

Código	FDE 089
Versión	03
Fecha	2017-06-15

DISEÑAR E IMPLEMENTAR UN CONTROL DE VELOCIDAD AUTOMATIZADO DE UNA DECANTADORA EN LA LÍNEA DE VISCERAS DE UNA EMPRESA DE RENDERING

Wilson Ferley Flórez Cano

Frederson Olaya Velásquez

Ingeniería Electromecánica

Asesor:

MSc. Carlos Mario Londoño Parra

INSTITUTO TECNOLÓGICO METROPOLITANO

Junio, 2017

Código	FDE 089
Versión	03
Fecha	2017-06-15

RESUMEN

AGROSAN, es una empresa dedicada a la producción de harinas y sebos, dentro de sus procesos realiza la separación de sólidos que están inmersos en el aceite para incrementar su calidad, es allí donde se utilizan las decantadoras. La línea de víscera en especial, presentaba dificultades en estos equipos debido a que contaban con velocidades diferenciales fijas siendo el contenido de sólidos variable, incrementando el par motor en el equipo y generando disparos de las protecciones eléctricas, por causa de la obstrucción.

Las intervenciones de mantenimiento para habilitar el equipo luego de un disparo por carga eran muy invasivas y podían durar hasta 10 horas, sin contar con agravantes de averías, es por ello que se ejecutó el proyecto de automatización para control de velocidad diferencial, que eliminó dicha situación.

Esta implementación incluyó elementos accesibles en el mercado regional y eliminó la dependencia de asistencia técnica por parte de los representantes de la máquina procedente de Dinamarca, que normalmente tardaba más de ocho días en presentarse. Se pretende, que la empresa a futuro y de acuerdo a los resultados derivados de este trabajo, estandarice sus procesos de decantación, permitiendo incrementar la confiabilidad de sus equipos.

Por todo lo anterior se evaluó el proceso de separación y se realizó dicha automatización, esto incluyó la adecuación de una nueva sala de control, realizar los correspondientes cálculos y diseños, efectuar un presupuesto, capacitación en nuevas tecnologías, realizar la programación, adecuación de instrumentación y puesta a punto del proceso.

Palabras clave: Decantadora, Automatización, Separación de sólidos, Velocidad diferencial, Confiabilidad.

Código	FDE 089
Versión	03
Fecha	2017-06-15

RECONOCIMIENTOS

A la empresa Agropecuaria San Fernando, por apoyar e invertir en el desarrollo de propuestas de innovación que mejoran procesos y permiten el desarrollo de la ingeniería.

Al Instituto Tecnológico Metropolitano (ITM) Institución Universitaria por la formación integral que nos ha brindado, la cual nos permite formular propuestas de innovación industrial y desarrollo tecnológico.

Al profesor Carlos Mario Londoño Parra del Instituto Tecnológico Metropolitano, que gracias a su asesoría se logró desarrollar dicho proyecto.

Al Ing. Andrés Beltrán, que gracias a su apoyo y liderazgo, permite el desarrollo de nuevas propuestas tecnológicas para la compañía.

A los profesores del Instituto Tecnológico Metropolitano, que enfocaron con un contexto actual y apropiado sus conocimientos, llenándolos de un gran valor para todos aquellos que trabajamos en la industria y hacemos parte de la implementación de la tecnología.

Código	FDE 089
Versión	03
Fecha	2017-06-15

ACRÓNIMOS

- **1. OSHA**: Occupational safety health administration (Administración de Seguridad y Salud laboral).
- 2. RETIE: Reglamento técnico de Instalaciones Eléctricas adoptado por Colombia
- 3. NTC: Norma técnica colombiana.
- **4. IEC**: International electrotechnical commission (Comisión Electrotécnica Internacional.)
- **5. ANSI**: American National Standards Institute (Instituto Americano de Estándares Nacionales)
- 6. DIN: Deutsches Institut für Normung (Instituto Alemán de Normalización)
- **7. ISO**: International Organization for Standardization (Organización Internacional de Normalización).
- **8. IP**: International protection. (Grado de protección hace referencia al estándar internacional IEC 60529).
- **9. CIP:** Cleaning In Place. (Limpieza en sitio) sistema de lavado automático de una decantadora.

