Show simple item record

Inversor cuasi-conmutado usando modulación de ancho de pulso del vector espacial con comparación triangular para aplicaciones fotovoltaicas

dc.creatorMoran, Iván F.
dc.creatorRestrepo, José A.
dc.creatorOrozco-Gutierrez, Martha L.
dc.creatorRamirez-Scarpetta, José M.
dc.descriptionThis work analyzes a prototype of a quasi-switched boost inverter (qSBI) feeding an isolated resistive load from a DC source. The use of spatial vector pulse width modulation (SPWM) with triangular comparison is proposed to increase the qSBI gain factor, and its performance is contrasted with other types of spatial vector modulations, such as discontinuous modulations. To verify the validity of the method for voltage range extension in the qSBI converter, a semi-customized test platform was developed. This platform uses a DSP floating point card (Analog Devices ADSP-21369) for processing and control strategies and an interface card that includes a programmable logic array (FPGA) from Xilinx (Spartan-3), which allows to develop the synchronized modulation qSBI needs. The experimental results show improvements in the performance of the qSBI converter in terms of gain factor, voltage reduction in the capacitor, and input current profiles. Discontinuous space vector modulation strategies do not perform well when compared to continuous SVPWM or SPWM modulations, because the ripple levels in the currents taken from the PV module are approximately twice as great as in continuous modulation techniques. Finally, the usefulness of a qSBI as PV microinverter is confirmed by two practical experimental cases of a PV photovoltaic system with a maximum power point adjustment algorithm (MPPT).en-US
dc.descriptionEste trabajo analiza un prototipo para un inversor elevador cuasi-conmutado (qSBI) alimentando una carga resistiva aislada desde una fuente de CC. Se propone el uso de una modulación de ancho de pulso de vectores espaciales (SPWM) con comparación triangular que genera un incremento en el factor de ganancia del qSBI, y se contrasta su desempeño con otro tipo de modulaciones de vectores espaciales, tales como las modulaciones discontinuas. Para verificar la validez de la extensión de rango de tensión en el convertidor qSBI, se desarrolló una plataforma de pruebas semi-personalizada. Esta plataforma utiliza una tarjeta DSP de punto flotante (Analog Devices ADSP-21369) para el procesamiento de las estrategias de control, y una tarjeta de interfaz que incluye un arreglo lógico programable (FPGA) de Xilinx (Spartan-3), que permite desarrollar la modulación sincronizada que el qSBI necesita. Los resultados experimentales demuestran mejoras en el desempeño del convertidor qSBI en cuanto al factor de ganancia, reducción del estrés de voltaje en el capacitor y los perfiles de corriente de entrada. Las estrategias discontinuas de modulación del vector espacial no presentan un buen desempeño cuando se compara con las modulaciones continuas SVPWM o SPWM, ya que los niveles de rizado en las corrientes tomadas del módulo PV son de aproximadamente el doble que en el caso de las técnicas de modulación continuas. Finalmente, el uso del convertidor qSBI como microinversor es puesto en evidencia por dos casos experimentales prácticos de un sistema fotovoltaico PV con un algoritmo de ajuste del máximo punto de potencia (MPPT).es-ES
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relation/*ref*/M.-K. Nguyen, T.-V. Le, S.-J. Park, and Y.-C. Lim, “A Class of Quasi-Switched Boost Inverters,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1526–1536, Mar. 2015. [2] F. Z. Peng, “Z-source inverter,” in Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), 2003, vol. 2, no. 2, pp. 775–781. [3] O. Ellabban and H. Abu-Rub, “Z-Source Inverter: Topology Improvements Review,” IEEE Ind. Electron. Mag., vol. 10, no. 1, pp. 6–24, Mar. 2016. [4] J. Ra̧bkowski, “The bidirectional Z-source inverter as an energy storage/grid interface,” in EUROCON 2007 - The International Conference on Computer as a Tool, 2007, pp. 1629–1635. [5] Yu Tang, Shaojun Xie, Chaohua Zhang, and Zegang Xu, “Improved Z-Source Inverter With Reduced Z-Source Capacitor Voltage Stress and Soft-Start Capability,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 409–415, Feb. 2009. [6] Y. Zhu, M. Chen, X. Lee, and Y. Tsutomu, “A novel quasi-resonant soft-switching Z-source inverter,” in 2012 IEEE International Conference on Power and Energy (PECon), 2012, pp. 292–297. [7] S. Mishra, R. Adda, and A. Joshi, “Inverse watkins-johnson topology-based inverter,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1066–1070, 2012. [8] G. Spagnuolo, G. Petrone, B. Lehman, C. A. Ramos Paja, B. L. Ye Zhao, and M. L. Orozco Gutierrez, “Control of Photovoltaic Arrays: Dynamical Reconfiguration for Fighting Mismatched Conditions and Meeting Load Requests,” IEEE Ind. Electron. Mag., vol. 9, no. 1, pp. 62–76, Mar. 2015. [9] D. M. Scholten, N. Ertugrul, and W. L. Soong, “Micro-inverters in small scale PV systems: A review and future directions,” in 2013 Australasian Universities Power Engineering Conference (AUPEC), 2013, pp. 1–6. [10] M.-K. Nguyen, Y.-C. Lim, and S.-J. Park, “A Comparison Between Single-Phase Quasi- Z-Source and Quasi-Switched Boost Inverters,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6336–6344, Oct. 2015. [11] V. Blasko, “Analysis of a hybrid PWM based on modified space-vector and triangle-comparison methods,” IEEE Trans. Ind. Appl., vol. 33, no. 3, pp. 756–764, 1997. [12] J. Restrepo, Víctor Guzmán, M. Giménez, A. Bueno, and J. Aller, “Parallelogram Based Method for Space Vector Pulse Width Modulation,” Rev. Fac. Ing. Univ. Antioquia, no. 52, pp. 161–171, 2010. [13] J. Restrepo, J. M. Aller, A. Bueno, V. M. Guzmán, and María I. Giménez, “Generalized algorithm for pulse width modulation using a two-vectors based technique,” EPE J., vol. 21, no. 2, pp. 30–39, 2011. [14] K. Zhou and D. Wang, “Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 186–196, 2002. [15] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “A high-performance generalized discontinuous PWM algorithm,” IEEE Trans. Ind. Appl., vol. 34, no. 5, pp. 1059–1071, 1998. [16] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, 2007. [17] P. Manganiello, M. Ricco, G. Petrone, E. Monmasson, and G. Spagnuolo, “Optimization of Perturbative PV MPPT Methods Through Online System Identification,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6812–6821, Dec. 2014.
dc.sourceTecnoLógicas; Vol. 21 No. 42 (2018); 95-110en-US
dc.sourceTecnoLógicas; Vol. 21 Núm. 42 (2018); 95-110es-ES
dc.subjectQuasi-Switched Boost Inverteren-US
dc.subjectSpace Vector Modulationen-US
dc.subjectSinusoidal Modulationen-US
dc.subjectEmbedded Systemen-US
dc.subjectPV Microinverteren-US
dc.subjectInversor Elevador cuasi-Conmutadoes-ES
dc.subjectModulación del Vector Espaciales-ES
dc.subjectModulación Senoidales-ES
dc.subjectSistema Embebidoes-ES
dc.subjectMicroinversor PVes-ES
dc.titleQuasi-switched inverter using space vector pulse width modulation with triangular comparison for photovoltaic applicationsen-US
dc.titleInversor cuasi-conmutado usando modulación de ancho de pulso del vector espacial con comparación triangular para aplicaciones fotovoltaicases-ES
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record