Show simple item record

Optimización de las propiedades de tracción de compuestos de matriz polimérica reforzada con partículas de magnetita por diseño experimental

dc.creatorLara-González, Luis Ángel
dc.creatorGuillermo-Rodríguez, Wilmar
dc.creatorPineda-Triana, Yaneth
dc.creatorPeña-Rodríguez, Gabriel
dc.creatorSalazar, Hugo Felipe
dc.date2020-05-15
dc.date.accessioned2021-10-19T20:46:09Z
dc.date.available2021-10-19T20:46:09Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1499
dc.identifier10.22430/22565337.1499
dc.identifier.urihttp://hdl.handle.net/20.500.12622/5456
dc.descriptionA full-factorial 33 experiment was used in this study to determine the optimal values of the tensile properties of three composite materials manufactured based on three polymeric resins: Derakane Momentum epoxy vinyl ester based on bisphenol-A (DM-411), polyester based on terephthalic acid (P115-A), and isophthalic polyester (P2000). Such materials were reinforced with magnetite powders at concentrations of 10, 20, and 30 wt %, and the particle sizes were classified with three sieves: #200 (46–75 μm), #325 (26–45 μm), and #500 (0–25 μm). The compounds were manufactured using the hand lay-up method at room temperature in accordance with ASTM D638-14 for M1-type specimens. A tensile test was conducted on a universal Microtest EM2/300/FR machine at a test speed of 5 ± 25 % mm/min using an Epsilon extensometer calibrated in accordance with the ASTM E83 standard at 20 ± 2 °C. The magnetite powders and compound morphology were studied by Scanning Electron Microscopy. The mechanical properties of the compounds and the optimal response found by Analysis of Variance (ANOVA) and Response Surface Methodology (RSM) are also reported. The best response to the mechanical stimuli occurs with the composite material prepared with the epoxy vinyl ester resin DM-411, a concentration of 29.4 % of magnetite (Fe3O4), a particle size of 58.5 microns, and a 200 sieve.en-US
dc.descriptionUn diseño factorial completo de 33 fue desarrollado con el fin de determinar los valores óptimos en las propiedades de tracción de tres tipos de materiales compuestos fabricados a base de resinas poliméricas epoxy-vinylester (DM-411) base bisfenol-A, poliéster (P115-A) base de ácido tereftálico, y poliéster (P2000) base de ácido isoftálico, reforzados con polvos de magnetita en concentraciones de 10, 20 y 30 % porcentaje en peso (Wt) con tres tamaños diferentes de partícula en el relleno, tamices #200 (46-75 μm), #325 (26-45 μm) y #500 (0-25 μm). Los compuestos se fabricaron utilizando el método de moldeo manual a temperatura ambiente, según ASTM D638-14 para muestras de tipo M1. Los ensayos de tracción se realizaron en una máquina universal microtest EM2/300/FR a una velocidad de prueba de 5 x 25 % mm/min, utilizando un extensómetro Epsilon calibrado de acuerdo con la norma ASTM E83 a 20°C. Los polvos de magnetita y la morfología de los materiales compuestos se estudiaron mediante microscopía electrónica de barrido. Se reportan las propiedades mecánicas de los compuestos y la respuesta óptima encontrada por análisis de varianza (ANOVA) y superficies de respuesta (RSM). La mejor respuesta a los estímulos mecánicos se produce con el material compuesto fabricado a base de resina epoxi -vinilester DM-411, con una concentración media de 29,4 % de magnetita Fe3O4 y tamaño medio de partícula de 58,5 micras la cual corresponde a un tamiz 200.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1499/1629
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1499/1674
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1499/1717
dc.relation/*ref*/B. D. Agarwal and L. J. Broutman, “Analysis and performance of fiber composites Second edition.” John Wiley & Sons, 1990.
