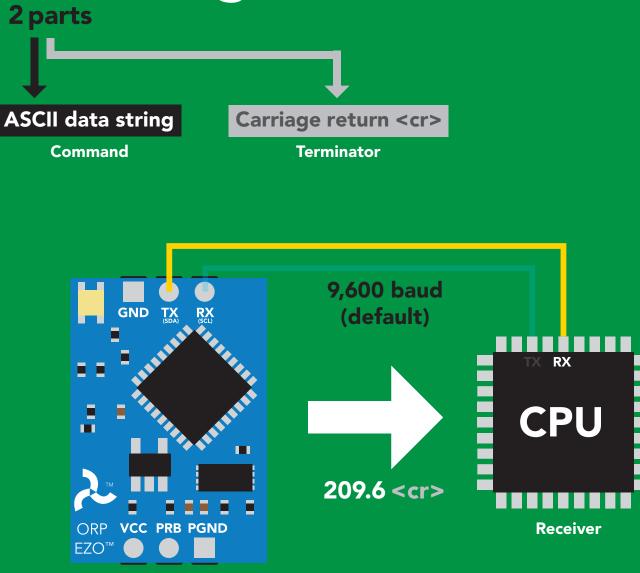


Default state


Mode	UART
Baud	9,600
Readings	continuous
Speed	1 reading per second
LED	on

Green Standby 1,000 ms

Cyan Taking <u>reading</u>



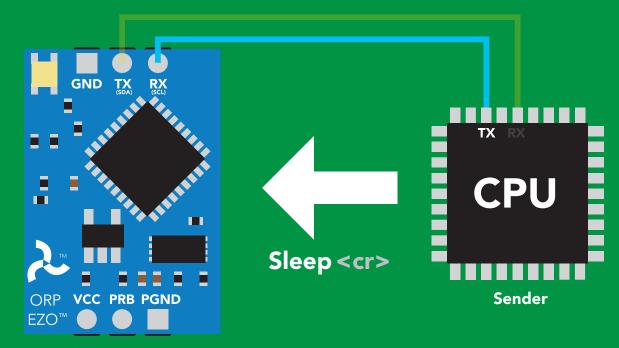
Transmitting

17

Receiving data from device

Advanced ASCII: 2 0 9 . 6 <cr> Hex: 32 30 39 2E 36 0D Dec: 50 48 57 46 54 13

Sender

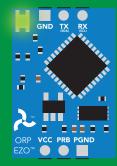

Sending commands to device ^{2 parts}

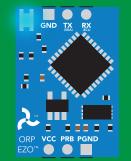
Command (not case sensitive)

Carriage return <cr>

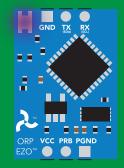
ASCII data string

Terminator




Receiver

Advanced ASCII: S I e e P <cr> Hex: 53 6C 65 65 70 0D Dec: 83 108 101 112 13



LED color definition



Green Cyan UART standby Taking reading

Purple

Changing baud rate

Red Command

not understood

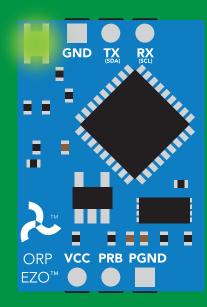
White Find

5V	LED ON +2.2 mA	
3.3V	+0.6 mA	

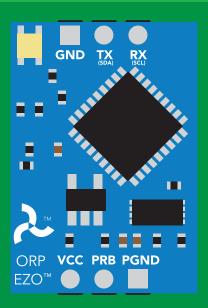
UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
Baud	change baud rate	pg. 33	9,600
С	enable/disable continuous reading	pg. 24	enabled
Cal	performs calibration	pg. 26	n/a
Export/import	export/import calibration	pg. 27	n/a
Factory	enable factory reset	pg. 35	n/a
Find	finds device with blinking white LED	pg. 23	n/a
i	device information	pg. 29	n/a
I2C	change to I ² C mode	pg. 36	not set
L	enable/disable LED	pg. 22	enabled
Name	set/show name of device	pg. 28	not set
Plock	enable/disable protocol lock	pg. 34	disabled
R	returns a single reading	pg. 25	n/a
Sleep	enter sleep mode/low power	pg. 32	n/a
Status	retrieve status information	pg. 31	n/a
*OK	enable/disable response codes	pg. 30	enable


LED control

Command syntax

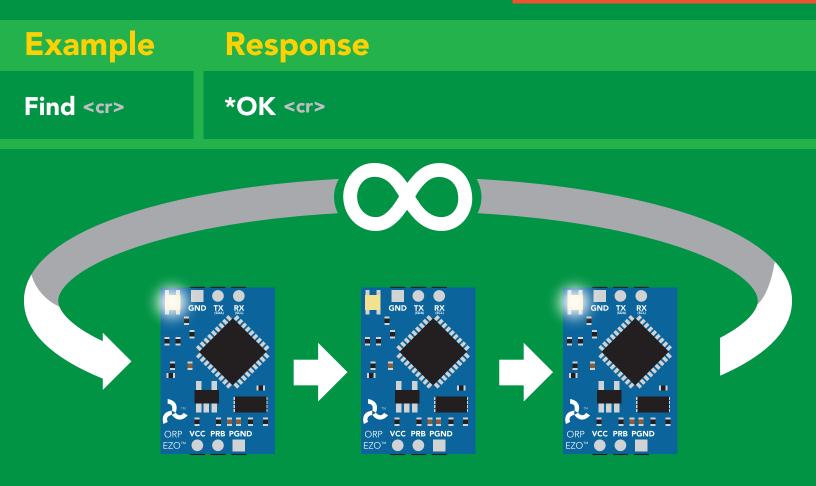

L,1 <cr>> LED on default</cr>

- L,0 <cr>> LED off
- L,? <cr>> LED state on/off?

