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Abstract

People with a defective velopharyngeal mechanism speak with ab-
normal nasal resonance (hypernasal speech). Voice analysis methods 
for hypernasality detection commonly use vowels and nasalized vowels. 
However to obtain a more general assessment of this abnormality it 
is necessary to analyze stops and fricatives. 

This study describes a method with high generalization capa-
bility for hypernasality detection analyzing unvoiced Spanish stop 
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consonants. The importance of phoneme-by-phoneme analysis is 
shown, in contrast with whole word parametrization which includes 
irrelevant segments from the classification point of view. Parameters 
that correlate the imprints of Velopharyngeal Incompetence (VPI) 
over voiceless stop consonants were used in the feature estimation 
stage. Classification was carried out using a Support Vector Machine 
(SVM), including the Rademacher complexity model with the aim of 
increasing the generalization capability. Performances of 95.2% and 
92.7% were obtained in the processing and verification stages for a 
repeated cross-validation classifier evaluation.

Index Terms

acoustic analysis, speech analysis, hypernasality, unvoiced stop 
consonants and rademacher complexity.

Resumen

Las personas con un mecanismo velofaringeo defectuoso hablan 
con una resonancia nasal anormal (habla hipernasal). Métodos de 
análisis de voz para detección de hipernasaliad comúnmente usan las 
vocales y las vocales nasales. Sin embargo para obtener una evaluación 
más general de esta anormalidad es necesario analizar las paradas 
y las fricativas. Este estudio describe un método con alta capacidad 
de generalización para detección de hipernasalidad análisis de las 
consonantes oclusivas sordas españolas. Se muestra la importancia 
del análisis fonema por fonema, en contraste con la parametrización 
de la palabra completa que incluye segmentos irrelevantes desde el 
punto de vista de la clasificación. Los parámetros que correlacionan 
la incompetencia velofaringea (VPI) sobre las consonantes oclusivas 
sordas se usa en la fase de estimación de características. La clasifica-
ción se llevó a cabo usando una Maquina de Vector de Soporte (SVM), 
incluyendo el modelo de complejidad Rademacher  con el objetivo de 
aumentar la capacidad de generalización. Rendimientos del 95.2% y 
del 92.7% fueron obtenidos en las etapas de elaboración y verificación  
para una repetida evaluación y clasificación de validación cruzada.

Palabras clave

Análisis acústico, análisis del habla, hipernasalidad, consonantes 
oclusivas sordas y complejidad Rademacher.
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1. Introduction

The verbal communication process requires translation of thoughts 
into spoken language. A person with a physical and/or neurological 
impairment, may have a compromised vocal tract configuration 
and/or excitation, resulting in reduced speech quality. A specific 
example of a vocal tract dysfunction causing reduced speech quality 
is a defective velopharyngeal mechanism (Cairns et al., 1996). The 
term cleft palate refers to a malformation which affects the soft and/
or hard palate, and it is usually congenital (Vijayalakshmi et al., 
2007). Hypernasal analysis based exclusively on hearing is affected 
by human percepción facts; therefore, the use of measuring tools 
is important. Digital voice processing (DVP)-based techniques are 
amongst the most useful of noninvasive techniques for assessing 
the velopharyngeal function, due to the ease of recording speech 
signals, which are mainly affected in two ways: 1) nasalized phone-
mes, and 2) weak consonants and short utterance length (Kummer, 
2001). The most common way to detect velopharyngeal disfunction 
(employing DVP) is by carrying out an analysis of nasalized vowel 
sounds. In (Vijayalakshmi et al., 2007), a group of delay-based 
signal processing techniques was described for the analysis and 
detection of hypernasal speech. Experiments were carried out on 
the phonemes /a/, /i/, and /u/, where the results showed a high 
performance on hypernasality detection. The effectiveness of 
these delay-based acoustic measures were cross-verified on data 
collected in an entirely different recording environment, however, 
the generalization capability results of this feature set with regards 
to the classification accuracy were not convincing. In (Cairns 
et al., 1996), the sensitivity of the Teager energy operator for 
multicomponent signals was used for detecting the hypernasality 
problem. A measurable difference was observed between the low-
pass and band-pass profiles for the nasalized vowels, whereas the 
normal vowel, which is a single component signal, does not show 
any difference. Parameters such as Harmonics to Noise Ratio 
(HNR) (Yumoto et al., 1982), Normalized Noise Energy (NNE) 



Revista Tecnológicas

[226] Hypernasal speech detection by acoustic analysis of unvoiced plosive consonants

