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Abstract

During recent years, the advances in computational and information systems have contribu-

ted to the growth of research areas, including affective computing, which aims to identify the

emotional states of humans to develop different interaction and computational systems. For

doing so, emotions have been characterized by specific kind of data including audio, facial

expressions, physiological signals, among others. However, the natural response of data to

a single emotional event suggests a correlation in different modalities when it achieves a

maximum peak of expression. This fact could lead the thinking that the processing of mul-

tiple data modalities (multimodal information fusion) could provide more learning patterns

to perform emotion recognition. On the other hand, Deep Learning strategies have gained

interest in the research community from 2012, since they are adaptive models which have

shown promising results in the analysis of many kinds of data, such as images, signals, and

other temporal data. This work aims to determine if information fusion using Deep Neural

Network architectures improves the recognition of emotions in comparison with the use of

unimodal models. Thus, a new information fusion model based on Deep Neural Network

architectures is proposed to recognize the emotional states from audio-visual information.

The proposal takes advantage of the adaptiveness of the Deep Learning models to extract

deep features according to the input data type.

The proposed approach was developed in three stages. In a first stage, characterization and

preprocessing algorithms (INTERSPEECH 2010 Paralinguistic challenge features in audio

and Viola Jones face detection in video) were used for dimensionality reduction and detection

of the main information from raw data. Then, two models based on unimodal analysis were

developed for processing audio and video separately. These models were used for developing

two information fusion strategies: a decision fusion and a characteristic fusion model, res-

pectively. All models were evaluated using the eNTERFACE database, a well-known public

audiovisual emotional dataset, which allows compare results with state of the art methods.

Experimental results showed that Deep Learning approaches that fused the audio and visual

information outperform the unimodal strategies.

Keywords: Emotion Recognition, Deep Learning, Speech emotion recognition, Facial

Emotion recognition.
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1 Introduction

Affective Computing is a growing research area that uses the conscious and unconscious

actions to determine the emotional user states and modify machine interaction [1]. The re-

cognition of affective content in human actions by computational systems has been a growing

field of study during the recent years, since the analysis of expressions, which influence hu-

man decisions and behaviors and could be exploited in a large variety of applications to

enhance human-computer interactions (HCI); including mood analysis, video games interac-

tion, entertainment fields, emotional advertising, among others [2, 3, 4].

The study of emotional states has been performed from different perspectives such as the

analysis of biological signals, voice, and facial expressions. From each point of view, research

has been mainly focused on the analysis of single modalities separately with the aim of ef-

ficiently performing emotion recognition. Thus, specific techniques of characterization and

learning models have been proposed [5, 6, 7]. Nevertheless, the expression of an emotio-

nal event implicitly entails a natural connection between all different physical phenomena,

since they occurred in sudden moments [8]. This carries an existing correlation of physical

data concerning the description of the expression of an emotion that could be considered

to perform recognition. Therefore, it could be assumed that the combination or fusion of

two or more of these data modalities (multimodal information) instead of single (unimodal

information) could take advantage of the implicit correlation to improve the performance of

computational models for solving this task [9]. From this point of view, several challenging

problems have arisen which are a matter of study; concerning the advantage of multimodal

models over unimodal, since some recent unimodal approaches outperform multimodal mo-

dels [10, 11, 12].

On the other hand, the development of diverse computational systems has made the pro-

cessing of large amounts of data easier and faster. Those advances have made the academic

and industrial community regain interest in machine learning techniques based on Neural

Networks developing a new family of algorithms named Deep Learning models. The main

drawback of Deep Learning strategies is the high processing capabilities required to adjust

parameters of the model (gradient estimation, weights and bias tuning, non-linear opera-

tions, among others). However, implementation on high performance dedicated processors

(such as graphical processing units - GPU) have shown a significant reduction in the pro-

cessing time through algorithm parallelization [13]. These models have also been retaken as
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a matter of study since 2012, when it demonstrated promising results for solving a classical

computer vision problem, consisting in the classification of massive number of classes (1000)

in a large-scale database containing more than 1.2 million images (the ImageNet challenge

[14]).

In addition, Deep Learning approaches have performed promising results in different applica-

tions using diverse kind of data (such as images, temporal data, signals, among others), since

they are adaptive models. This means that is possible to implement different architectures to

model spatial or temporal patterns depending on the type of data. Information fusion using

Deep Learning architectures has been also proposed recently for addressing the emotion re-

cognition challenge [15, 16]. However, the use of these models for fusing other types of data

requires to modify and tunning several parameters of the proposed architectures, including

its structure according to the fusion strategy employed. For this reason, it is still matter of

study in the scientific community.

In this research, a Deep Learning model for identifying emotions from information extracted

from voice signals and image sequences (video) is proposed. Initially, unimodal information

strategies were implemented using video and audio information separately, which were ex-

tracted from the well known and accepted database (the eNTERFACE’05 database); with

the aim of establishing a comparative baseline. It is noteworthy to remark that the database

selection criteria is based on the selected emotional model for the work (Ekman model), the

relevance of the correct psychological content in the samples and the availability of the data-

base. Then, two models for fusing both information sources are proposed, from characteristic

and decision fusion perspectives; They were designed to represent information in a similar

dimensional space by using convolutional layers. The proposed fusion models are compared

with unimodal strategies, and previous state of the art works, with the purpose of validating

the hypothesis described above. Main results suggest that Deep Learning is a promising stra-

tegy to achieve optimal multimodal information fusion from different perspectives, and its

usage demonstrates that multimodal information obtain the best performance for emotion

recognition than unimodal strategies, using audio and video sources.

1.1. Research challenge

Automatic emotion recognition is fundamental to advance in the development of computer

interaction models. Several computational methods have been developed by pattern identi-

fication in audio and physiological signals, body and facial expressions; however, reported

results are far from ideal to real scenarios. Taking advantage of the patterns generated in

more than one data modality may be the key to improve the performance of these models.

On the other hand, machine learning techniques based on Deep Learning have achieved pro-

mising results in several learning tasks since they can tune learning parameters according to
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kind of information during the training stage. However, the implementation of these stra-

tegies aiming multimodal information fusion (different data sources) is challenging due to

the combination of architectures for modeling different kinds of data efficiently, taking into

account the natural correlation between data, which describes a single phenomenon. Addi-

tionally, it requires processing a large amount of data simultaneously to estimate a decision.

From this point of view, the problem in this work is the design of a Deep Learning archi-

tecture for simultaneously processing different data sources to perform automatic emotion

recognition.

1.2. Objectives

1.2.1. Main Objective

Proposing an information fusion model based on combination of multiple Deep Learning

architectures, which allows to analyze different data modalities to perform automatic emotion

recognition.

1.2.2. Specific Objectives

1. To establish a baseline of state-of-the art techniques for emotion recognition based on

unimodal analysis, using Deep Learning techniques.

2. To propose a feature extraction strategy based on Deep Learning approaches for mul-

timodal data representation in a similar dimensional space.

3. To propose a Deep Learning strategy for emotion recognition from multimodal infor-

mation, using the representation stage developed in specific objective 2.

4. To evaluate the emotion recognition proposed strategy using public and available emo-

tional databases containing multimodal information.

1.3. Hypothesis

The design of a hybrid Deep Learning architecture that efficiently combines multiple specia-

lized structures of unimodal information, will allow simultaneous processing of several data

types for emotion classification or recognition, improving performance compared to unimodal

data analysis.
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1.4. Contributions

The main results of this research project are supported by the following products, publica-

tions, related works, undergraduate co-advisory projects and research stage developed from

the project proposal.

The first contribution aimed to evaluate several Deep Learning frameworks to establish the

use of the best framework to implement all the models in this work. This is aligned with the

first objective of this work, corresponding to the developing baseline.

Publications

Performance comparison of deep learning frameworks in image classifica-

tion problems using convolutional and recurrent networks

Rubén D. Fonnegra and Bryan Blair and Gloria M. Dı́az

In: 2017 IEEE Colombian Conference on Communications and Computing (COLCOM)

IEEE Xplorer, 2017

Undergraduate Co-Advisory projects

Performance comparison of deep learning frameworks in image classifica-

tion problems using convolutional and recurrent networks

Institution: Instituto Tecnológico Metropolitano (ITM)

Status: Concluded

Student: Bryan Blair Álvarez

Year: 2017

In the following publications, unimodal emotion recognition using speech and video to per-

form the emotion recognition task are presented. These contributions were products asso-

ciated to the experimentation during the development of the first objective of this work; in

which the baseline is proposed using a common validation strategy (cross-validation).

Publications

Speech Emotion Recognition Based on a Recurrent Neural Network Clas-

sification Model

Rubén D. Fonnegra and Gloria M. Dı́az

In: Cheok A., Inami M., Romão T. (eds) Advances in Computer Entertainment Tech-

nology

Lecture Notes in Computer Science, Springer, Cham. 2018
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Deep Learning Based Video Spatio-Temporal Modeling for Emotion Re-

cognition

Rubén D. Fonnegra and Gloria M. Dı́az

In: Masaaki Kurosu (ed) Human-Computer Interaction: Theories, Methods and Hu-

man Issues (Part I)

Lecture Notes in Computer Science, Springer, Cham. 2018

Speech Emotion Recognition Integrating Paralinguistic Features and Auto-

encoders in a Deep Learning Model

Rubén D. Fonnegra and Gloria M. Dı́az

In: Masaaki Kurosu (ed) Human-Computer Interaction: Theories, Methods and Hu-

man Issues (Part I)

Lecture Notes in Computer Science, Springer, Cham. 2018

In the following related works, the authors have significant participation to the individual

contributions concerning diverse areas (such as facial analysis and multispectral imaging)

using different Deep Learning approaches. In this sense, different publications and undergra-

duate projects were developed in these scopes.

Publications

MSpecFace: A Dataset for Facial Recognition in the Visible, Ultra Violet

and Infrared Spectra

Rubén D. Fonnegra and Alexander Molina and Andrés F. Pérez-Zapata and Gloria M.

Dı́az

In: Botto-Tobar M., Esparza-Cruz N., León-Acurio J., Crespo-Torres N., Beltrán-Mora

M. (eds) Technology Trends.

Communications in Computer and Information Science, Springer, Cham. 2017.

Automatic Face Recognition in Thermal Images Using Deep Convolutional

Neural Networks

Rubén D. Fonnegra and Andrés F. Cardona-Escobar and Andrés F. Pérez-Zapata and

Gloria M. Dı́az

In: XVII Latin American Conference on Automatic Control CLCA 2016.