Example	Response
L,1 <cr></cr>	*OK <cr></cr>
L,0 <cr></cr>	*OK <cr></cr>
L,? <cr></cr>	?L,1 <cr> or ?L,0 <cr> *OK <cr></cr></cr></cr>

L,1

L,0



Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find <cr> LED rapidly blinks white, used to help find device*

*This command is only available for firmware version 2.10 and above.

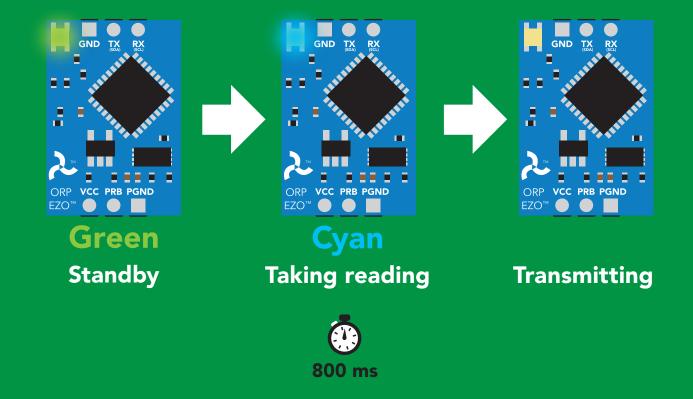
Continuous reading mode

Command syntax

C,1	<cr></cr>	enable continuous readings once per second default
C,n	<cr></cr>	continuous readings every n seconds (n = 2 to 99 sec)*
C,0	<cr></cr>	disable continuous readings
C,?	<cr></cr>	continuous reading mode on/off?

*This command is only available for firmware version 2.10 and above.

Example	Response
C,1 <cr></cr>	*OK <cr> ORP (1 sec) <cr> ORP (2 sec) <cr> ORP (n sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> ORP (30 sec) <cr> ORP (60 sec) <cr> ORP (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

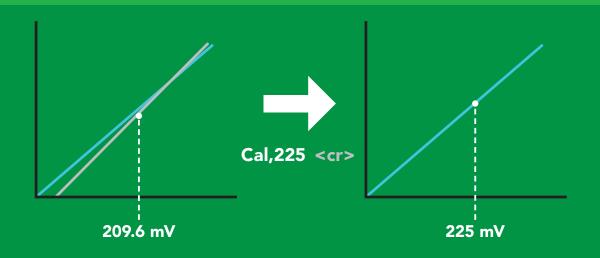


Single reading mode

Command syntax

R <cr> takes single reading

ExampleResponseR <cr>209.6 <cr>*OK <cr>



Calibration

Command s	yntax
------------------	-------

- Cal,n <cr> calibrates the ORP circuit to a set value
- Cal, clear <cr> delete calibration data
- Cal,? <cr> device calibrated?

Example	Response
Cal,225 <cr></cr>	*OK <cr></cr>
Cal,clear < <r></r>	*OK <cr></cr>
Cal,? <cr></cr>	?Cal,0 <cr> or ?Cal,1 <cr> *OK <cr></cr></cr></cr>

Export/import calibration

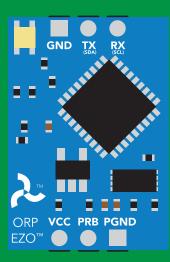
Command syntax

Export: Use this command to save calibration settings Import: Use this command to load calibration settings to one or more devices.

- **Export** <cr> export calibration string from calibrated device*
- Import <cr> import calibration string to new device*
- **Export,?** <cr> calibration string info*

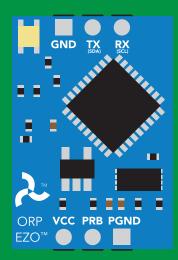
*This command is only available for firmware version 2.10 and above.

Example	Response	
Export,? <cr></cr>	10,120 <cr></cr>	Response breakdown 10, 120 # of strings to export # of bytes to export
		Export strings can be up to 12 characters long, and is always followed by <cr></cr>
Export <cr></cr>	59 6F 75 20	61 72 <cr> (1 of 10)</cr>
Export < <r></r>	65 20 61 20	63 6F < <r> (2 of 10)</r>
(7 more)	:	
Export <cr></cr>	6F 6C 20 67	75 79 <cr> (10 of 10)</cr>
Export < <r></r>	*DONE	Disabling *OK simplifies this process
lmport, n (FIFO)	Import, 59 6	F 75 20 61 72 <cr> (1 of 10)</cr>



Naming device

Command syntax


Name,n <cr> set Name,? <cr> sho</cr></cr>	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Example	Response
Name,zzt <cr></cr>	*OK <cr></cr>
Name,? <cr></cr>	?Name,zzt <cr> *OK <cr></cr></cr>

Name,zzt

*OK <cr>

Name,?

Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information

ExampleResponsei <<r>?i,ORP,1.97 <<r>

*OK <cr>

Response breakdown

Response codes

Command syntax

*OK,1 <cr></cr>	enable response	default	
*OK,0 <cr></cr>	disable response		
*OK,? <cr></cr>	response on/off?		

Example	Response
R <cr></cr>	209.6 <cr> *OK <cr></cr></cr>
*OK,0 <cr></cr>	no response, *OK disabled
R <cr></cr>	209.6 <cr> *OK disabled</cr>
*OK,? <cr></cr>	?*OK,1 <cr> or ?*OK,0 <cr></cr></cr>

Other	response codes
*ER	unknown commane

- *OV over volt (VCC>=5.5V)
- *UV under volt (VCC<=3.1V)
- *RS reset
- *RE boot up complete, ready
- *SL entering sleep mode
- *WA wake up

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Exan	nple	Response
Status	5 <cr></cr>	?Status,P,5.0 *OK <cr></cr>
Resp	oonse bro	eakdown
?Stat	tus, P, ↑ Reason for re	5.038 • •start Voltage at Vcc
-	codes oowered off software rese	t

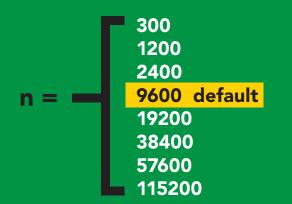
- B brown out
- W watchdog
- U unknown

Sleep mode/low power

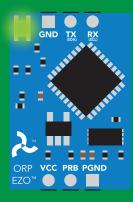
Command syntax

Send any character or command to awaken device.

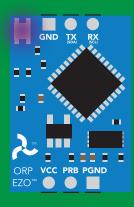
Example		Response		
Sleep <cr></cr>		*SL		
Any command		*WA <cr></cr>	wakes up device	
	STANDBY	SLEEP		
5V	16 mA	1.16 mA		
3.3V	13.9 m∆	0.995 mA		
J.J V	13.7 1114	0.770 mA		



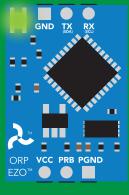
Change baud rate


Command syntax

Baud,n <cr> change baud rate


Example	Response
Baud,38400 <cr></cr>	*OK <cr></cr>
Baud,? <cr></cr>	?Baud,38400 <cr> *OK <cr></cr></cr>

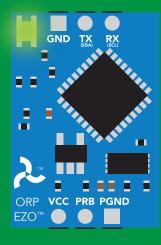
Baud,38400 <cr>


Standby

Changing baud rate

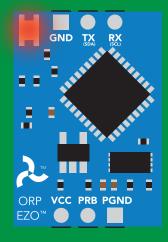
*OK <cr>

Standby

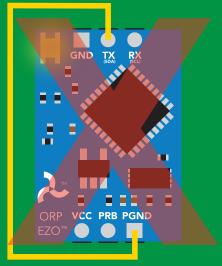

Protocol lock

Command syntax

Locks device to UART mode.


-	enable Plock disable Plock <mark>default</mark> Plock on/off?
Example	Response
Plock,1 <cr></cr>	*OK <cr></cr>
Plock,0 <cr></cr>	*OK <cr></cr>
Plock,? <cr></cr>	?Plock,1 < <r> or ?Plock,0 <<r></r></r>

Plock,1


*OK <cr>

I2C,100

cannot change to I²C *ER <cr>

Short

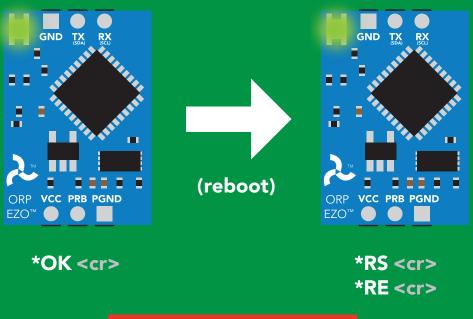
cannot change to I²C

Factory reset

Command syntax

Example

Factory <cr>

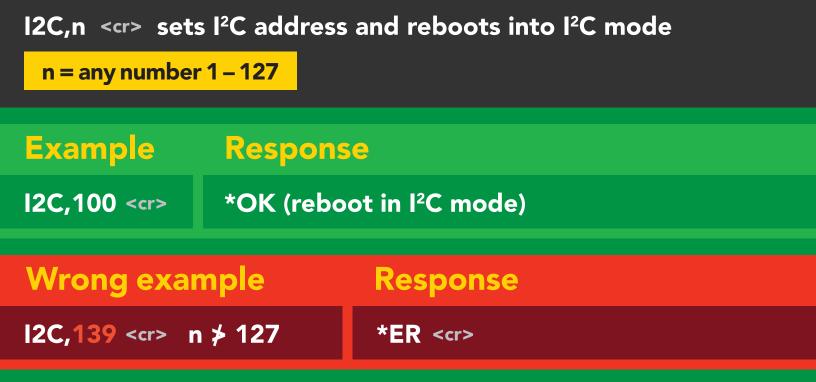

Factory <cr> enable factory reset

Response

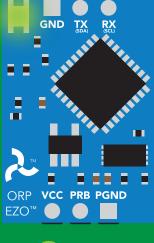
*OK <cr>

Clears calibration LED on "*OK" enabled

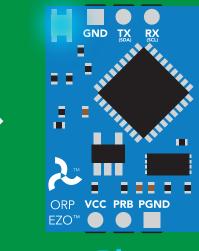
Factory <cr>


Baud rate will not change

Change to I²C mode


Command syntax

Default I²C address 98 (0x62)