(Kasuya et al., 1986), Glottal to Noise Excitation (GNE) and so 
on have been proposed for the analysis of pathological voices in 
different studies. They were mainly designed for sustained vowels, 
although sometimes they have been used for voiced phonemes, as 
in (Daza et al., 2008). The real problem in hypernasality detection 
employing DVP is the high variability within-classes, which means 
high complexity in the training stage and low generalization 
capability. In this study, unvoiced consonant analysis is proposed, 
which impedes the use of features previously developed in the 
literature for speech pathology assessment. Using parameters 
that correlate the imprints of Velopharyngeal Incompetence (VPI) 
over voiceless stop consonants such as power, duration and so 
on, allow a better representation of the phenomenon currently 
analyzed. Additionally, finding a reduced representation space 
of the normal and pathological records is very important, since 
this procedure reduces computational complexity without loss of 
classification accuracy and improves the robustness in detection 
by the Rademacher complexity model, due to the addition of an 
uncertainty component in the feature subset evaluation stage.

2. Materials and methods

It is necessary to take into account the drawbacks caused by 
small training samples in the design of automatic classification 
systems. To reduce these problems, features used must correlate 
the influence of velopharyngeal incompetence in stop consonants, 
and classifiers with good generalization properties should be 
employed (Jain et al., 2000). 

2.1. Database

The sample was constituted by 88 children. Classes were ba-
lanced (44 patients with normal voice and 44 with hypernasality), 
and all registers were evaluated by specialists. Each recording 
was made up by several Spanish words, but in this study only the 
words coco (/’koko/ ) and papá (/pa’pa/ ) were used. Signals were 
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acquired under low noise conditions using a dynamic, unidirectional 
microphone (cardioide). Signal range was between (-1, 1). A manual 
segmentation process was carried out to separate the stop parts of 
the utterances /`’koko/ and /pa’pa/ resulting in various sets (two 
from /’koko/ and two from /pa’pa/ ) each formed by 88 signals.

2.2. Parametrization of plosive signals

A plosive consonant is formed by blocking the oral cavity at 
some point. During the articulation of most plosives the velum is 
raised, blocking off the nasal passages. Individuals with cleft palate 
have never learnt to control the movements of the velum. After 
reconstructive surgery or the fitting of a prothesis, such individuals 
need guidance in controlling the velum to produce plosive sounds 
(MacKay, 1987). The subglottal pressure represents the energy 
immediately available for creating the acoustic signals of speech 
(Baken, 1996). The pressure that builds up behind the occlusion 
is released suddenly as a minor explosion or popping (Kummer, 
2001). The power of stops can help to perceive the weakness of 
plosive consonants in velopharyngeal patients. In this study, it is 
calculated using the expression: 

10log= stop

word

P
P

P

where 
21= ∑stop ii

word

P x
T

and   is the power of the uttered word. Each stop segment is 
considered separately for the whole database. Air leakage around 
the blockage significantly slows down the rise in supraglottal 
pressure, and therefore, delays phonatory shut-down (Baken, 
1996). This can provoke a short utterance length of consonant 
plosives, which in this study, is measured in seconds. Velicaction 
allows the nasal cavities to be closed or open (or partially open, 
although air can leak around the velic blockage) with respect to 
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the rest of the vocal tract, which allows sound waves to resonate 
within the nasal cavities, giving a distinctive nasal quality to the 
speech sounds produced (MacKay, 1987). In addition, the lower 
pressure of voiced stops in hypernasal speech results in reduced 
high-frequency energy for the burst (Baken, 1996). The MFCC 
(Mel-Frequency Cepstral Coefficients) and DWT (Discrete Wavelet 
Transform) use filterbanks to obtain measures of different portions 
of the spectrum, so the energies at every filter could be used to 
model the behavior at different frequency ranges (Huang et al., 
2001). MFCC’s are currently one of the most widely used features 
for Automatic Speech Recognition (Avendano et al., 2005). These 
features are calculated by taking the discrete cosine transform of 
the logarithm of energy at the output of a Mel filter. In feature 
estimation processes based on the Fourier transform, the features 
that are extracted have fixed time frequency resolution because of 
the inherent limitation of the FFT. More recently, discrete wavelet 
transform (DWT) and wavelet packets (WP) have been tried for 
feature extraction, because of their multi-resolution capabilities 
(Farooq & Datta, 2003).