dc.relation/*ref*/V. Chaudhary, A. K. Rajput, and P. K. Bajpai, “Effect of Particulate Filler on Mechanical Properties of Polyester based Composites,” Mater. Today Proc., vol. 4, no. 9, pp. 9893–9897, 2017. https://doi.org/10.1016/j.matpr.2017.06.289
dc.relation/*ref*/M. D. Kiran, H. K. Govindaraju, T. Jayaraju, and N. Kumar, “Review-Effect of Fillers on Mechanical Properties of Polymer Matrix Composites,” Mater. Today Proc., vol. 5, no. 10, pp. 22421–22424, 2018. https://doi.org/10.1016/j.matpr.2018.06.611
dc.relation/*ref*/R. Khorshidi and A. Hassani, “Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite,” Mater. Des., vol. 52, , pp. 999–1010, Dec. 2013. https://doi.org/10.1016/j.matdes.2013.06.011
dc.relation/*ref*/C. P. Wong and R. S. Bollampally, “Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging,” J. Appl. Polym. Sci., vol. 74, no. 14, pp. 3396–3403, Oct. 1999. https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
dc.relation/*ref*/G. Farzi, M. Lezgy-Nazargah, A. Imani, M. Eidi, and M. Darabi, “Mechanical , thermal and microstructural properties of epoxy-OAT composites,” Constr. Build. Mater., vol. 197, pp. 12–20, Feb. 2019. https://doi.org/10.1016/j.conbuildmat.2018.11.202
dc.relation/*ref*/T. Ji, Y. Feng, M. Qin, and W. Feng, “Thermal conducting properties of aligned carbon nanotubes and their polymer composites,” Compos. Part A Appl. Sci. Manuf., vol. 91, no. 1, pp. 351–369, Dec. 2016. https://doi.org/10.1016/j.compositesa.2016.10.009
dc.relation/*ref*/S. Mishra and N. G. Shimpi, “Comparison of nano CaCO 3 and flyash filled with styrene butadiene rubber on mechanical and thermal properties,” J. Sci. Ind. Res., vol. 64, pp. 744–751, Oct. 2005. Available: https://pdfs.semanticscholar.org/86a3/9f08b863c2e95676b066828292a1006acc4e.pdf
dc.relation/*ref*/Y. M. De Moraes et al., “Mechanical behavior of mallow fabric reinforced polyester matrix composites,” J. Mater. Res. Technol., vol. 7, no. 4, pp. 515–519, Oct. 2018. https://doi.org/10.1016/j.jmrt.2018.02.013
dc.relation/*ref*/G. O. Glória et al., “Tensile strength of polyester composites reinforced with PALF,” J. Mater. Res. Technol., vol. 6, no. 4, pp. 401–405, Oct. 2017. https://doi.org/10.1016/j.jmrt.2017.08.006
dc.relation/*ref*/A. O. Garzón Posada, F. Fajardo Tolosa, D. A. Landínez Téllez, J. Roa Rojas, and G. Peña Rodríguez, “Synthesis, Electrical, Structural and Morphological Characterization of a Composite Material Based on Powdered Magnetite and High Density,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 37, pp. 57–61, Sep. 2017. Available: https://inis.iaea.org/search/search.aspx?orig_q=RN:50044807
dc.relation/*ref*/L. A. Lara González, “Efecto De La Degradación Por Inmersión En Acido Nítrico Sobre Las Propiedades De Un Poliéster Reforzado Con Fibras De Vidrio,” Ing. Investig. y Desarro., vol. 10, no. 1, pp. 64–70, Jan. 2010. Available en: https://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/918
dc.relation/*ref*/Z. Y. Shnean, “Mechanical and Physical Properties of High Density Polyethylene Filled With Carbon Black and Titanium Dioxide,” Diyala J. Eng. Sci., vol. 5, no. 1, pp. 147–159, 2012 Disponible en: https://www.iasj.net/iasj?func=article&aId=50197
dc.relation/*ref*/Kutz, M., Applied Plastics Engineering Handbook: Processing, Materials, and Applications, Elsevier, 2011. Available: https://books.google.com.co/books?hl=es&lr=&id=urctkFROYbkC&oi=fnd&pg=PP1&dq=Applied+Plastics+Engineering+Handbook.+Elsevier,+2011.&ots=lvwXR0qfjE&sig=0nreWaLorDI0nMnD5IVcaAn3y6s#v=onepage&q=Applied%20Plastics%20Engineering%20Handbook.%20Elsevier%2C%202011.&f=false
dc.relation/*ref*/C. Ruddy, E. Ahearne, and G. Byrne, “A review of magnetorheological elastomers: properties and applications,” Advanced Manufacturing Science (AMS) Research. 2012. Available: https://pdfs.semanticscholar.org/067c/022dab80517670eafe20815e186566d7c897.pdf
dc.relation/*ref*/Z. Varga, G. Filipcsei, and M. Zrínyi, “Magnetic field sensitive functional elastomers with tuneable elastic modulus,” Polymer, vol. 47, no. 1, pp. 227–233, Jan. 2006. https://doi.org/10.1016/j.polymer.2005.10.139
dc.relation/*ref*/A. O. Garzón Posada, D. A. Landínez Téllez, J. Roa Rojas, and J. Ramos Barrado, “Materiales compuestos de matriz polimérica usados para el blindaje de interferencia electromagnética,” Cienc. e Ing. Neogranadina, vol. 27, no. 1, pp. 5–26, Jan. 2017. https://doi.org/10.18359/rcin.1917
dc.relation/*ref*/L. A. Lara, D. L. Mancipe, Y. Pineda, J. J. Moreno, and G. Peña-Rodríguez, “Design and characterization of a magneto-dielectric composite in high frequency with aligned magnetite powders,” in Journal of Physics: Conference Series, Volume 1386, 5th International Meeting for Researchers in Materials and Plasma Technology (5th IMRMPT), Cucuta, 2019. https://doi.org/10.1088/1742-6596/1386/1/012103
dc.relation/*ref*/O. Philippova, A. Barabanova, V. Molchanov, and A. Khokhlov, “Magnetic polymer beads: Recent trends and developments in synthetic design and applications,” Eur. Polym. J., vol. 47, no. 4, pp. 542–559, Apr. 2011. https://doi.org/10.1016/j.eurpolymj.2010.11.006
dc.relation/*ref*/F. E. Salinas Tacumá, D. A. Landinez Téllez, A. O. Garzón Posada, and J. Roa Rojas, “Caracterización magnética de material compuesto con matriz de resina epoxi y llanta en desuso reforzado con magnetita en diferentes proporciones,” TecnoLógicas, vol. 22, no. 44, pp. 81–95, Jan. 2019. https://doi.org/10.22430/22565337.999
dc.relation/*ref*/D. C. Montgomery, “Diseño y análisis de experimentos,” 2a ed., Limusa Wiley, 2010.