Código	FDE 089
Versión	03
Fecha	2017-06-15

CONTENIDO

RESUMEN	2
CONTENIDO	5
TABLA DE FIGURAS	7
INDICE DE TABLAS	9
1. INTRODUCCIÓN	10
1.1 GENERALIDADES	10
1.2 OBJETIVOS	11
1.2.1 General	11
1.2.2 Específicos	11
1.3 ORGANIZACIÓN DE LA TESIS	12
2. MARCO TEÓRICO	13
2.1 EL PROCESO DE LA DECANTACIÓN	13
2.2 PRINCIPIO DE FUNCIONAMIENTO	14
2.3 VARIABLES DEL PROCESO DE LA DECANTADORA	15
2.4 IMPORTANCIA DEL MANTENIMIENTO	19
2.4.1 Factores para tener en cuenta en la instalación eléctrica	21
2.4.2 Normas sanitarias	21
2.4.3 Averías frecuentes en las decantadoras	22
3. METODOLOGÍA	25
3.1 SELECCIÓN DE ELEMENTOS ELECTRICOS	25
3.2 DESCRIPCIÓN DEL PROCESO	27
3.3 REGISTRO DE INTERVENCIONES EN LA DECANTADORA	31
3.4 COSTOS Y DISEÑO	34
4. RESULTADOS Y DISCUSIÓN	36
4.1 DESCRIPCIÓN DE ELEMENTOS UTILIZADOS EN LA IMPLEMENTACIÓN	36

Código	FDE 089
Versión	03
Fecha	2017-06-15

	4.1.1 Información técnica de la decanter Alfa Laval 418	36	
	4.1.2 Variadores de velocidad Altivar Process	37	
	4.1.3 Descripción de TM221C Logic Controller	37	
	4.1.4 Terminal grafica 5.7" HMISTU	39	
	4.1.5 Relé de seguridad PILZ PNOZ X2.8P	40	
4	4.2 DIAGRAMAS DE POTENCIA Y CONTROL	41	
4	4.3 VARIABLES ANTES Y DESPUÉS DE LA AUTOMATIZACIÓN	59	
4	4.4 INVERSIÓN REALIZADA	62	
4	4.5 PROGRAMACIÓN	65	
	4.5.1 Señales digitales	65	
	4.5.2 Señales análogas	66	
	4.5.3 Contadores de alta velocidad	66	
	4.5.4 Programación de plc en lenguaje KOP	66	
	4.5.5 Imágenes y visualización HMI	67	
	4.5.6 Ensamble de elementos	71	
5	CONCLUSIONES, RECOMENDACIONES Y TRABAJO FUTURO		74
6 E	BIBLIOGRAFÍA		76
7 A	APÉNDICE		78
-	7 1 PROGRAMACIÓN DEL PLC	. 79	

Código	FDE 089
Versión	03
Fecha	2017-06-15

TABLA DE FIGURAS

Figura 1. Tambor y tornillo de decantadora. Fuente: (Lemitec, s.f)	15
Figura 2. Transmisión de decantadora. Fuente: Elaboración propia	17
Figura 3. Avería en elemento de protección mecánico contra sobretorque (clutch). F	uente:
Elaboración propia	23
Figura 4. Daño en transmisión por incremento de torque. Fuente: Elaboración propi	a24
Figura 5. Costo de caja reductora de 2.5 kNm para decantado. Fuente: Sistema de	
información de inventarios de la compañía (sistema uno)	24
Figura 6. Características eléctricas de los variadores de velocidad Altivar process. Fu	ente:
Schneider Electric	
Figura 7. Módulos adicionales de plc M221. Fuente: Schneider Electric	27
Figura 8. Diagrama proceso vísceras. Fuente: departamento de diseño de la compaí	iía29
Figura 9. Diagrama de proceso del sebo. Fuente: departamento de diseño de la con	npañía 30
Figura 10. Plc TM221. Fuente: schneider electric	38
Figura 11. Terminal grafica 5.7" HMISTU. Fuente: schneider electric	39
Figura 12. Relé de seguridad PILZ PNOZ X2.8P. Fuente: manual de operaciones PILZ	
Figura 13. Diagrama de alimentación 110 VAC	43
Figura 14. Diagrama de conexión de potencia	44
Figura 15. Diagrama de distribución 110 VAC	45
Figura 16. Diagrama de distribución 24 VAC	46
Figura 17. Diagrama de distribución módulos PLC	47
Figura 18. Entradas digitales PLC	48
Figura 19. Entradas digitales integradas a PLC	49
Figura 20. Salidas digitales PLC	50
Figura 21. Salidas digitales PLC	51
Figura 22. Entradas análogas módulo 1	52
Figura 23. Entradas análogas módulo 2	53
Figura 24. Salidas análogas módulo 3	54
Figura 25. Relé de seguridad	55
Figura 26. Relé señalización	56
Figura 27. Tablero multiusos eléctrico	57
Figura 28. Tendencia del proceso antes de la automatización. Fuente: Elaboración p	
Figura 29. Tendencia del proceso después de la automatización. Fuente: Elaboració	n propia.
	59
Figura 30. Tendencia del Torque vs porcentaje entrada de solidos	61