Universidad EAFIT. 2016.
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Undergraduate Co-Advisory projects

Facial recognition with pose variations in multi spectra images using deep

convolutional neural networks

Institution: Instituto Tecnológico Metropolitano (ITM)

Status: Concluded

Student: Pablo Campaz Úsuga

Year: 2018

Finally, the following internship were realized in the scope of this work, in which an emotion-

based interaction experiment were proposed to investigate the effect of reaction of human

stimuli in robotic environments. The experiment helped to better understand the power and

elicitation of humans emotions during interactions.

International Research Stage

Beneficiary of the Stages program under resolution No 000429 of April 27, 2017 under the

161 agreement subscribed between the Instituto Tecnológico Metropolitano (ITM) and Sa-

piencia, 2016.

Objective: Propose an experiment at the Autonomous Systems and Robotics from the En-

gineer and Informatics Systems department (U2IS) in École Nationale Supérieure de Tech-

niques Avancées (ENSTA) ParisTech; for characterizing positive and negative emotions th-

rough Human - Human and Human - Robot interactions.

Advisor: Prof. Adriana Tapus.

Stage period: From 15th October to 1st December, 2017.

1.5. Thesis outline

This work is organized as follows. In chapter 2 are described basic concepts required to the

development of this work. First, the psychological emotional models proposed in the state

of the art to characterize the affective content of human behaviors are shown. Then, the

physical points which represent the manifestation of an emotion in humans are presented to

understand the nature of the data correlation to describe a single emotional phenomenon.

Besides, the automatic emotion recognition works aiming to enhance human-machine inter-

actions are presented to describe the concepts of unimodal and multimodal information, the

nature of data used, the computational modeling and feature extraction techniques, the ma-

chine learning models used, the experimental framework for the experiments and the results

from each unimodal and multimodal data models. Finally, the Deep Learning basics and
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operations to understand the proposed models in this work are presented. The design of a

hybrid Deep Learning architecture that efficiently combines multiple specialized structures

of unimodal information, will allow simultaneous processing of several data types for emotion

classification or recognition, improving performance compared to unimodal data analysis.

In chapter 3 are described the unimodal classification models using video and audio data se-

parately. First, the general scheme for each strategy is presented which is basically composed

of several stages such as data augmentation, preprocessing and emotion classification. Then,

each unimodal model and its specificities is described; concerning the data preprocessing,

feature extraction or region of interest detection and classification strategy. Additionally, the

description of the database, the performance metrics and the experimental framework are

introduced.

In chapter 4 are described the multimodal fusion data approaches at different levels. In this

case, each model is introduced according to its strategy, concerning the different stages. The

strategy at decision fusion level is described, in which the characterization from unimodal

strategies is parallel used before including a classification architecture to process the final

decision. On the other hand, the strategy at characteristic fusion uses different parallel ar-

chitectures for each kind of data besides a relational block to combine data coming from

other modalities. The details for each strategy, the results and comparison with unimodal

models proposed and previous works in the state of the art, using the same experimental

framework are presented.

Finally, in chapter 5 are presented the discussion and conclusions of this work; the consi-

derations and future works. This chapter presents the main discussions of this thesis, how

the multimodal models could outperform the results obtained in comparison with unimodal

strategies and other works in the state of the art; how multimodal strategies model could be

extended to process more than two kinds of data, the advantages of the use of this model,

the disadvantages, the limitations of the proposed approaches and the accomplishment of

the objectives proposed in this work. Besides, the considerations and future works in terms

of new experimentation, the emotional modeling, the use of different data modalities and

the variations of this model derived from the development of this thesis.



2 Background and Previous Works

2.1. Emotion Modeling

From the study of the human brain as the center of thinking and feeling, the emotions ha-

ve been defined as the natural body reactions or human behaviors to brain stimuli, which

changes in variation and intensity, depending on the external context [17]. This means that

emotions are internal mechanisms triggered by external factors which influence physical

variables such as movements, expressions, reactions, among others. These agents are all per-

ceptible, since they allow someone to identify when anyone experiences an specific emotion

to see it. Research has shown that the natural reactions of humans are generalized among

individuals, which suggests that these patterns can be identified in all humans. For example,

a person who feels scared because of a natural disaster will react in a similar way to many

other subjects who experience the same act.

A deep discussion about these patterns has focused in the characterization of emotions, in

which several authors propose discrete models of “universal” emotions [18, 19, 20]. The ar-

gument of the existence of universal emotions was conducted from the study of cross-cultural

facial expressions [21]. Participants from a remote area in New Guinea, where members could

have not learned the meaning of expressions from the exposure of media depictions of emo-

tions, were asked to show how their face look under different expressiveness situations. Their

findings were relevant because they showed that observers from other cultures can identify

the emotional context and expression they intended to portray.

Then, the structure of the universal emotions consists of the ones that can be visually iden-

tified through facial expressions, no matter the culture or other facts. In this sense, emotions

such as anger, happiness, sadness, surprise, disgust, and fear were considered universal emo-

tions by Ekman et. al.[22]. However, other authors have considered emotions not only as

universal expressions but as a whole language conditioned for the culture and the environ-

ment where people are related. With this purpose, several models have been proposed based

on human perception and psychological factors. From this point of view, the study of the

other emotional states generated a hypothesis concerning the combination of several univer-

sal emotions. The concept of “families of emotions” was illustrated in [23], which does not

consider the universal emotions as affective states, but as a group of related states with si-

milar expressive characteristics. However, the manifestation of these characteristics is highly
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correlated to the cultural bondings of people and the environment.

From the concept of emotion families, this research area was focused on the way to measure

and group the expressive content of different emotions, in order to characterize them accor-

ding to universal affective states. In this sense, emotion characterization models based on

diverse variables were proposed. In [24], emotions are defined as communication processes or

signals which depend on the individual experience; to finally influence personal relationships.

Then, a model based on a circumflex of emotions is proposed, taking into account the assum-

ption of an analogous relationship between emotions and the colors model. To achieve this,

the authors mapped the emotions into ten basic groups: love, happiness, mirth, surprise, fear,

suffering, anger, determination, disgust, and contempt. Additionally, this model considered

an existing overlapping among groups, in which they include other affective states. Finally,

to map all the emotions in the wheel (bi-dimensional model) they stacked the states in two

axes called unpleasant/pleasant and acceptance/rejection. Additionally, the model could be

extended to arrange emotions in concentric circles where inner circles are more basic and

outer circles are more complex emotions. Notably, outer circles are also formed by blending

the inner circle emotions. In both cases, models are based on circumflex representations, in

which emotional words are plotted according to similarity. Figure 2-1(c) shows a graphical

representation of the multidimensional Plutchik model.

On the other hand, a more complex model is shown in [25], called the PAD model which

is a multidimensional model based on emotional scales specifically addressed to the conno-

tative meaning of differential emotional-based ratings (evaluation, activity, and potency).

The authors proposed a preliminary scheme with nearly orthogonal scales of emotions:

pleasure-displeasure as meaning of the evaluation of emotions for the human being (po-

sitive/negative emotions); arousal/non-arousal as meaning of intensity of emotions when are

expressed (high/low activity); and dominance-submissiveness as meaning of the controlling

and dominant nature of the emotion (control/lack of control). A representation of the PAD

emotional model is shown in figure 2-1(b).

Watson et al.[26, 27] propose to describe emotional content according to the positive affec-

tion and negative affection scales (PANAS). The model is a composed of two orthogonal

scales to characterize emotions; in which main groups are enthusiasm, active and alertness

as positive affect, and aversion, anger, nervousness, contempt, disgust, guilt, and fear as ne-

gative affect. The PANAS scales exhibit a significant level of stability through different time

intervals; as also represent consistency with a strong dispositional component of affect. This

means that even momentary moods are, to a certain extent, reflections of one’s general affec-

tive group. In figure 2-1(a) can be seen a representation of the bidimensional Watson model.

From the perspective of the multidimensional emotional models, it can be said that they
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(a) (b)

(c)

Figure 2-1: Multidimensional emotional models. Circumflex PANAS [26]; Tridimensional

PAD [28] and Multidimensional Plutchik [29]

provide a more complex characterization to describe affective content from human expres-

sions. Nevertheless, from a computational point of view, these models must be handled as

multi-label problems, which imply an increase in the complexity in comparison with unidi-

mensional models, such as the universal emotional model. Additionally, these models provide

a higher level of interpretability, which is useful in HCI applications. Therefore, this work

focuses on the automatic recognition of emotions in a discrete model, specifically the uni-

versal model of Ekman.



12 2 Background and Previous Works

2.2. Physical Manifestation of Emotions

From the study of [21], the theory of universality of emotions gained force in the academic

community to search the physical aspects of the recognition of emotions through facial ex-

pressions. However, the expression of emotions is highly correlated to social relationships,

cultural environment, psychological activity, stimuli arousal, among others. This does not

deny the theory about the universal emotions, but it suggests that expressiveness carry on

certain changes according to these aspects.

The expression of an emotion is typically accompanied with speech, body gestures or postu-

ral expressions, depending on the social context at moment of the experience. These changes

could be considered as messages in which the emotion is expressed. Additionally, these mani-

festations not only depend on the situation causing the emotion, but their interpretation also

depends on the experience of interpreter. Thus, as several traits condition similar aspects for

the experimenter-interpreter in the universal emotions, the characterization of those changes

(in a cultural group or region) according to an specific emotion model is still a research field

of study. Thus, the best way to ensure a correct interpretation is to validate with experts of

psychology areas to certify the expression of the emotion in humans when an external factor

triggers an emotional event. For this reason, the data used to perform the experiments in this

work will not only be based in the use of a database widely explored in the literature, but

it will also contain emotional information certified by experts of psychological fields which

ensure that the label in a batch of information belongs to its corresponding affective content.

A similar problem comes with the measurement of those patterns and body gestures (such

as temperatures, responses, movements, among others), since the natural human variables

changes when emotion occurs. In this work two of the widely used data to search manifes-

tation of affective content in human behaviors are used, i.e. the facial expression and the

audio speech signals. Besides, it is also noteworthy to remark the high accuracy and syn-

chronization during the acquisition time; since most of the modern camera devices contain

microphones and visual sensors to capture information, synthesized in a single package.

2.3. Automatic Emotion Recognition

The development of diverse interaction devices for enhancing the experience between hu-

mans and machines has made the recognition of emotional states of humans a growing field of

study in academic and industrial research. This field, called Affective Computing covers wide

amount of applications such as human-computer interactions [30, 31], the emotional marke-

ting and specialized market programs [32, 33] analysis of behavior disorders [34, 35, 36, 37],

among others. The recognition of emotions as a research field has been strongly bounded to
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the analysis of generated changes in people’s physiology such as facial expressions, pattern

body movements, voice tone and pitch alterations, body temperature changes or biological

signals modifications [38, 39].

