Show simple item record

Caracterización in-situ de la concentración de 1-hexeno con un láser Helio-Neón en la presencia de catalizador sólido

dc.creatorLacayo, Juan Guillermo
dc.creatorLópez, Sebastian
dc.creatorSoto , David
dc.creatorMolina, Alejandro
dc.date2020-05-15
dc.date.accessioned2021-10-19T20:46:10Z
dc.date.available2021-10-19T20:46:10Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1528
dc.identifier10.22430/22565337.1528
dc.identifier.urihttp://hdl.handle.net/20.500.12622/5464
dc.descriptionThis study provides evidence that a helium-neon (He-Ne) laser operating in the Mid-infrared (MIR) at a wavelength of 3.39 μm can detect variations in 1-hexene concentration in the presence of a solid catalyst. The in-situ and online characterization of the concentration of 1-hexene, as an example of a hydrocarbon, is relevant to enhance the current understanding of the interaction between hydrodynamics and chemistry in different heterogeneous catalytic processes. We designed and built a laboratory-scale downer unit that enabled us to analyze heterogeneous catalytic reactions and provided optical access. The lab-scale reactor was 180-cm long, had an internal diameter of 1.3 cm, and was made of fused quartz to allow the passage of the laser beam. 1-hexene was carefully measured, vaporized, and fed into the reactor through two inlets located at an angle of 45 degrees from the vertical descendent flow and 70 cm below the input of a solid catalyst and a purge flow entraining N2. A system of five heaters, which can be moved in the vertical direction to allow the passage of the laser beam, guaranteed temperatures up to 823 K. Computational Fluid Dynamics (CFD) simulations of the hydrodynamics of the system indicated that a uniform temperature profile in the reaction section was reached after the catalyst and the feed mixed. The estimated catalyst to oil ratio and time on stream in the experiments were, respectively, 0.4 to 1.3 and 2 s. After a correction for laser power drift, the experimental results showed a linear response of the fractional transmission to the 1-hexene concentration that was independent of temperature in the 373 K–673 K range. Even in the presence of a catalyst, the absorption of 1-hexene at the MIR frequency of the laser was high enough to enable the detection of 1-hexene since the fractional absorption of the absorbing path length in these experiments was close to zero (0.013 m) and the 1-hexene concentrations were higher than 1.254 × 10-5 mol/cm3. This result demonstrated the ability of the laser system to measure the concentration of 1-hexene in the presence of a catalyst and indicates that it can be used to better decouple hydrodynamics from kinetics in heterogeneous catalytic processes.en-US
dc.descriptionSe presenta evidencia de que un láser de helio-neón (He-Ne), que opera en el infrarrojo medio (MIR) a una longitud de onda de 3.39 μm, puede detectar variaciones de la concentración de 1-hexeno en presencia de catalizador sólido. La caracterización in situ y en línea de la concentración de 1-hexeno, un ejemplo de hidrocarburo, es importante para mejorar el entendimiento de la interacción entre la química y la hidrodinámica en procesos de reacción heterogénea. En esta investigación, se diseñó y construyó una unidad downer a escala de laboratorio. El reactor tiene una longitud de 180 cm, un diámetro interno de 1.3 cm