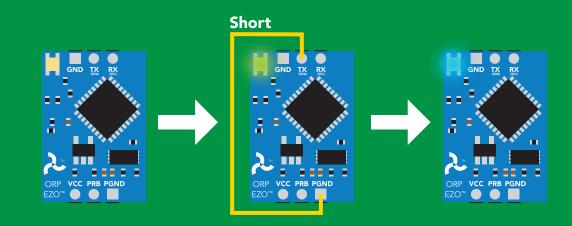


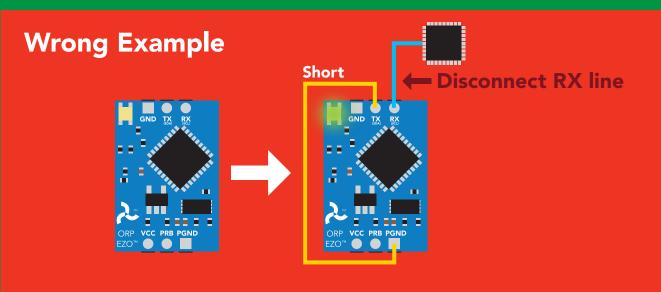
(reboot)

I2C,100

Green *OK <cr>

Blue now in I²C mode




Manual switching to I²C

- Make sure Plock is set to 0
- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to PGND
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- Disconnect ground (power off)
- Reconnect all data and power

Manually switching to I²C will set the I²C address to 98 (0x62)

Example

12C mode

The I²C protocol is <u>considerably more complex</u> than the UART (RS–232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

To set your EZO[™] device into I²C mode click here

Settings that are retained if power is cut

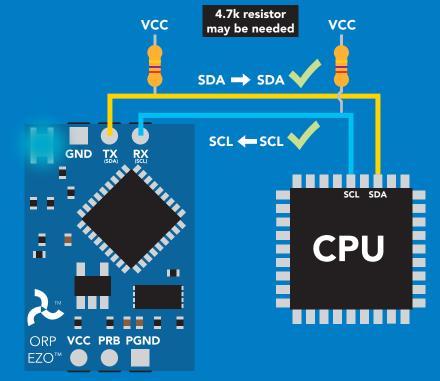
Calibration Change I²C address Hardware switch to UART mode LED control Protocol lock Software switch to UART mode