Código	FDE 089
Versión	03
Fecha	2017-06-15

Figura 31. Programación de PLC. Fuente: Elaboración propia6	57
Figura 32. Visualización principal de la decantadora en la HMI. Fuente: Elaboración propia. 6	57
Figura 33. Visualización de velocidades, torque, porcentajes de operación y corriente en la	
HMI. Fuente: Elaboración propia€	58
Figura 34. Visualización de alarmas en la HMI. Fuente: Elaboración propia	58
Figura 35. Visualización de históricos de alarmas en la HMI. Fuente: Elaboración propia 6	59
Figura 36. Visualización de la vibración en la HMI. Fuente: Elaboración propia	59
Figura 37. Control del CIP a la decantadora mediante la HMI. Fuente: Elaboración propia7	70
Figura 38. Control del torque del tornillo mediante la HMI. Fuente: Elaboración propia	70
Figura 39. Gabinete eléctrico. Fuente: Elaboración propia	71
Figura 40. Elementos seleccionados para ensamblar	71
Figura 41. Inicio de ensamble de elementos en gabinete eléctrico. Fuente: Elaboración	
propia	72
Figura 42. Gabinete eléctrico ensamblado. Fuente: Elaboración propia	72
Figura 43. Gabinete parte externa. Fuente: Elaboración propia	73
Figura 44. Decantadora. Fuente: Elaboración propia	73
Figura 45. Programación de PLC. Fuente: Elaboración propia	35

Código	FDE 089
Versión	03
Fecha	2017-06-15

INDICE DE TABLAS

Tabla 1. Registro de novedades en decantadora año 2014	31
Tabla 2. Registro de novedades en decantadora año 2015	32
Tabla 3. Registro de novedades en decantadora año 2016	32
Tabla 4. Registro de novedades en decantadora año 2017	33
Tabla 5. Características del plc TM221C16R	39
Tabla 6. Inversión realizada. Fuente: Elaboración propia	62
Tabla 7. Entradas digitales. Fuente: Elaboración propia	65
Tabla 8. Salidas digitales. Fuente: Elaboración propia	66
Tabla 9. Entradas y salidas análogas. Fuente: Elaboración propia	66
Tabla 10. Contadores de alta velocidad. Fuente: Elaboración propia	66

Código	FDE 089
Versión	03
Fecha	2017-06-15

1. INTRODUCCIÓN

1.1 GENERALIDADES

Se denomina rendering al proceso que convierte los subproductos cárnicos en sustancias aptas para el consumo animal, AGROSAN S.A, es una empresa dedicada a dicha actividad; dentro de sus procesos requiere realizar la separación de los sólidos que están inmersos en el sebo y en la sangre, es allí donde se utilizan las decantadoras que permiten separar estas dos fases.

La línea de víscera en especial, presenta dificultades en dichos equipos debido a que cuentan con velocidades diferenciales fijas y es variable el contenido de sólidos en el sebo, incrementando el par motor por obstrucción del producto, generando disparos de las protecciones de la máquina y dejándola fuera de servicio, lo cual afecta la producción de la línea. La intervención de limpieza del equipo tiene una duración de 2 a 10 horas de acuerdo a la compactación del material, sin contar que en muchas ocasiones este incremento de torque genera averías en los sistemas mecánicos, que para repararlos dependen de la importación de elementos.