y fue fabricado en cuarzo fundido para permitir el paso del rayo láser. El 1-hexeno se dosificó, se vaporizó y se introdujo en el reactor a través de dos entradas ubicadas en un ángulo de 45 grados desde el flujo descendente vertical y 70 cm por debajo de la entrada de un catalizador (0.5 g / s) y un flujo de 0.55 lpm de purga de N2 de arrastre. Un sistema de cinco calentadores, que se puede desplazar en dirección vertical para permitir el paso del rayo láser, garantiza temperaturas de hasta 823 K. Simulaciones de dinámica de fluidos computacional (CFD) de la hidrodinámica del sistema muestra que se alcanza un perfil de temperatura uniforme en la sección de reacción luego de la mezcla del catalizador con la alimentación. La relación estimada de catalizador a aceite y el tiempo en la corriente en los experimentos fueron de 0.4 a 1.3 y 2 s, respectivamente. Después de la corrección de la variación de potencia del láser, los resultados experimentales mostraron una respuesta lineal de la transmisión fraccional con la concentración de 1-hexeno que era independiente de la temperatura en el rango de 373 K a 673 K. Incluso en presencia de catalizador, la absorción de 1-hexeno en la frecuencia del MIR del láser utilizado en los experimentos es lo suficientemente alta como para permitir la detección de 1-hexeno ya que la absorción fraccional es cercana a cero para la longitud del camino de absorción ( 0.013 m) de estos experimentos y concentraciones de 1-hexeno superiores a 1.254 × 10-5 mol/cm3. La configuración experimental permitió demostrar la capacidad del sistema láser para medir la concentración de 1-hexeno incluso en presencia de un catalizador. Esto indica que es posible su uso para distinguir mejor el efecto de la hidrodinámica de la cinética en procesos de catálisis heterogénea.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1528/1638
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1528/1673
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1528/1728
dc.relation/*ref*/H. Lasa and D. Kraemer, “Novel Techniques for FCC Catalyst Selection and Kinetic Modelling,” in Chemical Reactor Technology for Environmentally Safe Reactors and Products, Dordrecht: Springer Netherlands, 1992, pp. 71–131. https://doi.org/10.1007/978-94-011-2747-9_5
dc.relation/*ref*/C. I. C. Pinheiro et al., “Fluid Catalytic Cracking (FCC) Process Modeling, Simulation, and Control,” Ind. Eng. Chem. Res., vol. 51, no. 1, pp. 1–29, Nov. 2011. https://doi.org/10.1021/ie200743c
dc.relation/*ref*/R. Sadeghbeigi, Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units. Oxford, UK: Elsevier, 2012. Available: https://www.sciencedirect.com/book/9780123869654/fluid-catalytic-cracking-handbook
dc.relation/*ref*/H. Copete-López and S. Sánchez-Acevedo, “An Approach to Optimal Control of the Combustion System in a Reverberatory Furnace,” TecnoLógicas, no. 23, pp. 13–29, Dec. 2009. https://doi.org/10.22430/22565337.233
dc.relation/*ref*/R. Ríos, C. A. Ramos-Paja, and J. J. Espinosa, “A control system for reducing the hydrogen consumption of PEM fuel cells under parametric uncertainties,” TecnoLógicas, vol. 19, no. 37, pp. 45–59, Jun. 2016. https://doi.org/10.22430/22565337.59
dc.relation/*ref*/I. D. Ramírez-Rivas, “Anaerobic digestion modeling: from one to several bacterial populations,” TecnoLógicas, no. 31, pp. 181–201, Nov. 2013. https://doi.org/10.22430/22565337.117
