Show simple item record

Detección de procesamiento atípico de emociones en excombatientes colombianos

dc.creatorRodríguez-Calvach, Mónica V.
dc.creatorQuintero-Zea, Andrés
dc.creatorTrujillo-Orrego, Sandra P.
dc.creatorTrujillo-Orrego, Natalia
dc.creatorLópez-Hincapié, José D.
dc.descriptionThe reincorporation process of Colombian ex-combatants is hindered by their chronic exposure to violence, which affects their Emotional Processing (EP). Characterizing their EP will contribute to their reinsertion. The objective of this work is to define an EEG-based brain connectivity approach to identify differences in EP between Colombian ex-combatants and individuals who were not directly exposed to the armed conflict. The proposed approach involves defining the Regions of Interest (ROI) and selecting one of five commonly used brain connectivity metrics: Correlation, Cross-Correlation, Coherence, Imaginary part of Coherency, and Phase-Lag Index. Significant differences were found in the positive valence stimuli in the Beta frequency band. These results support the previously reported trend in the literature regarding the difficulties ex-combatants have to process emotional information with positive valence.en-US
dc.descriptionEl proceso de reincorporación social de los excombatientes colombianos, se dificulta debido a que la exposición crónica a la violencia afecta su procesamiento emocional (PE). Este proceso de reincorporación se puede facilitar mediante la caracterización de su PE. El objetivo de este artículo es definir una metodología de conectividad con EEG que permita identificar diferencias entre el EP de excombatientes y personas no directamente expuestas al conflicto armado. La metodología propuesta consiste en definir las Regiones de Interés (ROI) y seleccionar una de cinco métricas de conectividad funcional cerebral comúnmente utilizadas: correlación, correlación cruzada, coherencia, parte imaginaria de la coherencia y el índice de desfase. Se encontraron diferencias significativas en los estímulos con valencia positiva en la banda de frecuencias Beta. Estos resultados apoyan la tendencia previamente reportada en la literatura hacia las dificultades de los excombatientes para procesar información emocional con valencia
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relation/*ref*/S. Trujillo, N. Trujillo, J. D. Lopez, D. Gomez, S. Valencia, J. Rendon, D. A. Pineda, and M. A. Parra, “Social Cognitive Training Improves Emotional Processing and Reduces Aggressive Attitudes in Ex-combatants,” Front. Psychol., vol. 8, p. 510, Apr. 2017. [2] C. Tobón, D. C. Aguirre-Acevedo, L. Velilla, J. Duque, C. P. Ramos, and D. Pineda, “Perfil psiquiátrico, cognitivo y de reconocimiento de características emocionales de un grupo de excombatientes de los grupos armados ilegales en Colombia,” Rev. Colomb. Psiquiatr., vol. 45, no. 1, pp. 28–36, Jan. 2016. [3] S. P. Trujillo, S. Valencia, N. Trujillo, J. E. Ugarriza, M. V. Rodríguez, J. Rendón, D. A. Pineda, J. D. López, A. Ibañez, and M. A. Parra, “Atypical Modulations of N170 Component during Emotional Processing and Their Links to Social Behaviors in Ex-combatants,” Front. Hum. Neurosci., vol. 11, p. 244, May 2017. [4] M. Batty and M. J. Taylor, “Early processing of the six basic facial emotional expressions,” Cogn. Brain Res., vol. 17, no. 3, pp. 613–620, Oct. 2003. [5] R. A. Morey, C. M. Petty, D. A. Cooper, K. S. LaBar, and G. McCarthy, “Neural systems for executive and emotional processing are modulated by symptoms of posttraumatic stress disorder in Iraq War veterans,” Psychiatry Res. Neuroimaging, vol. 162, no. 1, pp. 59–72, Jan. 2008. [6] C. Tobón, A. Ibañez, L. Velilla, J. Duque, J. Ochoa, N. Trujillo, J. Decety, and D. Pineda, “Emotional processing in Colombian ex-combatants and its relationship with empathy and executive functions,” Soc. Neurosci., vol. 10, no. 2, pp. 153–165, Mar. 2015. [7] A. Quintero-Zea, L. M. Sepúlveda-Cano, M. Rodríguez Calvache, S. Trujillo Orrego, N. Trujillo Orrego, and J. D. López, “Characterization Framework for Ex-combatants Based on EEG and Behavioral Features,” in VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th-28th, 2016, 2017, pp. 205–208. [8] A. Carballedo, J. Scheuerecker, E. Meisenzahl, V. Schoepf, A. Bokde, H.-J. Möller, M. Doyle, M. Wiesmann, and T. Frodl, “Functional connectivity of emotional processing in depression,” J. Affect. Disord., vol. 134, no. 1–3, pp. 272–279, Nov. 2011. [9] L. A. Pan, S. Hassel, A. M. Segreti, S. A. Nau, D. A. Brent, and M. L. Phillips, “Differential patterns of activity and functional connectivity in emotion processing neural circuitry to angry and happy faces in adolescents with and without suicide attempt,” Psychol. Med., vol. 43, no. 10, pp. 2129–2142, Oct. 2013. [10] S. Haufe, V. V Nikulin, K.