Among them, several techniques in the state of the art suggest analysis of facial expres-

sions for emotion recognition, consisting in the searching of patterns in 2D or 3D images,

for static [40] and sequential images (video) [41], and for different spectra (visible and infra-

red [42]). Additionally, the characterization stages for analyzing the data involve dynamic

muscle description of movements in regions of interest such as nose, eyes, eyebrows or lips

[43]. Likewise, regarding body movement change analysis, studies demonstrates the use of

pattern search for lie detection [44, 45] in which techniques based on inertial sensors analy-

sis or capture movement systems have been used to characterize certain body movements

expressions [46, 47]. Besides, previous research for analysis of biological signal for emotion

recognition involves electroencephalography (EEG), electromyography (EMG), galvanic skin

response (GSR), where used algorithms consist in Fourier and Wavelet analysis, power spec-

tral density, mel-frequency cepstrum, prosodic, mathematical momentums or Hilbert-Huang

transform [48, 49].

Among the physical changes, speech, audio signals and facial regions are the most widely

explored data types in the state of the art. In case of speech, several strategies had been

proposed [50, 51, 52, 53, 54]; e.g. in [51] a transfer learning model is proposed, in which

16 low-level descriptors (LLDs) and 12 functionals audio features are extracted using the

OpenEAR toolkit. A transfer learning model, which includes auto-encoders based techni-

que for feature transfer, maps a general structure of input characteristics by moving them

from source to target to train a support vector machine (SVM). The main drawback of this

model is that it is highly dependent on training reconstruction of data for knowledge trans-

fer. An SVM learning model was also used in [52] to differentiate between the six different

emotions included in the eNTERFACE database, but the feature vector was composed of

7 short time-based features and three long-time based features extracted from the speech

audio signals using JAudio toolkit. Likewise, in [53] an audio emotion recognition system

based on extreme learning machine (ELM) is proposed. Initially, a signal processing stage

extracts multi-directional regression features (MDR) by pre-emphasize audio signals and

frame them using hamming windows. Then, Fourier transform based spectral analysis and

filter is applied using 24 Mel-scale Frequencies, obtaining 24 values per frame. At this point,

a four-directional three-point linear regression is carried out to extract 96 features. Finally,

other works such as [54] has proposed SER systems based on a recurrent deep learning stra-

tegy. However, the feature description model is focused on the analysis of utterances where

emotions can reach their highest expression peak, besides suppressing silence in sentences,

or non-expressive words. That is to say, that only verbal features are used for characterizing

the signals.
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Strategies based on the analysis of facial expressions also represents important challenges

such as illumination changes, pose variations (in still images [55]) and spatiotemporal mo-

deling (in video or image sequences [56]). A comprehensive review of these approaches can

be consulted in [57, 58]. In [59] an emotion recognition framework from video sequences

is presented, which is composed of different subsystems: the first subsystem implements a

preprocessing stage, in which a face is automatically detected and the image pixels are nor-

malized using a histogram equalization approach. In the second subsystem, a dimensional

subspace from preprocessed images to construct a prototypical template for the N emotions

is performed by a simple eigen-decomposition of each emotion scatter matrix. In the third

subsystem, a matching stage is applied for comparing encoding representations from faces,

using a canonical correlation analysis, via singular value decomposition (SVD). Performance

obtained using this strategy is highly dependent on the dimensionality of subspaces created

for encoding the images, which increases the computational complexity of the algorithm. In

[52] the authors propose a model for emotion classification from visual data using an extreme

learning machine. In their strategy, they first make a manual annotation of every frame in

the video, to subtract those frames with no relevant emotional content (neutral). Then, they

perform a facial extraction of relevant points of the face (eyes, mouth, nose, eyebrows and

chin) using the Luxand FSDK software to obtain a vector of features per frame. The feature

vector for each video is obtained then, using coordinate-wise averaging from feature vectors

of individual frames. Finally, they use an extreme learning machine (ELM) to perform the

classification task of video clips. However, the main drawback lays on the manual annota-

tion of the frames because it might elicit a significant loss of frames with relevant emotional

content to achieve the recognition.

On the other hand, recent works suggest that the combination of different modalities of data

could increase the description of an emotional event due to the existing implicit correlation

during their acquisition. The combination of different modalities of data is known in the state

of the art as multimodal analysis. Nevertheless, the complexity of the multimodal analysis

lays in the way the data is processed and characterized; considering that the techniques for

describing the different modalities are not the same. To aim this problem, authors suggest to

evaluate samples using different models for each kind of data and then, propose a strategy

to determine a decision based on the combination of predictions of each model. This stra-

tegy for fusion information is called decision level fusion. However, these strategies do not

take advantage of the internal correlation of the data. On the other hand, other strategies

proposed different characterizations of multiple kinds of data, to use a method to combine

extracted features and perform classification. The strategy is called characteristic level fu-

sion, and is the most promising in the literature review. In this sense, the combination of

machine learning techniques has been proposed, but especially Deep Learning has gained

attention in research and academic communities, given its characteristic of adaptive learning
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depending on the data, no matter their provenance which allows integrating a different kind

of information for the multimodal analysis.

In [60], a multimodal strategy based on the selection of parts from video and audio in which

the emotion expressiveness achieves the highest point. Then, those frames are processed

as still images. Authors achieve the task by grouping all the video frames into K clusters

based on dissimilarity between the local phase quantization (LPQ) features in each frame.

They use a complete agglomerative link clustering algorithm, named dendrogram clustering

algorithm (DEND-CLUSTER) to group the frames and then, select a frame whose average

distance from the rest of the frames in the cluster is minimum. Thus, they compute the ideal

selection measure (ISM) score based on the gradient of each pixel, to arrange the selected

frames in descending order. The peak frames features are used for training a SVM with a

linear kernel to classify emotions. This approach did not consider dynamic motion change of

the face, which it is an expected condition in a real context. Likewise, in [61] a sparse local

discriminant canonical correlation analysis for multimodal information fusion was presented.

In the case of audio emotion recognition, authors propose to apply a feature extraction stage

to convert time domain signals into spectrograms with a 20ms window and 10ms overlap.

The spectrograms are processed using the Principal Components Analysis (PCA) method

to obtain 60 components, which are then considered as inputs of a sparse auto-encoder (400

units) to create a subspace representation, which is also used to train an SVM model.

Recently, information fusion based on Deep Learning models have shown promising results[15,

16]. Sun et al. [16] propose a model for feature representation and fusion from video data

containing face and body gestures. With this aim, several stages were implemented: first, a

data preprocessing for extract aligned faces and image normalization; then a Feature extrac-

tion and representation stage to extract body pose and faces contours, including a deep net-

work, which combines convolutional and recurrent layers, and a principal component analysis

(PCA) to select the most relevant features extracted from the Deep Learning model; finally,

a fusion-based classification model, which combines feature-level and decision-level fusion

model using the representation found by the PCA analysis and applying a weighted fusion

network to select most suitable decision. On the other hand, Yan et al. [15] propose a Hybrid

Deep Learning model that combines bidirectional recurrent layers and convolutional layers

to characterize faces, facial landmarks and audio. The objective was to generate trajectories

to characterize facial movements with a convolutional architecture, parallel to a SVM and

a bidirectional recurrent network; and convolutional layers for audio recognition based on

the INTERSPEECH paralinguistic features. Finally, the fusion strategy is based on a weigh-

ted rule of decision estimated from all architectures. These fusion models use characteristic

and decision-level fusion from different perspectives; the use of architectures to effectively

represent information before classification stage; the use of feature selection algorithms for

selecting best features; and the use of temporal modeling using different layers to model
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temporal condition.

Other works using either only audio speech or fusing it with other information provided by

visual information of facial, body expressions and other physiological signals, as can be found

in some recent literature reviews [62, 63]. However, the problem of multimodal information

fusion is still a challenging task in the emotion recognition task for various reasons:

1. The implementation of algorithms that take advantages of internal correlation of data

has not achieved enough performance to solve the challenges of emotion recognition

problem, such as resolution, dimensionality, balancing, heterogeneity, among others.

2. The featuring extraction algorithms for emotional content in multimodal data is still a

challenge since their analysis is highly correlated to the nature of data (such as video,

speech, text, signals, among others) and the data processing.

3. Despite the machine learning techniques for multiple data fusion have increased during

last five years, the problem is still open from the amount of applications in which

emotion recognition is pertinent. In this sense, the adaptive models have achieved the

most promising results since they aim to adjust to data variation to outperform results.

The main objective of this work aim to propose a model to effectively fuse multimodal

data, using adaptive machine learning algorithms (Deep Learning) to perform the emotion

recognition task. The contribution main of this work lies in the architecture of the fusion

model and its performance evaluation using public available data in the state of the art

works.

2.4. Deep Learning Basics

Deep Learning is a machine learning technique based on computational models that adjust

automatically according to input type and amount of data to be processed [64]. Methodolo-

gies based on Deep learning obtain inner data representations at different abstraction levels

from non linear transformations applied in multiple layers. These computational techniques

based on artificial neural networks, implement core functions (activation function) inside dif-

ferent units (neurons) contained in multiple groups (layers) across the entire network. Each

layer is composed by a defined number of neurons with equal or not activation functions;

and every neuron output is connected to its own input or other neuron’s input related to the

same or other layer. This condition (called non linear connections between layer) depends

on kind of data and activation function of neurons. The data is introduced to the network

through a single level or group of neurons (input layer) which is connected to other non linear

layers (hidden layers); and they apply required transformations in order to extract relevant

information from input data depending on activation functions and connections. Information
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from characterization of data is extracted through last group of neurons (output layer). The

whole amount of layers (input, hidden and output), connections and neurons are known as

network architecture [65, 66].

Because of the model’s capacity for extracting deep relations from data sources at diverse

abstract levels, it requires large amounts of data to achieve efficient learning during training

stage. This characteristic implies a high computational cost [67, 68]. However, Deep Lear-

ning architectures have been retaken in in different applications due to increase of available

information generated during last 20 years (Big Data) as training examples; and the techno-

logical advances of dedicated processing units (GPU) which allows significant reduction in

computational cost and memory consumption through parallel programming strategies [69].

State-of-the-art Deep Learning architectures have shown promising results in applications

involving abstract relationships in input data; applications with time analysis dependence or

with the need of complex feature extraction stages. Among them are audio signal [70], voice

signal [71], physiological signal processing [72], medical images processing [73] and video or

image sequences processing [74].