El proyecto presenta una solución que incrementó la confiabilidad y la eficiencia del proceso, utilizando tecnología asequible en el mercado nacional, puesto que anteriormente los dispositivos de control en las decantadoras tardaban en adquirirse debido a los tiempos de importación.

Los párrafos precedentes, sustentan la necesidad de realizar un control automático para evitar la obstrucción del equipo al controlar la velocidad diferencial, utilizando tecnología disponible en el mercado nacional, lo cual reducirá asistencias técnicas externas y la operación manual inadecuada para controlar el porcentaje de alimentación del equipo. Se pretende con esta implementación, que la empresa de acuerdo a estos resultados, estandarice todos sus procesos con la misma tecnología.

Código	FDE 089
Versión	03
Fecha	2017-06-15

1.2 OBJETIVOS

1.2.1 General

Diseñar e implementar un control de velocidad automatizado de una decantadora en la línea de vísceras de una empresa de rendering, que permita incrementar la disponibilidad del equipo.

1.2.2 Específicos

- Evaluar el proceso actual de la línea de producción en la decantadora, en cuanto a calidad requerida del aceite y porcentajes de sólidos disueltos en la solución.
- Seleccionar los dispositivos de la cadena de medición, tales como los transmisores, los elementos finales de control y el controlador, que satisfagan los requerimientos de funcionalidad, seguridad y normatividad aplicable a la industria alimenticia.
- Realizar un estudio económico de la solución acorde a la propuesta inicial presentada a la compañía, en términos de alcance en automatización y costos.
- Realizar los planos eléctricos y mecánicos, para la conexión de los dispositivos y el montaje de los equipos, mediante un software de diseño asistido por computadora.
- Ensamblar los componentes seleccionados, programar el controlador y ejecutar pruebas de funcionalidad del equipo.

Código	FDE 089
Versión	03
Fecha	2017-06-15

1.3 ORGANIZACIÓN DE LA TESIS

El capítulo 1 tiene los objetivos que alcanzaran con el diseño e implementación de un automatismo para controlar la velocidad diferencial de una máquina decanter Alfa Laval 418, en la línea de vísceras de la compañía AGROSAN.

En el capítulo 2 se consulta las normas técnicas que se tuvieron en cuenta para el desarrollo del proyecto y se realiza una consulta de los sistemas de control típicos aplicados a máquinas decantadoras.

El capítulo 3 trata sobre la metodología empleada en el desarrollo del diseño e implementación del automatismo para controlar la velocidad diferencial de una máquina decanter, se describen las estrategias empleadas para la mejor identificación del problema.

En el capítulo 4 se presentan los resultados del trabajo, se realiza un análisis del proceso, se describen los equipos utilizados y los factores determinantes para seleccionar los dispositivos de la cadena de medición en el desarrollo del proyecto.

Código	FDE 089
Versión	03
Fecha	2017-06-15

2. MARCO TEÓRICO

Se denomina rendering al proceso que convierte los subproductos cárnicos (huesos, vísceras, sebo, etc) en sustancias aptas para el consumo animal. Con este método se pueden generar ingresos utilizando residuos que pueden llegar a ser peligrosos para la salud y para el medio ambiente.

En los procesos de rendering se utilizan decantadoras para realizar la separación de fases (sólido y liquido) en el aceite que tiene material particulado inmerso con el fin de incrementar su calidad. Las decantadoras también son utilizadas en la industria del petróleo y en las plantas de tratamiento de aguas residuales.

Las decantadoras son equipos utilizados para la separación de dos fases, líquidos y sólidos disueltos, utilizando la fuerza centrífuga generada en su interior al crear una velocidad diferencial y logrando así realizar dicha separación.

En el mercado, también existen tricanter, que realizan la separación en tres fases aprovechando las diferentes densidades del material, por ejemplo, en plantas de tratamiento de agua residual, lo utilizan para separar los sólidos, el agua y el aceite.