-R. Müller, and G. Nolte, “A critical assessment of connectivity measures for EEG data: A simulation study,” Neuroimage, vol. 64, pp. 120–133, Jan. 2013. [11] K. J. Friston, “Functional and Effective Connectivity: A Review,” Brain Connect., vol. 1, no. 1, pp. 13–36, Jan. 2011. [12] N. M. Kleinhans, T. Richards, L. Sterling, K. C. Stegbauer, R. Mahurin, L. C. Johnson, J. Greenson, G. Dawson, and E. Aylward, “Abnormal functional connectivity in autism spectrum disorders during face processing,” Brain, vol. 131, no. 4, pp. 1000–1012, Apr. 2008. [13] M. X. Cohen, Analyzing neural time series data: theory and practice. MIT Press, 2014. [14] E. W. Lang, A. M. Tomé, I. R. Keck, J. M. Górriz-Sáez, and C. G. Puntonet, “Brain Connectivity Analysis: A Short Survey,” Comput. Intell. Neurosci., vol. 2012, pp. 1–21, 2012. [15] P. Lang and M. M. Bradley, The International Affective Picture System (IAPS) in the study of emotion and attention, vol. 29. Oxford University Press USA New-York, NY, USA, 2007. [16] J. A. Mikels, B. L. Fredrickson, G. R. Larkin, C. M. Lindberg, S. J. Maglio, and P. A. Reuter-Lorenz, “Emotional category data on images from the international affective picture system,” Behav. Res. Methods, vol. 37, no. 4, pp. 626–630, Nov. 2005. [17] C. A. Gantiva Díaz, P. Guerra Muñoz, and J. Vila Castellar, “Colombian validation of the international affective picture system: Evidence of cross-cultural origins of emotion,” Acta Colomb. Psicol., vol. 14, no. 2, pp. 103–111, 2011. [18] W. Schneider, A. Eschman, and A. Zuccolotto, “E-prime, Version 1.1,” Pittsburgh, PA: Psychology Software Tools. 2002. [19] C. Neuroscan, “NeuroScan 4.5,” North Carolina: Compumedics USA. 2008. [20] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 9–21, Mar. 2004. [21] M. R. Calvache, A. Quintero-Zea, S. T. Orrego, N. T. Orrego, and J. D. Lopez, “Classifying artifacts and neural EEG components using SVM,” in 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 2016, pp. 1–5. [22] M. A. B. Brazier and J. U. Casby, “Crosscorrelation and autocorrelation studies of electroencephalographic potentials,” Electroencephalogr. Clin. Neurophysiol., vol. 4, no. 2, pp. 201–211, May 1952. [23] G. Pfurtscheller and C. Andrew, “Event-Related changes of band power and coherence: methodology and interpretation.,” J. Clin. Neurophysiol., vol. 16, no. 6, pp. 512–519, Nov. 1999. [24] G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett, “Identifying true brain interaction from EEG data using the imaginary part of coherency,” Clin. Neurophysiol., vol. 115, no. 10, pp. 2292–2307, Oct. 2004. [25] C. J. Stam, G. Nolte, and A. Daffertshofer, “Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources,” Hum. Brain Mapp., vol. 28, no. 11, pp. 1178–1193, Nov. 2007. [26] M. Esslen, R. . Pascual-Marqui, D. Hell, K. Kochi, and D. Lehmann, “Brain areas and time course of emotional processing,” Neuroimage, vol. 21, no. 4, pp. 1189–1203, Apr. 2004. [27] P. Xanthopoulos, P. M. Pardalos, and T. B. Trafalis, “Linear Discriminant Analysis,” in Robust Data Mining, Springer, 2013, pp. 27–33. [28] F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biometrics Bull., vol. 1, no. 6, p. 80, Dec. 1945. [29] Y.-Y. Lee and S. Hsieh, “Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns,” PLoS One, vol. 9, no. 4, p. e95415, Apr. 2014. [30] M. Balconi and C. Lucchiari, “EEG correlates (event-related desynchronization) of emotional face elaboration: A temporal analysis,” Neurosci. Lett., vol. 392, no. 1–2, pp. 118–123, Jan. 2006. [31] T. Costa, E. Rognoni, and D. Galati, “EEG phase synchronization during emotional response to positive and negative film stimuli,” Neurosci. Lett., vol. 406, no. 3, pp. 159–164, Oct. 2006.
dc.sourceTecnoLógicas; Vol. 20 No. 40 (2017); 83-96en-US
dc.sourceTecnoLógicas; Vol. 20 Núm. 40 (2017); 83-96es-ES
dc.subjectBrain Connectivityen-US
dc.subjectColombian Ex-combatantsen-US
dc.subjectEmotional Processingen-US
dc.subjectROI selectionen-US
dc.subjectConectividad cerebrales-ES
dc.subjectexcombatientes colombianoses-ES
dc.subjectprocesamiento emocionales-ES
dc.subjectselección de las ROIes-ES
dc.titleDetecting atypical functioning of emotional processing in Colombian ex-combatantsen-US
dc.titleDetección de procesamiento atípico de emociones en excombatientes colombianoses-ES
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record