Nowadays, there are several Deep Learning architectures specialized according to input data

source. The literature describes architectures that use convolution operations (Convolutional

Neural Networks - CNN); architectures based on analysis of changing information through

time (Recurrent Neural Networks - RNN), which take into account parameters from informa-

tion within a long time lapse (Long - Short Term Memory Networks - LSTM); architectures

with the ability to estimate predictions from similarities in data input sources (Deep Belief

Networks - DBN); and architectures with the aim of characterizing data through encoding

and decoding of information (Autoencoders - AE, Autodecoders - AD). From this specia-

lized architectures, hybrid models for Deep Learning architectures have been proposed in

the literature in order to improve results of machine learning tasks, such as Convolutional

Autoencoders (ConvAE), Autoencoders with Memory cells (AE-LSTM), recurrent Autoen-

coders (RAE), Convolutional Deep Belief Networks (Conv-DBN), Convolutional Recurrent

Neural networks (Conv-RNN) among others [75]. According to this, theoretical frameworks

for architectures proposed in this work are presented in subsections 2.4.1, 2.4.3, 2.4.4 and

2.4.5.

2.4.1. Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) are special networks in which one or more layers

contain units implementing convolutional operations for transforming the input data. The

purpose of convolving the information through the network layers is to analyze the data

taking into account certain regions of a signal to create different recognition patterns. Similar
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to conventional neural networks, the convolutional layers also have trainable weights and

biases. However, their size and dimensionality depend on the type of convolution used for

the layer (1D conv, 2D conv or 3D conv). The convolutional architectures in Deep Learning

have gained a lot of attention since 2012, when this strategy outperformed classical computer

vision algorithms in a very challenging task i.e., classification 1,2 million images-within 1000

categories [14]. The equations 2-1, 2-2 and 2-3 describe the response to the convolution in 1D,

2D and 3D, of a function f(f [x], f [x, y], f [x, y, z]) to a filter h(h[x], h[x, y], h[x, y, z]) when

it is displaced u([u], [u, v], [u, v, w]) spaces. A graphical representation of 2D convolution is

shown in figure 2-2.

f [x]× h[x] =
∑
u

f [u]× h[x− u] (2-1)

f [x, y]× h[x, y] =
∑
u

∑
v

f [u, v]× h[x− u, y − v] (2-2)

f [x, y, z] ∗ h[x, y, z] =
∑
u

∑
v

∑
w

f [u, v, w]× h[x− u, y − v, z − w] (2-3)

The convolutional layers are commonly implemented along with Pooling layers, with the

aim of reducing the size of the characteristic subspace (computational cost) and avoid the

overfitting problem in the network layers. The pooling layers contain 2 hyper parameters

corresponding to the stride value (Sp) and the pooling size (Fp). The pooling operation

commonly uses the MAX operation across the input regions for preserving the most relevant

sections of the input. The pooling operation with size xo, yo and zo for an input array of

sizes xi, yi and zi in terms of hyper parameters Sp and Fp is shown in 2-4 (a), (b) and (c)

respectively

(a)xo =
xi × Fp + 1

Sp

(b)yo =
yi × Fp + 1

Sp

(b)zo = zi (2-4)

2.4.2. Recurrent Neural Networks

The recurrent neural networks, first proposed by Elman in [76] are structures for facing the

problem of sequence modeling across time. In traditional neural networks, the inputs and

outputs are completely independent from each unit. However, in several problems (such as

natural language processing) the output predictions are highly dependent on the previous

states or inputs, in which the estimation of a word would better achieve higher performance

considering previous states. So, recurrent neural networks perform same operation over all

elements in a sequence considering previous states, which is an approximation of natural

behavior of time series. The behavior of the internal state could be associated to a ”me-

mory”, since it modifies its value according to the series in the sequence.
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Figure 2-2: Convolution operation for 2D images

The estimation of parameters of a recurrent neural network consist updating the internal

state of the cell st, which for an input xt at a time step t is calculated as it is shown in

equation 2-5. The function f is usually a non-linearity activation (commonly tanh or ReLU)

of the state to regularize the parameter increase of the network. Additionally, the corres-

ponding parametric weights of a traditional neural network are preserved (b,W ). However, a

difference with traditional models lies in the parameter sharing during the whole sequence.

This represents an important reduction on the parameter calculations and time complexity.

Despite of this advantages, the recurrent neural networks have a considerable limitation since

it only could pick information on the short-term sequence elements across time steps.

st = f(Wst−1 + bst) (2-5)

2.4.3. Long Short Term Memory Networks

Long Short Term memory networks (LSTM) are a specific kind of architectures composed by

groups of neurons where outputs are connected to neurons in the same input, the output or

the hidden layers in order to create a redundant analysis through time. These characteristics

allow to solve a classical problem of computational machine learning, consisting in dependen-

ce of analysis for long time interval differences of data [77], mentioned in the recurrent neural

networks section (2.4.2). LSTM networks associate information, “remembering” behavior of



20 2 Background and Previous Works

Figure 2-3: Internal architecture for the LSTM recurrent unit.

data for long and different time periods. Due to this, the learning algorithm for these archi-

tectures does not initialize from zero state, but it takes into account particularities in data

for generating behavior patterns. LSTM networks are basically composed by a memory cell

(which are considered as neurons) with an activation functions, and also receives feedback

information for considering past and present states. In addition, LSTM cells are connected to

other memory cells for propagating information. The whole memory cells assembly composes

a link which is considered as the network architecture, and is shown in figure 2-3.

The learning function during training stage generally involves an optimizer along with the

back-propagation algorithm for tuning parameters while minimizing error; and usually opti-

mizing connections in the memory cells of the network to achieve better performance (Fine

Tuning algorithm [78]). LSTM networks have been used in state-of-the-art applications such

as automatic speech recognition systems (ASR), musical composition, handwriting recogni-

tion (HWR), or other applications where time modeling is necessary.

it = σ(Wi · (ht−1, xt) + bi) (2-6)

ft = σ(Wf · (ht−1, xt) + bf ) (2-7)

ot = σ(Wo · (ht−1, xt) + bo) (2-8)

C̄t = tanh(WC · (ht−1, xt) + bC) (2-9)

Ct = ft × Ct−1 + it × C̄t (2-10)

ht = ot × tanh(C̄t) (2-11)

The LSTM state is calculated considering an input gate which defines how much of the new

state for the current input is getting through (it); and propagates it through output gate

which defines how much of the internal state will be exposed (ot); taking into account an ad-

ditional forget gate (ft) which determines how much past information from new state must be

preserved during learning stage. It is notable to remark than equations 2-6, 2-7 and 2-8 have

the same structure, however the weight parameters change corresponding to its respective

gate (Wi,Wf and Wo). Additionally, these networks make use of the sigmoid function which

squashes the parametric values between 0 and 1 (to avoid gradient vanishing), and the regu-

larization of gradient growing by introducing a parameter to determine the maximum value



2.4 Deep Learning Basics 21

of gradients (gradient clipping). In figure 2-3 is shown a general architecture for a LSTM cell.

The C̄t in equation 2-9 is the update state which is estimated based on the current input and

the previous state. The update rule is based on the classical recurrent unit, so the redundant

analysis is preserved. The Ct in equation 2-10 is the internal memory parameter of the cell.

It computes how much combination will happen between the forget gate (considering the

previous state) and the new input (considering the updated state). Finally, the output sta-

te (ht) 2-11 in equation is calculated considering the output gate and the memory parameter.

2.4.4. Gated Recurrent Units (GRU Cells)

A modification of LSTM cells is the gated recurrent unit (GRU) [79]. This change introduces

a combination of the forget and input gates (called the reset gate) to determine how much

of the new input will be preserved according to the internal memory; and a new update gate

which determines how much of the previous state must be updated according to the new

state. This modification of the reset gate (rt) and the update gate (zt) make the GRU cells

have fewer parameters in comparison with LSTM since they do not have a internal memory

which is implicit in the reset gate. Additionally, the implicit internal memory allows the sys-

tem to bypass signals across several time steps, which makes back propagation easier than

in LSTMs. It is notable to remark that GRU cells do not have output gate, nevertheless

the output state is exposed without squashing values as the LSTM. In figure 2-4 is shown

a general architecture for a GRU unit. The reset gate (rt), update gate (zt), update state

(h̄tb) and output state (ht) for the GRU cell are calculated as shown in equations 2-12, 2-13,

2-14 and 2-15 respectively.

rt = σ(Wr · [ht−1, xt]) (2-12)

zt = σ(Wz · [ht−1, xt]) (2-13)

h̄t = tanh(W · [ht−1 × rt, xt]) (2-14)

ht = (1− zt)× ht−1 + zt × h̄t (2-15)

2.4.5. Adam Optimizer for parameter tuning

The stochastic gradient-descent based algorithm named Adaptive Moment Estimation (Adam)

optimizer [80] is a momentum based learning algorithm (using mean and variance). Its main

feature is the allowing of single parameter tuning (such as Adagrad [81] and RMSprop [82])

considering gradients initialization and small decaying rates. These conditions significantly

improve parameters optimization to increase accuracy and to avoid divergence during the

training stage. Adam moment estimation and optimization rules are described by the equa-

tions (2-16), (2-17) and (2-18) respectively, in which the optimal constant values suggested
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Figure 2-4: Architecture for GRU units.

for the authors (used in this work) are β1 = 0,9, β2 = 0,999, α = 0,001, ε = 10−8 (being α =

Learning rate) during training.

mt = β1mt−1 + (1− β1)gt (2-16)

vt = β2vt−1 + (1− β2)g2t (2-17)

θt+1 = θt −
α

√
vt + ε

mt (2-18)



3 Classification Models Based on

Unimodal Information Analysis

In state of the art review, emotion recognition has been approached using several information

sources, such as images ([83, 84]), physiological signals ([85, 86]), speech signals ([87, 88]),

and thermography ([89, 90]), among others data modalities (such as facial patterns analysis,

body pattern analysis, electroencephalography signal alterations, electrocardiography signals

changes, body temperature changes, speech and vocalization variations, among others). For

each modality, several works have proposed techniques to recognize emotions from single

data sources described above, obtaining results that have not achieved enough performance

to completely solve the emotion recognition problem. According to each kind of data, seve-

ral works have proposed techniques to recognize affective content from unimodal information.

In this chapter, the unimodal analysis of video and speech (which are included into most

widely explored modalities in the state of the art) will be addressed. A general scheme of the

proposed unimodal analysis is shown in figure 3-1. For each proposal, it can be seen that

the first stage includes a preprocessing according to each data modality (which could be

significantly different for its provenance), the second stage consists of a data augmentation

technique, the third consist of feature extraction from samples, and the fourth stage involves

the Deep Learning strategy. The unimodal analysis will be considered to accomplish the

objective 1 of this work, consisting of establish a baseline for comparing performance with

multimodal emotion classification.