2.3. Feature selection

In general, given a set of observations represented for a set of 
features  where each observation is associated to one and only one 
class label from a label set k, the main goal of feature selection is 
to choose the best possible subset  of size q from a set of 
p features, where optimal and suboptimal strategies are ussually 
considered. For the optimal case, if the cardinal of   is q, and all 
the q-cardinal subsets are in , the subset  is that which optimizes 
a evaluation function f, such as (Jain et al., 2000): 

In pattern recognition tasks, feature selection according to the 
evaluation function f can be carried out by wrapper type selection, 
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when f uses information of the classification function oriented to 
minimizing the classifier error, and filter type selection, which 
consists in data preprocessing by optimizing f with respect to a 
metric (independent of the classification results), where the irre-
levant, redundant and correlated variables are discarded (Webb, 
2002). Wrapper type selection procedures give better performance 
in cases when the number of features is lower than 50 (Kudo, & 
Sklansky, 2000), while the filter type can operate in larger spaces 
because its computational demand usually is lower (Jain et al., 
2000). Suboptimal algorithms, although incapable of examining 
every feature combination, will assess a set of potentially useful 
feature combinations. Popular methods such as sequential forward 
selection (SFS) and sequential backward selection (SBS) are found. 
In floating search methods such as sequential forward floating 
selection (SFFS) and sequential backward floating selection 
(SBFS), the number of added and removed features can change 
at each step and these wrapper routines carry out the search in a 
considerably smaller number of subsets (Alpaydin, 2004). 

2.4. Support vector classifiers

Support Vector Machines (SVMs) were used in this study 
mainly for two reasons: SVMs have a relatively good generalization 
capability with less amount of training data, and they have 
been particularly well developed for binary classification tasks. 
Traditional neural network approaches are more likely to suffer 
of poor generalization, producing models that can overfit the 
data. It is a consequence of the optimization algorithms used for 
parameter selection and the statistical measures used to select 
the best model (Solera et al., 2007). For the binary classification 
problem, a discrimination function can be taken as

g (x) = wT Ø (x) +w0

with decision rules wT Ø (x) + w0 ≥ 0 → x ∈ w1 and wT Ø (x) + w0 
≤ 0 → x ∈ w2, where
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( ) 1 2: n nxφ ℜ → ℜ  is generally a nonlinear function which maps 
vector x into what is called a feature space of higher dimensionality 
(possibly infinite) where classes are linearly separable. The vector 
w defines the separating hyper-plane in such a space and w0 
represents a possible bias (Webb, 2002).

2.5. Rademacher complexity model

Rademacher complexity is a measure proposed in (Koltchinskii, 
2001) which attempts to balance the complexity of the model with 
its fit to the data by minimizing the sum of the training error and 
a penalty term. Let {Xi,Yi}n

i=1 be a set of training instances, where 
Xi is the pattern or example associated with features {Fj}q

j=1, and  
Yi is the label of the example Xi. Let h(xi) be the class obtained by 
the classifier h, trained using {Xi,Yi}n

i=1. Then, the training error 

is defined as ( ) ( ){ }1 1
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Let {σi}n
i=1 be a sequence of Rademacher random variables (i.i.d.) 

independent of the data {Xi}n
i=1 and each variable takes values +1 

and -1 with probability 1/2. According to this, computation of the 
Rademacher complexity involves the following steps (Delgado et 
al., 2007):
– Generate {σi}n

i=1

– Get a new set of labels, doing zi= σi yi .
– Train the classifier hR  using {Xi,Zi}n

i=1 .
– Compute the Rademacher penalty, given by
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1

1
R

R Yi

n

i h
i

I
n

σ
≠=

= ∑



Revista Tecnológicas [231]

– Train the classifier h, using {Xi,Yi}n
i=1 

– Compute the training error ê(h).
– The Rademacher complexity: RC = ê (h) + Rn

2.6. Proposed procedure

The representation space was composed of the features related 
to the plosive consonant power and its duration with respect to 
the word. On the other hand, feature estimation in the frequency 
domain was achieved by using two techniques: DWT and MFCC. 
Each feature was estimated for each plosive consonant at the be-
ginning of /kóko/ and /papá/. By using 3rd order spline mother 
wavelet, the Nyquist spectral range was divided in 4 bands (i.e., 3 
for the detail levels and 1 for the approximation level). The other 
features consist of estimating parameters related to 13-MFCC. 
With the aim of comparing these two representation forms with 
regards to the discriminant capability, the classification results 
were obtained using a SVM classifier. Thus, the total number of 
extracted features for each observation was 15. Feature space 
reduction is carried out by using a typewrapper algorithm for 
heuristic search (i.e., SFFS algorithm) with a SVM classifier 
and RBF-kernel (a kernel successfully used in several speech-
related applications) using a hypothesis test based on a distance 
measurement for establishing the initial conditions. Moreover, 
the Rademacher complexity model has been included in the 
evaluation function f. With the aim of comparing the proposed 
model’s performance, the conventional training was developed 
and proved under the same conditions. 