dc.relation/*ref*/J. C. Briñez-De León, A. Restrepo-Martínez, and F. López-Giraldo, “Pixels Intensity Evolution to Describe the Plastic Films Deformation,” TecnoLógicas, SE-Computer science, pp. 695–707, Nov. 2013. https://doi.org/10.22430/22565337.397
dc.relation/*ref*/E. Reyes-Vera, D. E. Senior, J. M. Luna-Rivera, and F. E. López-Giraldo, “Advances in electromagnetic applications and communications,” TecnoLógicas, vol. 21, no. 43, pp. 9–13, Sep. 2018. https://doi.org/10.22430/22565337.1052
dc.relation/*ref*/V. H. Aristizabal, “Introducción a la Tecnología de Fibras Ópticas y Análisis numérico de la propagación de la luz en fibras micro-estructuradas” TecnoLógicas, no. 19, pp. 141–166, Dec. 2007. https://doi.org/10.22430/22565337.508
dc.relation/*ref*/G. J. De Castilho and M. A. Cremasco, “Comparison of downer and riser flows in a circulating bed by means of optical fiber probe signals measurements” Procedia Eng., vol. 42, pp. 295–302, 2012. https://doi.org/10.1016/j.proeng.2012.07.420
dc.relation/*ref*/A. Lanza, M. Islam, and H. De Lasa, “Particle cluster sizing in downer units. Applicable methodology across downer scale units,” Powder Technol., vol. 316, pp. 198–206, Jul. 2017. https://doi.org/10.1016/j.powtec.2016.11.035
dc.relation/*ref*/J. Liu, J. R. Grace, and X. Bi, “Novel multifunctional optical-fiber probe: I. Development and validation,” AIChE Journal., vol. 49, no. 6, pp. 1405–1420, Jun. 2003. https://doi.org/10.1002/aic.690490607
dc.relation/*ref*/R. J. Santoro and C. R. Shaddix, “Laser Induced Incandescence,” in Applied Combustion Diagnostics, New York: Taylor & Francis, 2002, pp. 252–286. Available: https://books.google.com.co/books/about/Applied_Combustion_Diagnostics.html?id=OXZmEXBVWX0C&redir_esc=y
dc.relation/*ref*/A. B. S. Alquaity, E. Es-sebbar, and A. Farooq, “Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy,” Opt. Express, vol. 23, no. 6, pp. 7217–7226, Mar. 2015. https://doi.org/10.1364/OE.23.007217
dc.relation/*ref*/R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases. Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-23252-2
dc.relation/*ref*/E. F. Nasir and A. Farooq, “Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine,” Opt. Express, vol. 26, no. 11, pp. 14601–14609, May. 2018. https://doi.org/10.1364/OE.26.014601
dc.relation/*ref*/S. Lopez-Zamora, A. Alkhlel, and H. De Lasa, “Monitoring the progress of catalytic cracking for model compounds in the mid-infrared (MIR) 3200--2800 Cm-1 range,” Chem. Eng. Sci., vol. 192, pp. 788–802, Dec. 2018. https://doi.org/10.1016/j.ces.2018.08.021
dc.relation/*ref*/H. De Lasa, “Riser simulator.” Google Patents, 1992. https://patents.google.com/patent/US5102628A/en
dc.relation/*ref*/M. P. Helmsing, M. Makkee, and J. A. Moulijn, “Development of a bench scale FCC microriser,” Deactivation and Testing of Hydrocarbon-Processing Catalysts Chapter 24, pp 322-339, 1996. https://doi.org/10.1021/bk-1996-0634.ch024
dc.relation/*ref*/X. Dupain, E. D. Gamas, R. Madon, C. P. Kelkar, M. Makkee, and J. A. Moulijn, “Aromatic gas oil cracking under realistic FCC conditions in a microriser reactor,” Fuel, vol. 82, no. 13, pp. 1559–1569, Sep. 2003. https://doi.org/10.1016/S0016-2361(03)00077-2
dc.relation/*ref*/M. A. Den Hollander, M. Wissink, M. Makkee, and J. A. Moulijn, “Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts,” Appl. Catal. A Gen., vol. 223, no. 1–2, pp. 85–102, Jan. 2002. https://doi.org/10.1016/S0926-860X(01)00745-1