3.1. Emotion Classification Based on Audio Signals

Due to main characteristics of temporal audio signals, a classification stage for non-stationary

data should be achieved in order to extract patterns depending on the emotion while it is

expressed. The main problem of temporal analysis of signals is the dynamic treatment for

correctly describing the changes of data. In this sense, several works have been proposed

with the aim of extracting efficient characteristics for describing dynamic changes of signals.

Some of these works, are specifically focused on signal features for emotion recognition. In

this section, we will proposed an audio emotion recognition system with temporal analysis

and characterization; as well as a classification model using Deep Learning techniques. The
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Figure 3-1: General scheme of unimodal strategies proposed in this chapter

general structure of the audio emotion recognition proposal is shown in figure 3-2.

3.1.1. Data augmentation

Deep learning strategies have shown promising results in several applications, however one

of its limitation lies in the amount of required data to achieve generalization when training

the models. To solve this issue, and improve the learning capabilities of the models, a data

augmentation strategy is used. The augmentation consist in separating every audio sample

and extracting overlapping windows (subsamples) of data with specific sizes. In this case, the

subsamples will be considered as independent inputs with its corresponding label (according

to its respective sample) during the training stage. As a consequence of this augmentation,

the predictions for the testing stage will also be overlapping windows. Nevertheless, the

predictions for the full sample in the testing stage will be a weighted combination of the

predicted values in all windows for the sample. The weighted combination is better described

in 3.3.2. The specific values for the size (2 seconds) and overlap (0,9) are selected, taking

into account the minimum amount of data required to identify a significant variance in

the expression of emotions under real circumstances (≈ 500ms for audio samples, and ≈
1,5 seconds for facial expressions). These parameters are invariant for all the experiments

performed in this work.

3.1.2. Feature Extraction

Due to the main characteristic of signals, which is data changes across time; a temporal

modeling of data was considered as processing and feature extraction stage, as proposed

in [91]. In this case, each subsample extracted after data augmentation is processed by the

OpenSmile extractor [92], which generates a vector of 1582 low-level features, corresponding

to the well known INTERSPEECH 2010 Paralinguistic challenge features [93]. The INTERS-

PEECH 2010 features are a set of descriptors especially estimated to extract the emotional

content from utterances. As they have been widely used in the state of the art, these des-

criptors are designed, not only to extract linguistic information from audio signals but also

identify non-verbal patterns which could tell an emotion in order to improve performance.
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Figure 3-2: Architecture of the model for audio emotion classification

Additionally, the use of these descriptors is considered to reduce the amount of parameters

in the network, which directly reduces computational cost.

The 1582 extracted features correspond to a set of 34 low-level descriptors (LLDs), with its

corresponding delta coefficients namely: loudness raised to a power of 0,3; Mel Frequency

Cepstral coefficients (MFCCs), logarithmic power of Mel-frequency bands, 8 line spectral

pair frequencies from 8 linear prediction coding (LPC) coefficients, envelope of fundamental

frequency contour, voicing probability of fundamental frequency, maximum and minimum

value absolute positions, contour mean, slope of the contour linear approximation and, offset

of the contour linear approximation. Besides, a set of 21 functionals were applied to 68

LLDs (1428), and 19 additional functionals were applied to the 4 pitch-based LLDs (152),

such as standard deviation of the values in the contour, skewness, kurtosis, the smoothed

fundamental frequency contour, among others. In table 3-1 are shown features obtained using

the OpenSmile toolkit. The full description of those features can be found in OpenSmile on

line documentation [92].

3.1.3. Deep Learning Model for Classifying Audio Signals

Modeling of signal characteristics was performed by a deep learning strategy with encoding

instances; i.e. a convolutional encoder-based neural network. Every encoder unit is a structu-

re included in a neural network, that use convolution operations to encode inputs for creating
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Descriptor Functional

PCM loudness Max/Min (position)

Mel Freq Cepstral

Coefficients [0-14]
Arith, mean, std dev

Log. Mel Freq.

Band [0-7]
Skewness, kurtosis

LSP [0-7] Lin. regression slope, offset

F0 sub-harmonics Lin.regression error

F0 envelope Quartile 1/2/3

Voicing prob. Quartile range 2-1/3-2/3-1

Jitter local Percentile 1/99

Jitter DDP Percentile range 99-1

Shimmer local Up-level time 75/90

Table 3-1: INTERSPEECH challenge 2010 descriptors and functionals extracted with the

OpenSmile toolbox. LSP = Linear spectral pairs, DDP = Double delta of jitter

a higher-level nonlinear combination of the audio data. In this way, we preserve the most

relevant patterns from a chain of events in the audio data. The encoding network implemen-

tation allows to determine an output sequence according to an input in the network, and

the structure of the units allows to store information from the context of each sample.

The proposed network is composed of multiple convolutional encoding layers which allow

to encode the inputs as a combination of the components using convolutions. With the

convolution, we can take advantage of the operation to express the inputs as the combination

of multiple values, in order to create a higher level model for recognizing emotions. The

convolution for the input (f(x)) with a filter (h(x)) is described in the equation (2-1).

Additionally, each convolutional encoder unit is composed of a convolutional layer, a max-

pooling layer and a fully connected layer. We use different amount of convolutional encoder

layers (3, 4, 5, 6) before selecting the amount obtaining the best performance. Besides, a fully

connected network is included to perform classification between the six emotions. A complete

description of the model and the composition of a single convolutional encoder is shown in

figure 3-3.

3.2. Emotion Classification Based on Video Analysis

Unimodal processing systems for emotion recognition have taken as one of main options the

image processing techniques in order to identify patterns which make possible differentiation

between emotions. With this aim, the objective of proposing an unimodal video processing
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Figure 3-3: Structure of single convolutional encoder

strategy look for the detection and analysis of local patterns in images for characteristic ex-

pressions when emotions are expressed. With this aim, there have been works where frame to

frame characterization in video processing has been considered for emotion recognition ob-

taining promising results. However, this strategy is highly expensive in computational terms

for real life implementations. Additionally, this strategy does not consider image sequence

modeling which is an important concept as information source in video. In figure 3-4 is

denoted the strategy we used for emotion recognition in video.

3.2.1. Video preprocessing and data augmentation

According to previous works in the state of the art, in which video processing was approa-

ched with frame-to-frame strategies (missing temporary modeling), it was decided to use a

framework where dynamic characterization of facial expressions is considered, through the

analysis of short time periods from the videos. This conveniently contributes to the data

augmentation strategy for improve models. First, all video frames are converted to gray-

scale, and are processed using face detection algorithm (Viola and Jones) [94]. This is used

to discard all irrelevant information from frames, such as background, body parts, among

others. Then, the faces extracted across the video are separated, labeled and predicted using

parallel frame-samples as overlapping windows extracted from a short period of time, such

as described in 3.1.1. Besides, for comparative purposes, the timestamps of video subsamples

are completely synchronized with audio subsamples. This means that training and testing

stages will have same information from samples to fit and predict. With this approach, the

spatial information along with temporary sequences of fix duration from frames across the

video is preserved to train the model.

3.2.2. Deep Learning Model for Classifying Video Data

In order to propose a model which can model spatial and temporal data from samples descri-

bed in subsection 3.2.1, a Deep Learning architecture is proposed, combining convolutional
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Figure 3-4: Spatio-temporal network model for video emotion classification

layers (for spatial information analysis) and Recurrent units (for temporal modeling of data).

The convolutional layers allow to extract spatial features from every sample. From the way

the samples are organized (described in subsection 3.2.1), convolutions will learn the main

patterns of movements across the frames when emotions are expressed, and propagate them

through the network layers. The convolutional network contains 3 convolutional layers with

32, 64 and 128 filters with size 3× 3, full padding and stride size of 2× 2. The selected acti-

vation function for the convolutional layer is the rectified linear units (ReLU) [95] in order

to maximize extraction of spatial information in the network units during training stage.

Several works in the state of the art demonstrates more expressive models using ReLU units

than classical activation function ([96, 97]).

After the convolutional network, a single dense recurrent layer for modeling time dimension

of video frames is included. With this aim, the spatial information extracted from convolu-

tional layers is considered in order to model patterns of movements as sequence of temporal

data which change across the time. To accomplish this task, a gated recurrent unit (GRU



3.3 The Database and Performance Metrics 29

cells) layer is included to model temporal dimensions in the spatial characteristics. The GRU

cells are used over Long-Short Term Memory units (LSTM cells - widely used in sequential

models [77]) due to their modular flow of information inside the unit, without having sepa-

rate memory cells. This characteristic makes the GRU cell computationally more efficient

compared to LSTM. Besides, they avoid vanishing gradient problem since the cell bypass

multiple time steps, allowing the error to back-propagate easily [98]. The dense GRU layer

contains 128 units with backwards sequence processing (this means the cell take the sequence

backwards and then, reverse the output again), and a gradient clipping of 1 (to minimize

computational cost) and a dropout regularization to avoid overfitting.

Finally, after spatio-temporal modeling described in previous layers, a multilayer perceptron

(MLP) is implemented to perform classification task. In this sense, the MLP is composed

by 4 layers, with 256, 128, 64 and 32 units each, including a ReLU activation function. The

output layer contains the number of 6 emotions, with a softmax activation function, in order

to create a probabilistic density function of classes. The proposed approach is graphically

described in figure 3-4; where is shown the proposal of the network architecture for the Deep

Learning strategy.

3.3. The Database and Performance Metrics

In this section will be described the database, the prediction model and the performance

metrics used to evaluate the proposed experiments. These criteria will be considered as well

for comparison purposes with previous works in the state of the art.

3.3.1. The eNTERFACE’05 database

The eNTERFACE’05 database is free and online available bimodal emotion dataset proposed

in [99], labeled considering the Ekman emotional model. The database contains information

from audio (speech modality) and videos (facial expression modality) in English language

concerning 42 different actors coming from 14 different countries in which 19 % are women

and 81 % are men. During data acquisition stage, people were asked to express emotions th-

rough facial movement and specific sentences (5 sentences) for six different emotions (anger,

fear, disgust, happiness, surprise and sadness). It in total gathers 1230 samples, correspon-

ding to 5 videos (one per emotion) where 42 people said the sentences (one sentence per

video) and expressed 6 different emotions. The videos for the dataset were taken using a

30fps camera, and the microphone sampling rate used was 48KHz. Figure 3-5 shows ran-

dom video and audio samples extracted from the eNTERFACE’05 database.
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Figure 3-5: Video and audio samples extracted from eNTERFACE database

To perform all the experiments, a gender-independent analysis for emotion recognition is

used. This is considered due to the database corpora which is considerably unbalanced with

respect to gender (19 % are women and 81 % are men). Additionally, 4 more subjects were

not considered, due to lack of files in the database. Besides, the authors of the database

evaluated the emotional content of every video to ensure that every sample contains the

emotional content it was intended to express. However, they suggested that several subjects

were not determined to express the expected emotional content they meant. These subjects

were considered to realize the experiments with the aim of increase generality of the model

by adding the lack of affective content. To summarize, a total of 40 subjects were taken

from the database, to which there were extracted 5635 samples (after data augmentation

described in 3.1.1 ) to perform all experiments. It is noteworthy to remark that the number

of samples could increase or decrease depending on the sampling size and the overlapping

parameters.