2.1 EL PROCESO DE LA DECANTACIÓN

La decantación es el proceso mediante el cual se separa un sólido o líquido más denso de otro fluido menos denso. La decantación natural requiere de un gran espacio y de muchos depósitos, por lo anterior, a partir de la década de 1970 se utiliza la fuerza centrífuga para realizar la separación de las dos fases en el aceite. (instituto de la grasa CSIC, s.f)

En los sistemas modernos, el proceso de extracción de aceite se efectúa de forma continua mediante separadores mecánicos que aprovechan la fuerza centrífuga. (Cerretani, Gómez Caravaca, & Bendini, 2009). Estas máquinas pueden ser de dos tipos: centrifugas de eje horizontal (llamado también decantador) y centrifugas de eje vertical (llamadas centrifugas de discos o centrifugas clarificadoras). Los primeros se utilizan para la separación de sólidos en altas concentraciones, los otros, se utilizan para la clarificación de líquidos y eliminación de sólidos a bajas concentraciones.

Código	FDE 089
Versión	03
Fecha	2017-06-15

Las centrifugas de discos trabajan a velocidades más altas que las decantadoras, por consiguiente, la fuerza centrípeta (valor de gravedad) de una centrifuga de discos es considerablemente mayor. (Flottweg, separation technology, 2016). Por ello, es posible descargar partículas muy finas y separar eficientemente suspensiones líquidas.

Las centrífugas decantadoras son equipos normalmente utilizados en la industria para la separación de fases líquido-líquido o sólido-líquido aprovechando la diferencia de densidad de los productos, están compuestas básicamente por un recipiente y un tornillo transportador interno; "el recipiente es giratorio alrededor de un eje longitudinal y tiene una abertura de descarga de torta en un extremo y una abertura de descarga en fase líquida" (EE.UU. Patente nº US 5643169 A, 1997)

El recipiente gira a una alta velocidad creando una fuerza centrípeta comúnmente denominada fuerza G, generando que los sólidos pesados se depositen en la pared del recipiente y sean transportados al extremo de descarga de sólidos del decantador por un tornillo transportador. El tornillo es accionado por una caja reductora tipo planetario que gira en la misma dirección del recipiente, pero a una velocidad diferente, causando una velocidad diferencial relativa entre el recipiente y el transportador de tornillo. (EE.UU. Patente nº US 20160318042 A1, 2016).

2.2 PRINCIPIO DE FUNCIONAMIENTO

Los lodos a una decantadora ingresan a través de un tubo de alimentación situado en el centro del eje hueco, después de salir de este tubo, los lodos se distribuyen alrededor del rotor y se van acelerando poco a poco hasta conseguir la velocidad de rotación máxima. La fuerza centrífuga comúnmente llamada fuerza G, hace que los sólidos en suspensión se vayan depositando en la parte interior del rotor, el tornillo transportador va transportando esos sólidos continuamente hacia la parte cónica del rotor.

La separación de los sólidos tiene lugar en el rotor, el líquido clarificado sale en el extremo de mayor diámetro por desbordamiento a través de salidas ajustables en diámetro, también conocidos como niveles de piscina.

Código	FDE 089
Versión	03
Fecha	2017-06-15

El tambor gira a una velocidad diferente DEL TORNILLO pero en el mismo sentido, lo que genera una velocidad diferencial (Δn o ΔRPM) que permite el arrastre o desplazamiento interno del material, ver Figura 1:

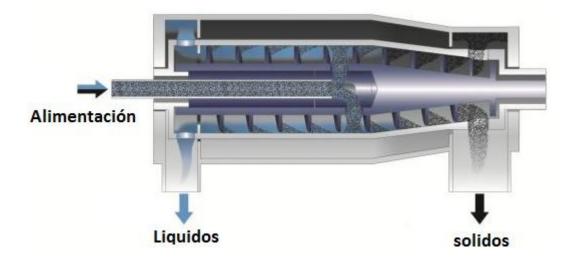


Figura 1. Tambor y tornillo de decantadora. Fuente: (Lemitec, s.f)

2.3 VARIABLES DEL PROCESO DE LA DECANTADORA

La velocidad diferencial es el resultado de la diferencia de velocidades del rotor y del tornillo en relación a la caja reductora; a esta velocidad el tornillo transporta los sólidos para sedimentarlos a través de la pared interna del tambor, determinando así el tiempo de residencia de los sólidos. Entre las múltiples causas de sobrecarga en una decanter se encuentran: alta concentración del líquido de proceso, propiedades intrínsecas de los sólidos, mala selección de la velocidad diferencial (Δ n o Δ RPM), obstrucción de la salida de la fase solida o la fase liquida y carga rápida del material a separar.