Settings that are **NOT** retained if power is cut

Find Sleep mode

I²C mode

I²C address (0x01 – 0x7F) 98 (0x62) default

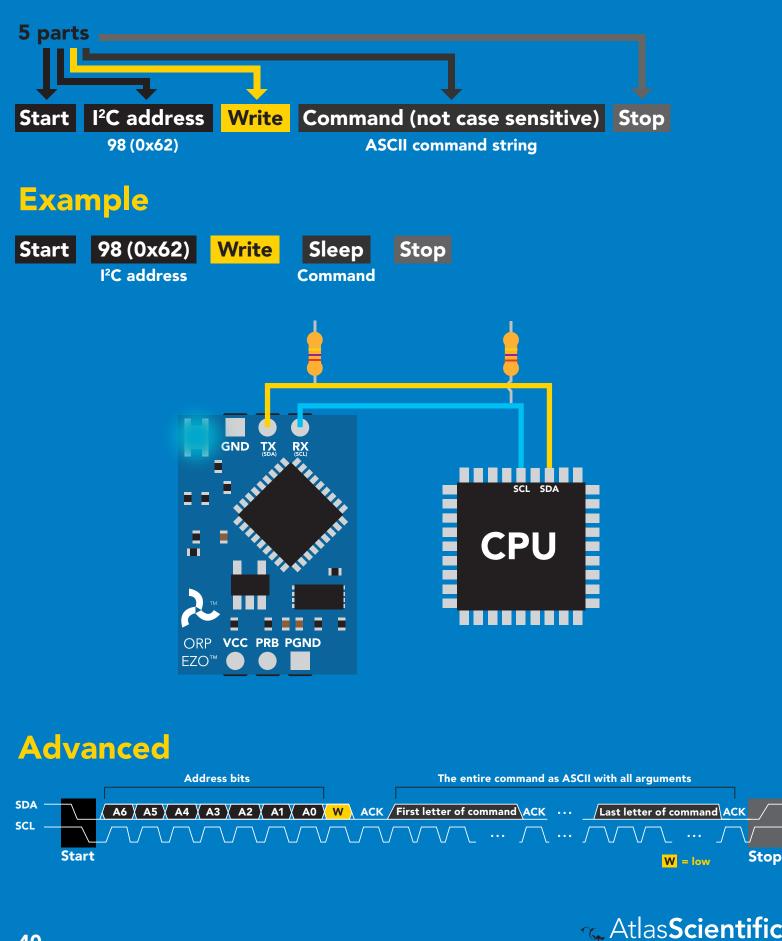

Vcc 3.3V – 5.5V

Clock speed 100 – 400 kHz

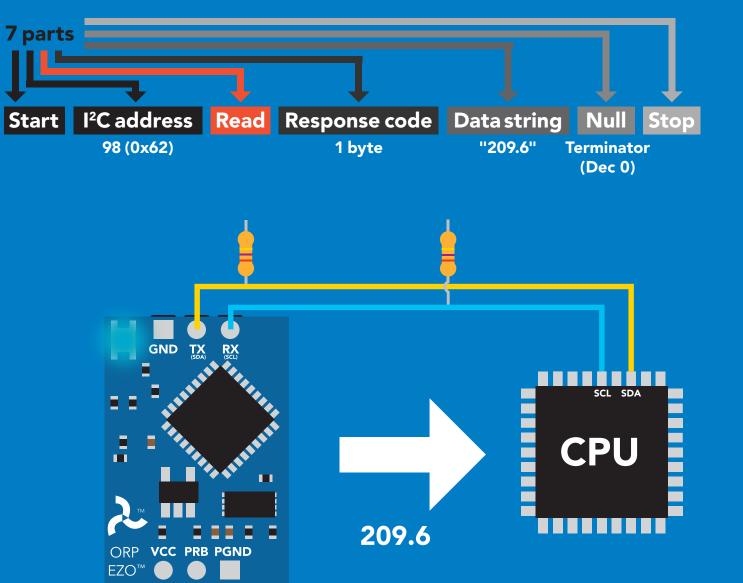
0V

Data format

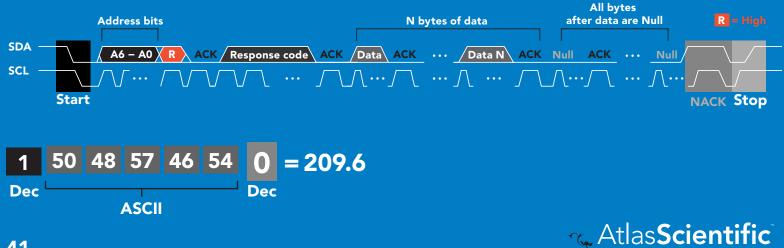
Reading	ORP
Units	mV
Encoding	ASCII
Format	string


Data type Decimal places Smallest string Largest string

floating point 1 2 characters 399 characters



0V


Sending commands to device

Requesting data from device

Advanced

Response codes

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C_start; I2C_address; I2C_write(EZO_command); I2C_stop;

delay(300);

I2C_start; I2C_address; Char[] = I2C_read; I2C_stop; If there is no processing delay or the processing delay is too short, the response code will always be 254.

Response codes Single byte, not string

- 255 no data to send
- 254 still processing, not ready
- 2 syntax error
- 1 successful request

LED color definition

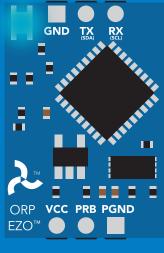
CRP VCC PRB PG CRP VCC PRB PG EZO Blue I ² C stanc	EZO" O Gro	RB POND POND Penn reading	Purple Changing I'C ID#	Red Command not understood	GND TX FX ORP VCC PRB PGND COPP VCC PRB PGND EXT
	LED ON				
5V	+2.2 mA				
3 3V	+0.6 mA				

I²C mode command quick reference

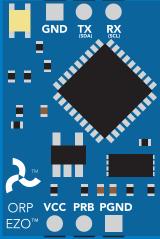
All commands are ASCII strings or single ASCII characters.

Command	Function	
Baud	switch back to UART mode	pg. 56
Cal	performs calibration	pg. 48
Export/import	export/import calibration	pg. 49
Factory	enable factory reset	pg. 55
Find	finds device with blinking white LED	pg. 46
i	device information	pg. 50
I2C	change I ² C address	pg. 54
L	enable/disable LED	pg. 45
Plock	enable/disable protocol lock	pg. 53
R	returns a single reading	pg. 47
Sleep	enter sleep mode/low power	pg. 52
Status	retrieve status information	pg. 51

LED control


Command syntax

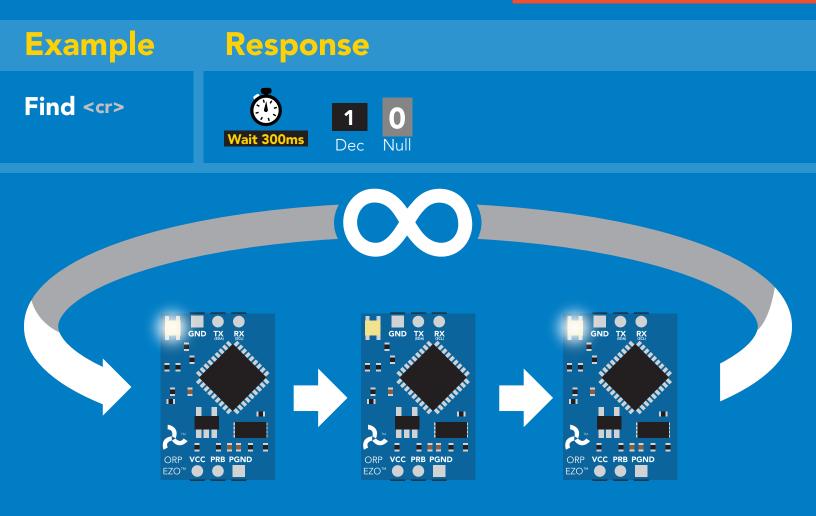
L,1 LED on default


- L,0 LED off
- L,? LED state on/off?