3.3.2. Gaussian weighted prediction

With the aim of increasing the performance validation of the network, a Gaussian weighted

prediction for the audio and video sequence is employed. It consists in assign a weight to

each prediction for the subsamples extracted after the data augmentation stage, according

to their specific order in the sequence of data before estimating an emotional content in the
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Figure 3-6: Gaussian weights distributions for subsamples extracted from a video.

whole sample. To the n extracted subsamples from a single utterance in the database after

data augmentation, a weight is assigned according to a Gaussian bell curve with a standard

deviation (σ) of 1. n weights are multiplied with n subsample predictions in every stage. This

allowed to assign more importance to predictions of subsamples extracted from the middle

of the sequence (which obtained a weight assignation near to 1) in comparison with the ones

extracted from the farthest segments in the sample (which obtained a weight assignation

near to 0). The Gaussian weights for n subsamples extracted from single utterance are cal-

culated as described in equation (3-1).

This assignation is considered since the maximum peak of emotion expressiveness is appro-

ximately achieved in the middle data of the utterance. Then, more importance should be

assigned to those subsamples in comparison with the ones from the start and end of the

complete sample. A graphical representation of the assignation of Gaussian weights for n

subsamples extracted from a single utterance is shown in figure 3-6.

w(n) = e−
1
2
(n
σ
)2 (3-1)

3.3.3. Performance metrics

To evaluate methods described before, a 5-fold cross validation algorithm is used. However,

the separation of fold samples is made according to the subjects; and not the total number
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of samples. This means that each fold will contain the samples extracted from 8 subjects, no

matter the number of subsamples extracted after data augmentation. This evaluation model

(also known as Leave-One Subject Group) guarantees the subject-independence of the data

for validation, which is more similar to realistic scenarios.

From every trained model in the cross validation experiment, we obtained confusion matrices

(comparing correct predicted emotions per class with amount of samples per class) and

overall accuracy (comparing correct predicted emotions with amount of samples). Overall

accuracy corresponding to the mean value of all folds was estimated according to equation

(3-2).

Overall Accuracy =

folds∑
i=1

(
Correct predicted samples (hits)

Amount of samples
) (3-2)

3.4. Results

In this section, we are willing to describe obtained results for models proposed above.

3.4.1. Audio-based emotion classification experiment

The proposed model for emotion classification, several experiment were evaluated, varying

the number of convolutional encoders (3, 4, 5, 6) with same number of units (64 and 32

units pairwise subsequently). The results of these experimentations is shown in table 3-2,

in which the model with best performance is selected, in order to report best results. The

model consists of 3 convolutional encoder layers, containing 64, 32, and 64 1D convolutional

filters and same number of units per layer. Each encoding layer contains a filter size of 3,

stride 2, full padding, max-pooling layer with pooling area 2 and ReLU activation function.

After encoding layers, a MLP is used to perform classification task, in which 2 layers are

used containing 384 ReLU units each. Additionally, to avoid overfitting, a dropout function

before the output layer with 0,5 regularization value was included.

Number of

Convolutional Encoders

Recognition

rate

3 0.54

4 0.48

5 0.41

6 0.38

Table 3-2: Performance comparison of multiple convolutional encoder layers.
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Emotion
Predictions

Anger Disgust Fear Happiness Sadness Surprise

Anger 0.492 0.107 0.040 0.061 0.050 0.000

Disgust 0.127 0.536 0.120, 0.061 0.100 0.071

Fear 0.159 0.071 0.680 0.030 0.000 0.143

Happiness 0.063 0.036 0.040 0.515 0.100 0.143

Sadness 0.063 0.143 0.080 0.061 0.650 0.179

Surprise 0.095 0.107 0.040 0.273 0.100 0.464

Table 3-3: Confusion Matrix for audio emotion recognition.

Strategy
Recognition

rate

Datcu et al. [100] 0.559

Huang et al.[101] 0.523

Audio classification (our) 0.547

Table 3-4: Performance comparison of audio strategies with previous works

Table 3-3 shows the results obtained for the model in the classification task, with an ove-

rall accuracy of 0,54. For the audio emotion recognition, Fear (0,680) and Sadness (0,650)

obtained similar results. It is notable to remark that Fear scored similar confusion rates to

Anger (0,159) and Surprise (0,143) and Sadness scored similar confusion rates to Disgust

(0,143) and Surprise (0,179). On the other hand, Surprise (0,464) obtained lower results,

achieving high confusion rate with Happiness of 0,273. Additionally, Surprise obtained the

highest confusion scores in comparison with other emotions. On the other hand, table 3-4

shows the comparative results of the audio recognition model with other found in the state

of the art. It is important to remark that the comparison criteria is the experimental fra-

mework; in which the use of LOGSO validation and the same database was considered. The

comparative results portray that the proposed model is compatible with methods used in

the state of the art.

3.4.2. Video-based emotion classification experiment

The convolutional network contains 3 convolutional layers with 32, 64 and 128 filters with

size 3× 3, full padding and stride size of 2× 2 with ReLU units. Then, a dense GRU layer

contains 128 units with backwards sequence processing with a gradient clipping of 1 (to

minimize computational cost) and a dropout regularization of 0,5 to avoid overfitting. Fi-

nally, after spatio-temporal modeling described previously, a multilayer perceptron (MLP)

is implemented to perform classification. In this sense, the MLP is composed by 4 layers,
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with 256, 128, 64 and 32 units each, including a ReLU activation functions.

Table 3-5 shows the results obtained for the model, which achieved an overall accuracy of

0,46; obtaining highest accuracy rates in Disgust (0,594). However, it is along with Anger, the

one obtaining the highest confusion rates compared with the other emotions. On the other

hand, the Fear (0,282) obtained the lowest results from the rest of the emotions; comparable

with its confusion rate with Disgust (0,230) and Surprise (0,205). Besides, table 3-6 shows

a comparison between the results obtained from the video recognition model with previous

ones find in the literature. The comparison criteria is the experimental framework; in which

the use of LOGSO validation and the same database was considered.

Emotion
Predictions

Anger Disgust Fear Happiness Sadness Surprise

Anger 0.522 0.204 0.136 0.0 0.090 0.045

Disgust 0.108 0.594 0.108 0.027 0.135 0.027

Fear 0.153 0.230 0.282 0.076 0.051 0.205

Happiness 0.157 0.157 0.052 0.5 0.052 0.078

Sadness 0.162 0.135 0.162 0.0 0.459 0.081

Surprise 0.114 0.057 0.257 0.01 0.2 0.371

Table 3-5: Confusion Matrix for video emotion recognition.

Strategy
Recognition

rate

Datcu et al. [100] 0.377

Huang et al.[101] 0.564

Video classification (ours) 0.468

Table 3-6: Performance comparison of video strategy with previous works.



4 Classification Models Based on

Multimodal Information Fusion

The emotion recognition task performed in previous works from unimodal perspectives.

However, the combination of multiple data sources could increase performance to achieve re-

cognition rates from data correlations. With the aim of comparing the results obtained in the

baseline stage in chapter 3; in which unimodal perspective is performed, in this chapter we

will describe the emotion recognition from both, video and speech modalities together, using

Deep Learning strategies. The deep learning based unimodal processing stages described

in the previous chapter are used as baselines to compare against the proposed multimodal

information models. The two multimodal models aim to address the problems described in

objectives 2 and 3 of chapter 1, corresponding to both data representation in a similar space

and classification according to previous representation. To achieve this, each characterization

will use the same kind of layers (Convolutional), with the aim of obtain similar abstract pat-

terns from the response of filters to input data. This will guarantee a similarity among the

representation of different data modalities before fusion. The first model fuses information at

the decision level and the second model fuses information at the features level. This chapter

describes both architectures and compares performance.

4.1. Deep Learning based classification model for decision

fusion

To fuse multimodal information from audio and video, we used similar strategies proposed

in previous chapters, i.e., based on deep learning architectures. Thus, similar to what we des-

cribed in section 3.1 from chapter 3; for the audio signals we use convolutional encoders as

in previous architecture. Additionally, we propose an MLP for achieving a higher abstractive

representation of the characterization task. Consequently, similar as we described in section

3.2 from same chapter; for video characterization, we proposed a spatio-temporal modeling

involving convolutional and recurrent layers.

After characterization stage using Deep Learning, we proposed an additional stage in order

to combine both results of characterization. At first, we concatenate features obtained by
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Figure 4-1: General scheme for the multimodal information fusion at decision level

video and audio; then, we use MLP layers for encoding representations obtained for both

kinds of data.

The selected amount of layers for the MLP depend on how deep the representations will en-

code the features. This means that as many layers as the MLP has, they will encode features

from both data types, relating them in the same space, before performing the classification

task. In figure 4-1 is shown an example of structure for the classification model of multimo-

dal information at decision level.

In this case, the model for classification using the strategy fusion, consists of separated in-

puts for each data source (audio and video). The audio input is connected to an encoder

containing 3 layers with similar number of units (32, 64 and 32), with the aim of obtaining

a higher abstract representation of the data from audio signals. Parallel, another input for

video is placed in the network for handle spatio-temporal representations. The network is

composed by 3 convolutional layers; the first one contains 32 filters, the second one with

64 and the third one with 128. All layers uses 3 × 3 kernel sizes, stride size of 2 × 2, full

padding and ReLU activation functions. Additionally, with the purpose of concatenating

both Deep Learning representations, a flatten layer must be included in order to make both

layers outputs to be computationally compatible.

The concatenated layers are then connected to a 4 layer MLP, including “bottlenecks” with

the purpose of achieving higher encoding capabilities. In this way, it is considered to use

one in the second layer, being then 64, 128, 64 and 32 units from 1st to 4th layers, conse-

cutively. As it was mentioned before, the layers of the MLP will allow to encode features

from both video and audio representations into a same space which let us separate emotions.