El decantador se puede ajustar a distintas aplicaciones variando los siguientes parámetros:

Código	FDE 089
Versión	03
Fecha	2017-06-15

Velocidad del rotor

Variando la velocidad del rotor se puede ajustar la fuerza G según la aplicación. A mayor velocidad, mejor separación.

Nivel del líquido

Ajustar el nivel del líquido (profundidad del depósito, también llamado nivel de piscina) tratando de conseguir el equilibrio óptimo entre la claridad del líquido y el grado de sequedad de los sólidos; en general, a menor radio, el líquido resulta más claro y los sólidos separados más mojados y viceversa.

Velocidad diferencial (Δn o ΔRPM)

Cuando se está utilizando una velocidad diferencial más pequeña, el material sale más más seco pero el líquido será menos claro, y viceversa. El par aumenta cuando disminuye Δn .

Caudal de alimentación

A mayor caudal de alimentación, mejor será la separación.

Concentración de sólidos disueltos

En las decantadoras los sólidos disueltos nunca pueden ser mayores del 50%, si este valor está por encima, genera mayor posibilidad de obstrucción del equipo.

Código	FDE 089
Versión	03
Fecha	2017-06-15

La velocidad diferencial es la diferencia entre la velocidad del rotor con respecto a la velocidad del tornillo interno, se calcula de la siguiente manera:

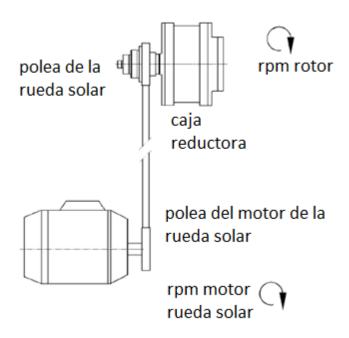


Figura 2. Transmisión de decantadora. Fuente: Elaboración propia

$$\textit{velocidad diferencial} \ (\Delta v) = \frac{\textit{rpm rotor} - \textit{rpm rueda solar x} \frac{\textit{\emptysetpolea motor rueda solar}}{\textit{\emptysetpolea rueda solar}}}{\textit{relacion de transmision de caja reductora}}$$

Por ejemplo, se tiene:

Rpm de rotor: 3250rpm, rpm de rueda solar: 1580, \emptyset polea motor rueda solar:

180mm, Ø polea rueda solar: 140mm

$$velocidad\ diferencial\ (\Delta v) = \frac{3250\ rpm - 1580\ rpm\ x\frac{\emptyset\ 180\ mm}{\emptyset\ 140\ mm}}{159.3} \ = \ 8\ rpm$$

El resultado es una velocidad diferencial de 8 rpm, que permite el adecuado avance del material.

Código	FDE 089
Versión	03
Fecha	2017-06-15

Para operar una decantadora es necesario conocer la velocidad diferencial, el porcentaje de sólidos y los caudales de alimentación; si el operador las desconoce, se recomienda que establezca una velocidad de alimentación baja para asegurar que la centrífuga no se dispare en caso de sobrecarga, pero genera un proceso deficiente.

Las decantadoras pueden ser operadas bajo el control de par, control de velocidad diferencial o un algoritmo híbrido que implique ambas variables. (Leung W. , 1998). Los procesos de refinación de aceite son variables, por lo que los fabricantes de decantadoras han realizado diversos diseños para optimizar el proceso de separación de sólidos, van desde el cambio del diseño del equipo hasta el cambio del tipo de control, permitiendo mantener un alto nivel de rendimiento de extracción y mejorar la calidad del aceite. Es así, como (Altieri, Di Renso, & Genovese, 2013) Implementaron un sensor que controla el caudal de alimentación de una decanter en un proceso de aceite de oliva.