300ms 🕐 processing delay

L,1

L,0

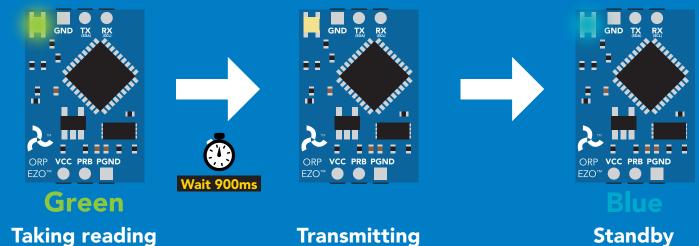

300ms 💮 processing delay

Command syntax

This command will disable continuous mode Send any character or command to terminate find.

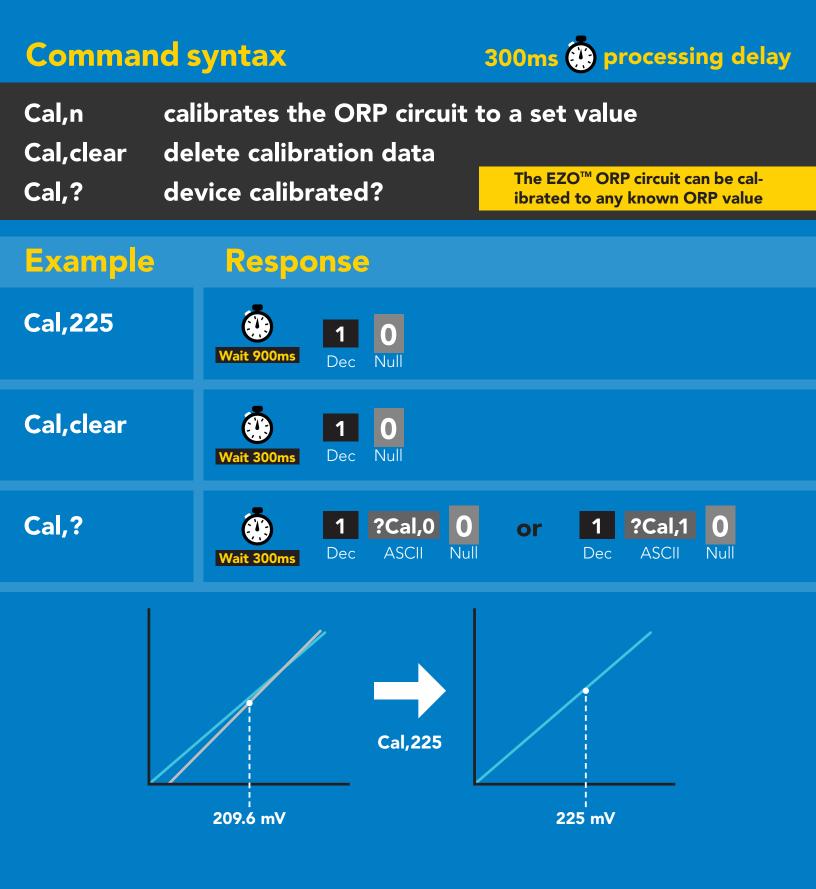
Find <cr> LED rapidly blinks white, used to help find device*

*This command is only available for firmware version 2.10 and above.


Taking reading

Command syntax

900ms 🕐 processing delay



Taking reading

Transmitting

Calibration

Export/import calibration

Command syntax

Export: Use this command to save calibration settings Import: Use this command to load calibration settings to one or more devices.

Export	export calibration string from calibrated device*
Import	import calibration string to new device*
Export,?	calibration string info*

*This command is only available for 300ms 💮 processing delay firmware version 2.10 and above. Example Response Export,? **Response breakdown** 10.120 120 Null 10. 300ms Dec ASCII # of strings to export # of bytes to export Export strings can be up to 12 characters long 59 6F 75 20 61 72 (1 of 10)**Export** ASCII Null Dec (8 more) 65 20 61 20 63 6F (10 of 10)Export Nul Wait 300ms Dec ASCII *DONE **Export** ASCII Nul Dec Import, 59 6F 75 20 61 72 (1 of 10)Import, n ASCII (FIFO)