3. Results and discussion

The utterance /’koko/ has two plosive segments, Figures 1 and 
2 show 2-dimensional scatter plots using the duration and power 
for each segment. 
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Figure 1: Duration vs power for the first plosive segment in the Spanish word 
/’koko/

Discrimination between the two classes can be observed using 
the first plosive segment. By contrast, in the second figure this 
configuration can not be seen. The closure of the velopharyngeal 
gap is necessary to produce vowels as well as stops; but in the 
first segment the velopharyngeral gap begins to open, provoking a 
delay in the closing phase, in hypernasal speech. At the beginning 
of the second stop, the velum is closed as the previous phoneme is 
a vowel, thus the duration is more similar to the normal category, 
as depicted in Figure 2. Other parameters used in this study are 
related to the fact that spectral components of the plosives are 
modified by the velopharyngeal incompetence. This set is formed by 
the energy for every band in a 3rd level of the DWT decomposition. 
In Figures 3 and 4 two of these values are shown. Once again 
there is greater similarity between the two classes in the second 
stop segment. 
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Figure 2: Duration vs power for the second plosive segment in the Spanish word 
/’koko/

Figure 3: Energy in the third approximation and detail bands for the first plosive 
segment in the Spanish word /’koko/
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Figure 4: Energy in the third approximation and detail bands for the second 
plosive segment in the Spanish word /’koko/

The two sets are slightly distinguishable as can be seen in the 
energy-band parameter distribution, nevertheless when these 
parameters were evaluated (joined with Power and Duration) from 
the point of view of the classification rate, the performance does not 
reach 61%. When 13th order MFCC coefficients were calculated, 
instead of DWT, the performance went up to levels between 83% 
and 88% with an average rate of 85.7%, although this result fell 
down to 62.4% in the verification stage (i.e., poor generalization 
capability). The classifier evaluation was made by applying cross-
validation for 30 folds. Similar experiments were carried out for 
each word as it is shown in Table 1, where F1p,v is the feature 
set related to power and duration + DWT for the processing and 
verification data, similarly, F2p,v is the feature set related to power 
and duration + MFCC. The notation // + // means that in this case 
the whole feature set for /’koko/ and /pa’pa/ has been considered. 
Feature selection results obtained without/with the rademacher 
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complexity model included in the evaluation function are shown 
in Table 2, over the processing and verification data sets, where 

,R#Fℜ  is the selected feature number from the {F1+F2} feature set 
without/with the rademacher complexity model, similarly, ,

,
p v

RAℜ  
is the average classification accuracy (%) for the processing and 
verification data. It is remarkable that the classification results for 
the processing with the Rademacher complexity model are lower 
than for the other cases, although finally in the verification stage, 
the proposed training retains the classification accuracy even when 
the input samples are completely unknown.

Table1: Classification results (%) for /kóko/ and /papá/

F1p F2p F1v F2v

/’koko/
/pa’pa/

59.8
60.9

92.8
97.3

52.1
55.3

63.7
77.9

//+// 85.7 62.4

Table 2: Results without/with the Rademacher complexity

#Fℜ
pAℜ

vAℜ # RF p
RA v

RA

/’koko/
/pa’pa/

5
6

89.6
95.1

62.8
78.3

9
7

87.6
93.2

85.2
89.5

//+// 7
96.6

76.8
12 95.2 92.7

4. Conclusions

From these experiments it can be concluded that hypernasal 
assessment should be determined analyzing phoneme by phoneme, 
instead of complete words. The acoustic properties of the same 
phoneme can be completely different in different parts of the 
uttered word due to variability of the behavior of articulators 
which depend so much on the context. The obtained results show 
that the Rademacher penalty adds generalization capability to 
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the classifier, which is a necessary constraint due to the high 
within-class variability of speech signals. This uncertainty included 
in the feature selection allows effective dimensionality reduction. 
Using few features, a performance of 85.2% in the verification 
stage was obtained for the voiceless plosive /k/, 89.5% for the 
phoneme /p/ and 92.7% considering both phonemes. Thus, feature 
selection revealed what features contributed to the generalization 
capability. For example, the power has discriminant information for 
/p/, while the phoneme /k/ is well-represented by the duration. 
The other selected features were related to the high-frequency 
bands except one feature of low-frequency, which could probably 
be used as reference for the classifier. This is in agreement with 
the information supplied by the clinic specialists (Baken, 1996). 
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