dc.relation/*ref*/V. K. Vankanti and V. Ganta, “Optimization of process parameters in drilling of GFRP composite using Taguchi method,” J. Mater. Res. Technol., vol. 3, no. 1, pp. 35–41, Jan. 2014. https://doi.org/10.1016/j.jmrt.2013.10.007
dc.relation/*ref*/I. L. Ngo, S. Jeon, and C. Byon, “Thermal conductivity of transparent and flexible polymers containing fillers: A literature review,” Int. J. Heat Mass Transf., vol. 98, pp. 219–226 Jul. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.082
dc.relation/*ref*/A. R. J. Hussain, A. A. Alahyari, S. A. Eastman, C. Thibaud-Erkey, S. Johnston, and M. J. Sobkowicz, “Review of polymers for heat exchanger applications: Factors concerning thermal conductivity,” Appl. Therm. Eng., vol. 113, pp. 1118–1127, Feb. 2017. https://doi.org/10.1016/j.applthermaleng.2016.11.041
dc.relation/*ref*/B. Weidenfeller, M. Höfer, and F. R. Schilling, “Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene,” Compos. Part A Appl. Sci. Manuf., vol. 35, no. 4, pp. 423–429, Apr. 2004. https://doi.org/10.1016/j.compositesa.2003.11.005
dc.relation/*ref*/L. Á. Lara González, G. Peña-Rodríguez, and Y. P. Triana, “Effective thermal properties of a magnetite-polyester composite conformed in the presence of a constant magnetic field,” AIMS Mater. Sci., vol. 6, no. 4, pp. 549–558, Jul. 2019. https://doi.org/10.3934/matersci.2019.4.549
dc.relation/*ref*/B. Torres, A. García-Escorial, J. Ibáñez, and M. Lieblich, “Propiedades mecánicas de materiales compuestos de matriz de aluminio reforzados con intermetálicos,” Rev. Metal., vol. 37, no. 2, pp. 225–229, 2001. https://doi.org/10.3989/revmetalm.2001.v37.i2.470
dc.relation/*ref*/B. Torres, A. García-Escorial, J. Ibáñez, and M. Lieblich, “Propiedades mecánicas de materiales compuestos de matriz de aluminio reforzados con intermetálicos,” Rev. Metal., vol. 37, no. 2, pp. 225–229, 2001. Available: http://revistademetalurgia.revistas.csic.es/index.php/revistademetalurgia/article/view/470/477
dc.relation/*ref*/S. D. Thoppul, J. Finegan, and R. F. Gibson, “Mechanics of mechanically fastened joints in polymer–matrix composite structures – A review,” Compos. Sci. Technol., vol. 69, no. 3–4, pp. 301–329, Mar. 2009. https://doi.org/10.1016/j.compscitech.2008.09.037
dc.relation/*ref*/M. S. Boon and M. Mariatti, “Optimization of magnetic and dielectric properties of surface-treated magnetite-filled epoxy composites by factorial design,” J. Magn. Magn. Mater., vol. 355, pp. 319–324, Apr. 2014. https://doi.org/10.1016/j.jmmm.2013.12.002
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 48 (2020); 83-98en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 48 (2020); 83-98es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectTensile propertiesen-US
dc.subjectDesign Of Experiments Experimentsen-US
dc.subjectMagnetiteen-US
dc.subjectCompositeen-US
dc.subjectResponse Surface Methodologyen-US
dc.subjectPropiedades de tensiónes-ES
dc.subjectDiseño de experimentoes-ES
dc.subjectMagnetitaes-ES
dc.subjectCompositeses-ES
dc.subjectMetodología de la superficie de respuestaes-ES
dc.titleOptimization of the Tensile Properties of Polymeric Matrix Composites Reinforced with Magnetite Particles by Experimental Designen-US
dc.titleOptimización de las propiedades de tracción de compuestos de matriz polimérica reforzada con partículas de magnetita por diseño experimentales-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record