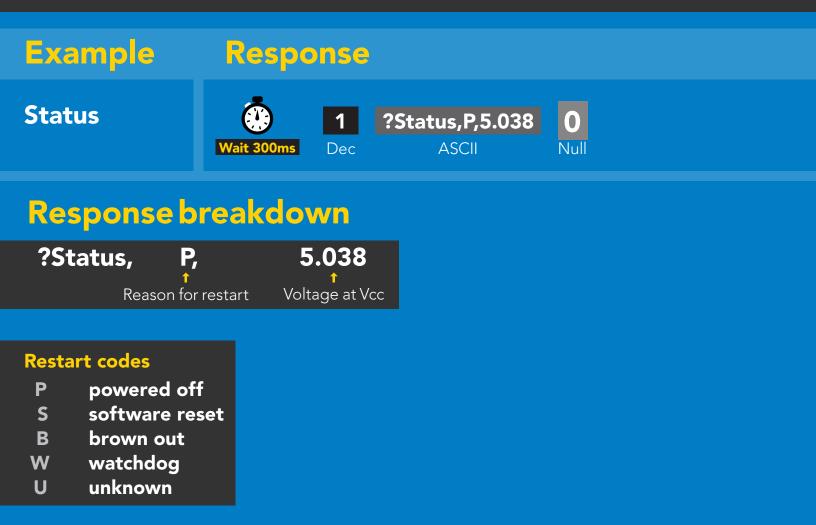
Device information

Command syntax

300ms 🕐 processing delay

i device information

Response breakdown



Reading device status

Command syntax

300ms 💮 processing delay

Status voltage at Vcc pin and reason for last restart

Sleep mode/low power

Command syntax

Sleep enter sleep mode/low power Command to awaken device				Send any character or command to awaken device.
Example Response		<mark>e</mark>		
Sleep		no response		Do not read status byte after issuing sleep command.
Any cor	mmand	wakes up device		
5V	stande 16 m/			
3.3V	13.9 m	A 0.995 mA		
	GND DA GND DA A A A A A A A A A A A A A	PGND	Sleep	GND TX PX FX P4 FX FX P4 FX FX P4 FX FX F

Protocol lock

Command s	yntax	300ms 🕐 processing delay
Plock,1 enabl Plock,0 disab Plock,? Plock	and the second secon	Locks device to I ² C mode.
Example	Response	
Plock,1	Wait 300ms 1 Dec Null	
Plock,0	Wait 300ms Dec Null	
Plock,?	Wait 300ms 1 Plock,1 Dec ASCII	O Null
Plock,1	Serial, 9600	
GND TX RX F F F F F F F F F F F F F F F F F F F	GND TX RX F F F F F F F F F F F F F F F F F F F	GIND TX RX
	cannot change to UAR	C cannot change to UART

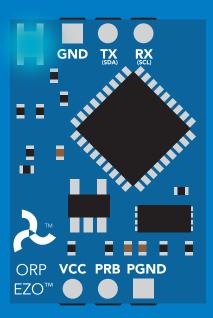
I²C address change

Command syntax

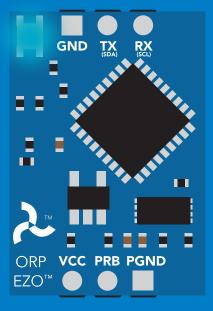
300ms 💮 processing delay

n = any number 1 - 127

I2C,n sets I²C address and reboots into I²C mode

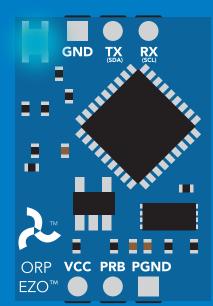

ExampleResponseI2C,100device reboot

Warning!

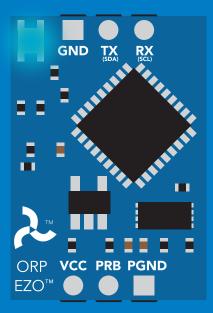

Changing the I²C address will prevent communication between the circuit and the CPU, until the CPU is updated with the new I²C address.

Default I²C address is 98 (0x62).

I2C,100

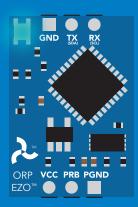


Factory reset

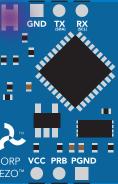

Command syntax Factory reset will not take the device out of I²C mode. Factory enable factory reset I²C address will not change Example Response Factory device reboot

Clears calibration LED on Response codes enabled

Factory

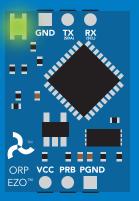


Change to UART mode

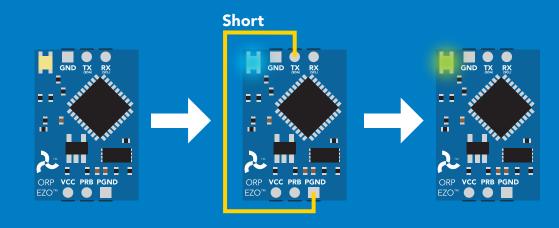

Command syntax

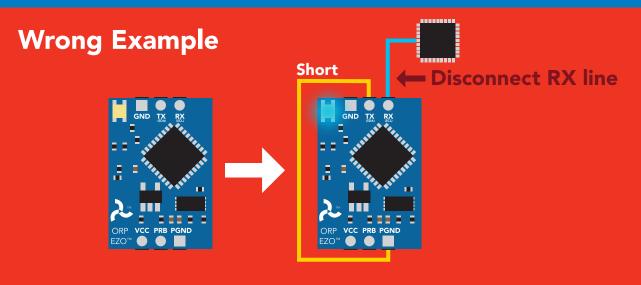
Baud,n switch from I²C to UART

ExampleResponseBaud,9600reboot in UART mode $\int_{n=0}^{300} \int_{2400}^{300} \int_{9600}^{2400} \int_{19200}^{38400} \int_{7600}^{57600} \int_{15200}^{38400} \int_{7600}^{57600} \int_{15200}^{57600} \int_{15200$