Besides, to avoid overfitting during classification stage for the characterization task, several

dropout layers were included (after video, audio characterization and before output) with

0,2 probability of dropping units. Finally, the output layer contains 6 units (number of pre-

dicted emotions) consecutively, applying softmax to establish probabilistic density function
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Figure 4-2: Multimodal decision fusion strategy using Deep Learning

of classes. Also, the selected optimizer was Adaptive Moment Estimation (Adam) due to the

parameter considerations of the algorithm to avoid divergence and maximizing performan-

ce. The full proposed architecture for emotion recognition with decision fusion is shown in

Figure 4-2.
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Figure 4-3: General scheme for the multimodal information fusion at characteristic level

4.2. Deep Learning based classification model for

characteristic fusion

Additionally to the multimodal fusion model described above, it was considered as well the

implementation of a similar strategies with characteristic fusion approach for comparative

purposes. However, in this case is required to encode the incoming data using set of layers

to relate the data from different kinds of information. The proposed model consists of using

parallel architectures for each type of data (audio and video); then introduce a first layer for

each independent architecture to encode features obtained and a second layer to encode the

representation obtained by one architecture with the other one. The output of the two set of

layers will continue feeding the characterization architecture, which prioritize the same data

input but considering characterization of the other model.

Finally, the output of this characterization will be connected to an MLP to perform clas-

sification task. As it was mention in the subsection 4.1, the selected number of layers for

the MLP depend on how deep the representations will encode the related features. In figure

4-3 is shown a scheme of structure for the classification model of multimodal information at

characteristic fusion level.

The model for classification using the fusion strategy consists of separated inputs for each

data type (audio and video). The audio input is connected to a convolutional network con-

sisting of one 1D convolutional layer with 64 filters of size 3, stride of 2, full padding and

ReLU activation function. Additionally, a max-pooling layer with pooling area and stride

of 2 is used, along with a fully connected layer with same number of units and activation

function (64 units and ReLU, consecutively). This combination of layers is considered as a

convolutional encoder. Differently from proposed models described above, the convolutional

encoders are employed in this model due to the intrinsic relation of the mathematical opera-

tion (convolution) to extract similar patterns from video and audio; allowing to relate them

in a similar dimensional space to perform classification.

Parallel to audio architecture, another convolutional encoder is employed for video data, in
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Figure 4-4: Relational block to combine extract video and audio features

which the 2D convolutional layer (given input of gray scale images) use 64 filters of size

3× 3, stride of 2× 2, full padding and ReLU activation function. Besides, the max-pooling

layer uses pooling area and stride of 2× 2, and the fully connected layer with same number

of units and activation function (64 units and ReLU, consecutively).

After the first block of convolutional encoders for each architecture, a set of two blocks of la-

yers is connected. The purpose of these layers is to relate the information from an architecture

with the information of the other across epochs during the training stage. Each set of layers

is considered as the relational block of layers. Thus, the first layer of the relational block for

the audio architecture takes as input the characterization obtained from its respective con-

volutional encoder, plus the concatenated output of the convolutional encoder for video; and

same for the video architecture. These inputs of the relational blocks are connected to a full

connected layer, which is the output of the block. Then, the previous output for each block is

connected to the corresponding video/audio convolutional encoder architecture. A graphical

representation of relational block is shown in Figure 4-4. In case of the proposed model, the

first relational block contains 128 and 256 ReLU units in first and second layer consecuti-

vely, for both architectures. The idea of including same number of units each relational block

come from the purpose of give equal importance to both output relation in the architectures.

Subsequently, 2 additional combination of these blocks (convolutional encoder and relational

blocks) are used to increase the depth of the network to get higher abstract representations.
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Figure 4-5: Multimodal characteristic fusion strategy using Deep Learning

For the audio processing architecture, a first convolutional encoder is set with 64 filters of

size of 3, stride of 2, full padding and ReLU activation function; max-pooling with 2 pool size

and fully connected layer of 64 ReLU units. For video, the convolutional encoder is set with

32 filters of size of 3, stride of 2, full padding and ReLU activation function; max-pooling

with 2 pool size and fully connected layer of 32 ReLU units. After this stage, other relational

block is included to combine abstract data from the network. The second relational unit is

set with 64 and 128 ReLU units from first an second layer in both architectures.

Finally, a third combination of these blocks is used. This time, the audio convolutional

encoder is set with 32 filters of size of 3, stride of 2, full padding and ReLU activation function;

max-pooling with 2 pool size and fully connected layer of 32 ReLU units. On the other hand,

the video convolutional encoder is set with 16 filters of size 3, stride of 2, full padding and

ReLU activation function; max-pooling with 2 pool size and fully connected layer of 16 ReLU

units. The output of this block is connected to a MLP with 3 layer containing 256 and 128

ReLU units respectively. From this point, two more experiments were carried out in which

amount of relational blocks is changed with the aim of evaluate the influence of the amount

of blocks in the network. As a consequence, it implies to increase the processing layers when

a relational block is included. However, the parameters of the additional relational blocks

are selected according to the third combination of previous layers described above. At the

end, the output of the MLP is a layer containing 6 softmax units concerning to the belonging

probability of an input sample to an emotional utterance. A full illustration of the network

is shown in Figure 4-5.



4.3 Results 41

4.3. Results

In this section are described the main results for both models described above. To eva-

luate the models, the metrics described in 3.3.3 are extracted. The main purpose of the

experiments is testing the performance of the multimodal models at decision level (through

classification architecture) and characteristic level (through relational block), in comparison

with unimodal strategies and previous works in the state of the art.

4.3.1. Multimodal decision fusion strategy

In table 4-1 are shown the results obtained for the model in the emotional task, obtaining

an overall accuracy of 0,62. The model obtained a recognition rate for Anger (0,795) and

Happiness (0,842). This could be caused for the duality of the emotional content of them

(negative / positive) which could be physically manifested in significantly different ways. On

the other hand, emotions such as Disgust (0,432) and Fear (0,461) obtained lower results;

where it is noteworthy to remark that highest confusion occurred with Happiness and An-

ger respectively. This could mean that the algorithm cluster the most significantly different

emotions (Anger / Happiness) and then, adjust parameters for other emotions. Additionally,

it is also notable that Surprise has a significant difference among its confusions, in which the

highest peak is Fear (0,171). The reason of this could lay in the similarities in the manifes-

tation of the emotions when they are expressed.

Emotion
Predictions

Anger Disgust Fear Happiness Sadness Surprise

Anger 0.795 0.045 0.022 0.090 0.0 0.045

Disgust 0.189 0.432 0.027 0.189 0.027 0.135

Fear 0 .076 0.025 0.461 0.102 0.102 0.230

Happiness 0.078 0.026 0.0 0.842 0.0 0.052

Sadness 0.054 0.081 0.162 0.027 0.513 0.162

Surprise 0.085 0.0 0.171 0.085 0.085 0.571

Table 4-1: Confusion Matrix for emotion classification using multimodal decision

4.3.2. Multimodal characteristic fusion strategy

Before the experimentation for the fusion of the data using the relational block, it was conduc-

ted an experiment to determine the amount of relational blocks to obtain best performance

results. In this sense, there were evaluated, in terms of the amount of blocks shown in table
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Number of

Relational blocks

Recognition

rate

2 0.44

3 0.64

4 0.58

5 0.47

Table 4-2: Performance comparison of multiple relational blocks

Emotion
Predictions

Anger Disgust Fear Happiness Sadness Surprise

Anger 0.795 0.068 0.068 0.022 0.045 0.0

Disgust 0.027 0.783 0.054 0.081 0.027 0.027

Fear 0 .102 0.153 0.564 0.0 0.153 0.025

Happiness 0.078 0.157 0.026 0.657 0.0 0.078

Sadness 0.108 0.027 0.297 0.0 0.540 0.027

Surprise 0.085 0.114 0.142 0.028 0.2 0.428

Table 4-3: Confusion Matrix for emotion classification using multimodal characteristic

fusion

, in which the model containing 3 relational blocks obtained best results. It is noteworthy to

remark that no more experiments were performed due to hardware limitations (storage and

processing). In table 4-3 are shown the results obtained for the model, achieving an overall

accuracy of 0,64. In the case of this model, Anger (0,795) and Disgust (0,783) obtained hig-

hest performances. Besides, Happiness obtained a similar result (0,657) with low confusion

rate except for Disgust, in which obtain a considerable rate (0,157). Other emotions such

as Fear (0,564) and Sadness (0,540) obtained similar results, however, both confusion peaks

correspond to the emotions Disgust and Fear respectively. On the other hand, the Surprise

(0,428) obtained lowest results and high confusion rate with Disgust and Fear (0,11 and 0,14,

respectively). This confusion is individual, since next lowest performance is Surprise (0,428)

and there is a notable difference (0,112).

In table 4-4 are shown the comparison among the strategies proposed in this work. The

results show that the combination of both modalities at characteristic fusion level outper-

forms other experiments to accomplish emotion recognition task. Additionally, table 4-5

compares this work with other state of the art strategies. The selection criteria for the com-

parison with previous works was the use of the same experimentation model for emotion

recognition. For example, in [102] is presented a model for speech emotion recognition using

a Deep Learning model. The work takes advantage of a pre-trained model to improve per-
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Strategy
Recognition

rate

Unimodal Audio

emotion
0.54

Unimodal Video

emotion
0.46

Multimodal

decision fusion
0.62

Multimodal

Characteristic fusion
0.64

Table 4-4: Performance comparison between Proposed strategies.

Strategy
Recognition

rate

Datcu et al. [100] 0.563

Huang et al.[101] 0.611

Decision fusion (our) 0.62

Characteristic fusion (our) 0.64

Table 4-5: Performance comparison between Proposed strategies.

formance of the network taking the information of Mel spectrogram extracted from audio

signals in a convolutional model to perform classification. However, they can not be compa-

red with the proposed techniques since they only use speech data to validate their models;

for the data augmentation strategy which increases significantly the amount of samples,

the Gaussian weighting in subsamples in the data augmentation strategy and the LOSGO

validation technique. Besides, they take advantage of transfer learning properties, which is

proposed in the future works section below. On the other hand, the experimentation shows

that the use of LOSGO experimentation is a more promising validation strategy to guarantee

subject-independence in more realistic scenarios; compared with traditional cross validation

strategies, in which authors have also obtained relevant results ([103, 104, 105]). However, the

use of the implementation in this work have shown promising results facing implementation

of these models in real life scenarios. Besides, other advantage lies in the extensible capa-

bilities of the model to include more multimodal information for data fusion. Additionally,

preliminary experimentations to improve performance have been realized during the deve-

lopment of this work, despite rigorous studies could outperform results obtained in this work.