dc.relation/*ref*/A. Corma, C. Martínez, F. V Melo, L. Sauvanaud, and J. Y. Carriat, “A new continuous laboratory reactor for the study of catalytic cracking,” Appl. Catal. A Gen., vol. 232, no. 1–2, pp. 247–263, Jun. 2002. https://doi.org/10.1016/S0926-860X(02)00110-2
dc.relation/*ref*/A. Corma and L. Sauvanaud, “FCC testing at bench scale: New units, new processes, new feeds,” Catal. today, vol. 218-219, pp. 107–114, Dec. 2013. https://doi.org/10.1016/j.cattod.2013.03.038
dc.relation/*ref*/ASTM D3907 / D3907M-19, Standard Test Method for Testing Fluid Catalytic Cracking (FCC) Catalysts by Microactivity Test, ASTM International, West Conshohocken, PA, 2019. https://doi.org/10.1520/D3907_D3907M-19
dc.relation/*ref*/P. O’Connor and M. B. Hartkamp, “A microscale simulation test for Fluid Catalytic Cracking.,” Characterization and Catalyst Development., Chapter 13 pp 135-147, 1989. https://doi.org/10.1021/bk-1989-0411.ch013
dc.relation/*ref*/T. Myrstad and H. Engan, “Testing of resid FCC catalysts in MAT,” Appl. Catal. A Gen., vol. 171, no. 1, pp. 161–165, Jun. 1998. https://doi.org/10.1016/S0926-860X(98)00100-8
dc.relation/*ref*/C. Delattre, M. Forissier, I. Pitault, D. Schweich, and J. R. Bernard, “Improvement of the microactivity test for kinetic and deactivation studies involved in catalytic cracking,” Chem. Eng. Sci., vol. 56, no. 4, pp. 1337–1345, Feb. 2001. https://doi.org/10.1016/S0009-2509(00)00356-0
dc.relation/*ref*/D. Wallenstein, M. Seese, and X. Zhao, “A novel selectivity test for the evaluation of FCC catalysts,” Appl. Catal. A Gen., vol. 231, no. 1–2, pp. 227–242, May. 2002. https://doi.org/10.1016/S0926-860X(02)00052-2
dc.relation/*ref*/M. A. Den Hollander, M. Makkee, and J. A. Moulijn, “Coke formation in fluid catalytic cracking studied with the microriser,” Catal. today, vol. 46, no. 1, pp. 27–35, Nov. 1998. https://doi.org/10.1016/S0920-5861(98)00348-4
dc.relation/*ref*/M. T. Shah, R. P. Utikar, V. K. Pareek, G. M. Evans, and J. B. Joshi, “Computational fluid dynamic modelling of FCC riser: A review,” Chem. Eng. Res. Des., vol. 111, pp. 403–448, Jul. 2016. https://doi.org/10.1016/j.cherd.2016.04.017
dc.relation/*ref*/Y. N. Kim, C. Wu, and Y. Cheng, “CFD simulation of hydrodynamics of gas--solid multiphase flow in downer reactors: revisited,” Chem. Eng. Sci., vol. 66, no. 21, pp. 5357–5365, Nov. 2011. https://doi.org/10.1016/j.ces.2011.07.036
dc.relation/*ref*/G. C. Lopes, L. M. Rosa, M. Mori, J. R. Nunhez, and W. P. Martignoni, “Three-dimensional modeling of fluid catalytic cracking industrial riser flow and reactions,” Comput. Chem. Eng., vol. 35, no. 11, pp. 2159–2168, Nov. 2011. https://doi.org/10.1016/j.compchemeng.2010.12.014
dc.relation/*ref*/M. A. Ospina-Alarcón, A. B. Barientos-Ríos, M. O. Bustamante-Rua “Influence of the pulse wave in the stratification of high density particles in a JIG device,” TecnoLógicas, vol. 19, no. 36, pp. 13–25, Jan. 2016. https://doi.org/10.22430/22565337.585
dc.relation/*ref*/N. Gomez and A. Molina, “Analysis of the Particle Clustering Phenomenon in the Fluid Catalytic Cracking of Gasoil in a Downer Reactor,” Chem. Eng. Technol., vol. 42, no. 6, pp. 1293–1303, Apr. 2019. https://doi.org/10.1002/ceat.201800463