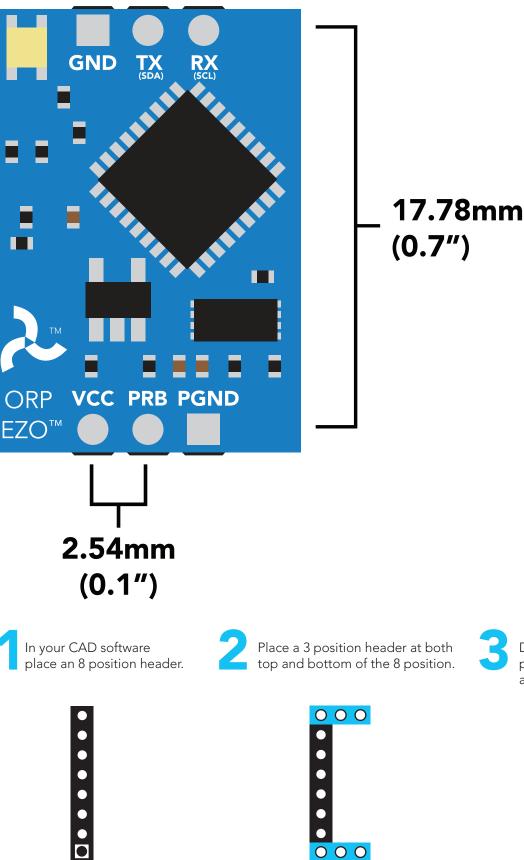
Changing to UART mode

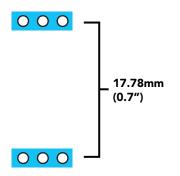




Manual switching to UART

- Make sure Plock is set to 0
- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to PGND
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power


Example



EZO[™] circuit footprint

Delete the 8 position header. The two 3 position headers are now 17.78mm (0.7") apart from each other.

Datasheet change log

Datasheet V 4.0

Revised definition of response codes on pg 42.

Datasheet V 3.9

Revised isolation information on pg 9.

Datasheet V 3.8

Revised Plock pages to show default value.

Datasheet V 3.7

Added new commands:

"Find" pages 23 & 46. "Export/Import calibration" pages 27 & 49. Added new feature to continous mode "C,n" pg 24.

Datasheet V 3.6

Revised circuit illustrations throughout datasheet.

Datasheet V 3.5

Added accuracy range on cover page, and revised isolation info on pg 10.

Datasheet V 3.4

Revised entire datasheet.

Firmware updates

V1.1 – Initial release (Oct 30, 2014)

- Change output to mg/L, then percentage (was previously percentage, then mg/L)
- V1.5 Baud rate change (Nov 6, 2014)
- Change default baud rate to 9600

V1.6 – I²C bug (Dec 1, 2014)

• Fix I²C bug where the circuit may inappropriately respond when other I²C devices are connected.

V1.7 – Factory (April 14, 2015)

• Changed "X" command to "Factory"

V1.95 – Plock (March 31, 2016)

• Added protocol lock feature "Plock"

V1.96 – EEPROM (April 26, 2016)

• Fixed glitch where EEPROM would get erased if the circuit lost power 900ms into startup

V1.97 – EEPROM (Oct 10, 2016)

- Fixed glitch in the cal clear command, improves how it calculates the ORP
- Added calibration saving and loading

V2.10 – (May 9, 2017)

- Added "Find" command.
- Added "Export/import" command.
- Modified continuous mode to be able to send readings every "n" seconds.

Warranty

Atlas Scientific[™] Warranties the EZO[™] class ORP circuit to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO[™] class ORP circuit (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific^M is the time period when the EZO^M class ORP circuit is inserted into a bread board, or shield. If the EZO^M class ORP circuit is being debugged in a bread board, the bread board must be devoid of other components. If the EZO^M class ORP circuit is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO^M class ORP circuit exclusively and output the EZO^M class ORP circuit data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO[™] class ORP circuit warranty:

- Soldering any part of the EZO[™] class ORP circuit.
- Running any code, that does not exclusively drive the EZO[™] class ORP circuit and output its data in a serial string.
- Embedding the EZO[™] class ORP circuit into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific[™] does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific[™] cannot possibly warranty the EZO[™] class ORP circuit, against the thousands of possible variables that may cause the EZO[™] class ORP circuit to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific[™] devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific[™] devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific[™] devices can be soldered into place, however you do so at your own risk.

Atlas Scientific[™] is simply stating that once the device is being used in your application, Atlas Scientific[™] can no longer take responsibility for the EZO[™] class ORP circuits continued operation. This is because that would be equivalent to Atlas Scientific[™] taking responsibility over the correct operation of your entire device.