Despite the advantages shown previously, one of the drawback of the model lies in the

amount of optimizing parameters, since it becomes a high dimensional parameter optimi-
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zation to be considered to outperform results. This characteristic will require the use of

complex computational problems to perform an effective search of parameters to increase

results. Additionally, it will probably require a bias in the searching space to reduce the

complexity of the problem for achieving implementation. Besides, other limitation lies in

the merge layer included for each fusion model, previous to classification stage. The layer

is based in a concatenation between the extracted audio and video representations, since it

could bias the representation for the classification stage. However, in this case the drawback

could be improved by implementing a similar relational block specially designed to apply a

more effective merging. Despite these factors, the model could outperform results presented

in this work to achieve higher robustness in comparison with previous strategies presented,

by including an optimization stage or increasing the depth of the network. However, this will

increase the computational complexity that should be considered.

On the other hand, a recent work have been found in the state of the art ([106]) in which

an emotional model have been proposed. The proposed model have achieved a maximum

accuracy in the multimodal fusion of 0,8597; however, the main difference of this work lies

in the initialization of the network. They used a transfered learning for increase the perfor-

mance the model; in which their networks are initialized using pre-trained models without

fine tuning. This result is supported from the reported evaluation of the feature extraction

using pre-trained models, in which they report 0,5435 and 0,7808 in audio and visual cha-

racterization respectively. The proposal for evaluation of pre-trained model is mentioned in

section Considerations and Future works (5.2), despite it is currently in evaluation with our

models.



5 Discussion, Conclusions and Future

works

5.1. Discussion and conclusions

In this work, a Deep Learning model for emotion recognition using multimodal information

fusion is proposed. Along the chapters of this work are proposed several strategies in which

unimodal information is evaluated using audio and video data separately, and multimodal

information fusion at decision level (after previous characterization) and characteristics level

(combining video and audio features). The proposed approaches took from the well-known

eNTERFACE’05 database a single sample and extracted video frames and audio; then a

preprocessing stage is introduced in both cases. For audio samples, a first INTERSPEECH

2010 Paralinguistic challenge features extraction stage is proposed using the software OpenS-

MILE. On the other hand, for video frames, a Viola-Jones algorithm is used to extract facial

regions of participants in the video along every frame. It is important to remark than the

preprocessing stage in both cases was considered with the aim of reducing dimensionality

of data to decrease computational resources. Additionally, for avoiding overfitting given the

limitation of samples in the database, a data augmentation strategy is used by extracting

several windows of data with an specific overlapping. The preprocessed audio and video data

is then the input of the proposed strategies, which were evaluated using a 5-fold cross valida-

tion algorithm, extracting the overall accuracy from every video/audio samples by assigning

a prediction to each window, and giving a Gaussian weight according to the position of the

window in the sample.

However, there are several points which influence the performance of the algorithm, such

as the data augmentation strategy. In our case, a 2 second window with a 0,9 overlapping

was used, however, the window and the overlapping size are parameters with high impact

in the learning model, since a very big window could significantly decrease the amount of

samples, which may cause overfitting; other way to overlapping, which could generate loss in

the temporary continuity of the data; nevertheless, a short overlapping could not guarantee

the emotional content in all samples (silences, non-verbal expressions), generating confusion

in the data for the model. Both parameters could be optimized to find best values to maxi-

mize results. The data augmentation technique is an important aspect as we have show in

previous works [103, 105] in which we have proposed several models with and without data
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augmentation that show increase in performance when it is included.

On the other hand, the evaluation metrics are also influencing the presented results in the

way in which several authors make the cross validation without making any difference bet-

ween amount of samples over subjects. However, the proposal in this work uses a cross

validation per subjects in which it is separated the amount of samples per subjects ins-

tead of amount of individual samples. The metric is evaluated this way considering that

voice corpora of participants change between subjects, which bias the data to the model.

Additionally, this argument leads of thinking about a bias between gender (male - female)

in which our proposed works, we demonstrate that the model could obtain better result if

it is considered. However, in this work it is not evaluated due to the amount of samples

available for female participants (only 19 % of the total subjects). On the other hand, it is

important to remark that an evaluation for single subjects could increase the performance of

the model, giving the adaptation taking into account the corpora of the participant. Howe-

ver, the evaluation has not been performed due to computational limitations to fit the model.

Regarding to emotion recognition models, four strategies were proposed in this work: The

first and second concerning unimodal analysis using audio and video separately; the third and

four using multimodal information fusion at characteristic and decision levels. The proposed

multimodal models demonstrate that the combination of two data modalities outperform

the unimodal models in both cases. At this point, several conclusions are derived from this

work. First, the decision fusion modeling of temporal information using data windows take

advantage of implicit correlations during fine-tuning stage to outperform the results, since the

learning algorithm is based on parameter adapting according to each time step. However, the

model based on decision fusion makes a separate characterization of the data corpus of video

and audio, which intend to bias characterization, not in temporal dimension but in corpora

singularities (such as noise peaks or intense facial movements). This problem is addressed in

the fusion characteristic model, which adjust parameters according to a single kind of data,

but including blocks of layers to share tuning parameters with after each characterization.

The inclusion of these blocks increases performance, since the data corpus are share through

combination blocks to efficiently combine patterns obtained in both modalities. The results

of all experimentations shows that multimodal information fusion is more effective, compared

to unimodal approaches to achieve the recognition taks. Besides, the characteristic fusion

model outperform decision strategy in the same experimentation. Results in this work and

other in the state of the art (such as [102]) using this experimentation are promising for the

multimodal recognition problem; however, they can not be compared since relevant aspects

such as the data augmentation strategy and the Gaussian weighting for subsamples are

used in this work.. Nevertheless, this experimentation is considered to guarantee subject

independency and more reliability and suitable to realistic scenarios.

Finally, the experiments proposed in this work demonstrate the effectiveness of the multi-
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modal fusion to accomplish the emotion recognition task, using Deep Learning strategies at

different levels (characteristics and fusion) as it will be described below: Regarding to the first

specific objective .Establish a baseline of state-of-the art techniques for emotion recognition

based on unimodal analysis, using Deep Learning techniques”, a characterization strategy

for audio and video data, based on previous works in the state of the art was established. The

results of characterization research were the baseline of preprocessing stage (audio feature

extraction, face extraction and windowing strategy), before evaluate the models. According

to second specific objective ”Proposing a feature extraction strategy based on Deep Learning

approaches for multimodal data representation in a similar dimensional space”, two unimo-

dal strategies based on Deep Learning for emotion recognition were developed. In this sense,

each model included a classification stage to evaluate characterization according to state of

the art performance metrics. The results of these characterization are described in chapter

3. Regarding to third specific objective ”Proposing a Deep Learning strategy for emotion

recognition from multimodal information, using representation stage developed in specific

objective 2”; two multimodal information fusion models at decision and characteristics le-

vels were proposed. The model at decision level included two separate characterizations (for

audio and video) for later merging the outputs to perform classification task. On the other

hand, the model at characteristic fusion included combination blocks to fusion parameter

tuning during training stage, with the aim of combine both corpora data patterns obtained

in both modalities. The results of the multimodal information fusion models are described

in chapter 4.

According to fourth specific objective .Evaluate performance of emotion recognition proposed

strategy using public and available emotional databases with multimodal information”, all

the experiments and metrics were obtained using the eNTERFACE’05 database, and authors

ensure they were equivalent in all aspects (same set of data, time steps, weighting function

and labeling, among others). The metrics and experimental setup is described in section 3.3

Finally, the explanation of accomplishment of each specific object described above demons-

trate the fulfillment of the hypothesis described in section 1.3. Besides, other experimenta-

tions (such as different publications [103, 105, 104, 13]), parallel work (such as undergraduate

student projects) and related works ([107, 108]) has been developed based on the main objec-

tive of this proposal (see Appendix section). These experiments and attached works guarantee

the fulfillment of the proposed objectives and hypothesis in this document. However, several

considerations, sub-experiments and hypothesis for future work proposals have been derived

from the development of this work, and will be described in the subsection below 5.2.

5.2. Considerations and Future works

As several conclusions of this work have been arisen, similar future works are proposed. The

first is addressed to the evaluation of a different emotional model. It is important to remark

that this work evaluate the Ekman emotional model, which is based in the idea of discre-
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te emotions with significantly different construct; since the main purpose of this work was

focused in the development of a multimodal fusion information model taking advantage of

Deep Learning approaches. However, the evaluation of a different emotional model (such as

Plutchik Emotional model) could let us perform a comparative analysis between both mo-

dels for computational algorithms. Additionally, a different emotional model (such as Russell

circumflex model, positive activation-negative activation (PANA) or Pleasure, Arousal and

Dominance (PAD) model), nevertheless, the learning task would completely change since

these models are based on multidimensional continuous variables, transforming the classifi-

cation task into a regression problem.

On the other hand, several parameters for the augmentation data strategy are critical for the

performance of the model. An optimization study will be performed to find best parameters

for the window and the overlapping size, using different algorithms (such as particle swarm

optimization (PSO), Bayesian optimization (BO) or Random search). Gradient - based or

stochastic algorithms could be considered as well, nevertheless, the computational cost for

gradient computation and momentum estimation would have to be evaluated in order to

avoid increasing the order of growth in algorithms.

Additionally, several works in the state of the art suggest that initialization of weights in the

network is a important criteria to avoid divergence and increase generalization of the model.

The main problem of initialization lays in the amount of data, the computational cost and

time required to train a specific model. A shallow alternative could be fin in the usage of

a pre-trained model (such as GoogleNet or AlexNet), however, the amount of parameters

in the network would have to match, relieving flexibility for the model. The two proposal

concerning model parameter optimization lay on the usage of a pre-trained model which

include more randomly initialized parameters, and the usage of a large database to pre-train

our proposed model before performing emotion recognition task.

Another aspect to take into account, which had been already mentioned previously is the

gender dependence of subjects. Several works in the state of the art and previous works

[103, 104] show that the gender consideration for emotion recognition is a relevant aspect to

increase performance of the problem, since there are significantly differences between males

and females, concerning facial expressions and voice corpora. This problem was not consi-

dered in this work due to the amount of samples from female participants (19 %); however,

the usage of a larger database or the combination of various would let us perform an study

of the classification task for comparative purposes (gender - dependent vs gender - indepen-

dent). Additionally, another proposal consist in a single training model for one subject for

emotion recognition would be analyzed, with the aim of performing a study on the creation

of adaptive models for immersive environments to improve human - machine interactions.
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In: Botto-Tobar M., Esparza-Cruz N., León-Acurio J., Crespo-Torres N., Beltrán-Mora M.

(eds) Technology Trends.

Communications in Computer and Information Science, Springer, Cham. 2017.

Appendix 6: Automatic Face Recognition in Thermal

Images Using Deep Convolutional Neural Networks

Rubén D. Fonnegra and Andrés F. Cardona-Escobar and Andrés F. Pérez-Zapata and Gloria
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