dc.relation/*ref*/S. Al-Khattaf, J. A. Atias, K. Jarosch, and H. De Lasa, “Diffusion and catalytic cracking of 1, 3, 5 tri-iso-propyl-benzene in FCC catalysts,” Chem. Eng. Sci., vol. 57, no. 22–23, pp. 4909–4920, Nov. 2002. https://doi.org/10.1016/S0009-2509(02)00277-4
dc.relation/*ref*/Aspen Plus, “Aspen Plus user guide,” Aspen Technol. Limited, Cambridge, USA, 2003. Available: https://www.aspentech.com/en/products/pages/aspen-process-manual
dc.relation/*ref*/Ansys Fluent ANSYS inc, “15.0 Theory Guide.” (s/f). Available: https://studentcommunity.ansys.com/thread/theory-guide-for-fluent-19/
dc.relation/*ref*/J. A. Souza, J. V. C. Vargas, J. C. Ordonez, W. P. Martignoni, and O. F. von Meien, “Thermodynamic optimization of fluidized catalytic cracking (FCC) units,” Int. J. Heat Mass Transf., vol. 54, no. 5–6, pp. 1187–1197, Feb. 2011. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.034
dc.relation/*ref*/K. Ropelato, H. F. Meier, and M. A. Cremasco, “CFD study of gas - solid behavior in downer reactors: an Eulerian -Eulerian approach,” Powder Technol., vol. 154, no. 2–3, pp. 179–184, Jul. 2005. https://doi.org/10.1016/j.powtec.2005.05.005
dc.relation/*ref*/A. Lanza and H. de Lasa, “Scaling-up down flow reactors. CPFD simulations and model validation,” Comput. Chem. Eng., vol. 101, pp. 226–242, Jun. 2017. https://doi.org/10.1016/j.compchemeng.2017.02.034
dc.relation/*ref*/V. A. Petrov and V. Y. Reznik, “Measurement of the emissivity of quartz glass,” High Temp.-High Press., vol. 4, no. 6, pp. 687–693, 1972. Available: https://www.researchgate.net/publication/235338016_Measurement_of_the_emissivity_of_quartz_glass
dc.relation/*ref*/S. A. Morsi and A. J. Alexander, “An investigation of particle trajectories in two-phase flow systems,” J. Fluid Mech., vol. 55, no. 2, pp. 193–208, Sep. 1972. https://doi.org/10.1017/S0022112072001806
dc.relation/*ref*/V. Ranade, Computational flow modeling for chemical reactor engineering, vol. 5. San Diego, USA: Academic Press, 2001. Available: https://www.elsevier.com/books/computational-flow-modeling-for-chemical-reactor-engineering/ranade/978-0-12-576960-0
dc.relation/*ref*/D. F. Swinehart, “The beer-lambert law,” J. Chem. Educ., vol. 39, no. 7, pp. 333. Jul. 1962. https://doi.org/10.1021/ed039p333
dc.relation/*ref*/A. E. Klingbeil, “Mid-IR laser absorption diagnostics for hydrocarbon vapor sensing in harsh environments,” (PhD Thesis), Stanford University, Stanford, USA, 2007. Available: https://ui.adsabs.harvard.edu/abs/2007PhDT.......189K/abstract
dc.relation/*ref*/D. A. Skoog, D. M. West, F. James Holler, and S. R. crouch: Fundamentals of analytical chemistry. USA: Nelson Education, 2013.
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 48 (2020); 233-248en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 48 (2020); 233-248es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectHeNe laseren-US
dc.subjectin-situ measurementsen-US
dc.subject1-hexeneen-US
dc.subjectheterogeneous catalysten-US
dc.subjectComputational Fluid Dynamicsen-US
dc.subjectLáser HeNees-ES
dc.subjectMediciones In situes-ES
dc.subject1-hexenoes-ES
dc.subjectCatálisis heterogéneoes-ES
dc.subjectDinámica de fluidos computacionales-ES
dc.titleIn-Situ Characterization of 1-Hexene Concentration with a Helium-Neon Laser in the presence of a Solid Catalysten-US
dc.titleCaracterización in-situ de la concentración de 1-hexeno con un láser Helio-Neón en la presencia de catalizador sólidoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record