La cantidad de sólidos que se pueden transportar en una decanter está relacionada con el par máximo de la caja planetaria, por lo tanto se debe proteger la caja reductora de daños debidos a sobrecarga, es por ello que se ha implementado un sensor de par, que es un dispositivo capaz de medir la fuerza ejercida por un brazo de torsión sobre una palanca, "el brazo de par está conectado al piñón de una caja de engranajes planetarios para girar el recipiente y el transportador de tornillo de una centrífuga decantadora a diferentes velocidades. El dispositivo de detección de par mide el par entre el piñón y la caja planetaria" (EE.UU. Patente nº US 20160318042 A1, 2016). Este sensor puede conectarse a un controlador para reducir el flujo de alimentación al decantador o para variar las velocidades del motor de accionamiento.

La decantadora intervenida en este trabajo, protege la caja reductora mediante un accionamiento mecánico denominado clutch, que básicamente genera un disparo por el accionar de un resorte cuando llega a un valor de torque predeterminado, accionando así un micro switch para generar alarma, protegiendo así el equipo, pero con la dificultad de que queda con carga y para evacuarla se tiene que realizar maniobra mecánica.

Los fabricantes de las decantadoras, también han implementado tarjetas electrónicas para el control de variables, es el caso de la CBB Decanter, "ha optado por utilizar una tarjeta, llamada DPC (controlador proceso decantador), (...) optimiza el proceso de separación y la gestión de todas las variables que van a influir en el mismo proceso y las eventuales alarmas" (cbbdecanter, s.f)

Código	FDE 089
Versión	03
Fecha	2017-06-15

Otros fabricantes como Alfa Laval también ajustan el tiempo de retención para obtener el grado requerido de clarificación del aceite. "El control electrónico de la velocidad diferencial se realiza a través de un variador de frecuencia (VFD) conectado directamente a la exclusiva caja de cambios, esta nueva configuración hace posible reducir el consumo de energía y el desgaste debido a la transmisión. (...) los decantadores también tienen un sistema electrónico de protección contra sobrecargas" (Alfa Laval, s.f)

Se han diseñado transmisiones hidrostáticas que regulan la velocidad conforme se regula el flujo de una bomba de desplazamiento positivo de volumen variable, siendo un sistema de retroalimentación que permite detectar variaciones y realizar un control de la velocidad diferencial, permitiendo que sea una velocidad constante; allí, el "motor de retroexcitación y la bomba de volumen variable están acoplados entre sí en un sistema de bucle cerrado para conservar la energía hidráulica del fluido de funcionamiento del sistema" (EE.UU. Patente nº US 20040138040 A1, 2004)

También se han realizado adecuaciones de sensores en línea instalados en la salida de la fase sólida, para realizar la medición del contenido de aceite y la humedad con métodos "en-línea" NIR (espectroscopía de reflectancia en el infrarrojo). Esta técnica no necesita reactivos y preparación de muestras complejas, y el equipo puede ser fácilmente instalado, este sensor está en prueba y de acuerdo a resultados se podría decidir si el método "on-line" es viable para su integración en sistemas de control en la extracción de aceite de oliva. (ISHS International Society for Horticultural ScieHermoso, 1999)

2.4 IMPORTANCIA DEL MANTENIMIENTO

El mantenimiento incluye procedimientos como la cambio de piezas, la verificación, la medición, el ajuste, la reparación y la detección de fallos, entre otros, y es de vital importancia en la industria alimentaria para garantizar un entorno de trabajo seguro y una producción de alimentos saludable e higiénica. Los entornos industriales entrañan factores de riesgo, tales como la frecuencia de las tareas, la desorganización en el entorno de trabajo, así como los defectos en equipos y herramientas, aumentando la posibilidad de que se generen errores humanos.

Código	FDE 089
Versión	03
Fecha	2017-06-15

Un mantenimiento deficiente puede afectar la salubridad de los productos por la contaminación con los residuos de desinfectantes o lubricantes, un mantenimiento seguro inicia desde el diseño de los equipos, donde se prevén posibles situaciones no deseadas, allí se disponen sistemas de protección, y se tiene en cuenta el fácil acceso a los equipos para facilitar el mantenimiento, garantizando que los equipos estén diseñados ergonómicamente.

La competencia ha llevado a algunas industrias de alimentos a incrementar su productividad a través de las implementaciones en tecnología, con equipos controlados por computadora que pueden reducir las tareas manuales, repetitivas y monótonas, permitiendo reducir el índice de traumas musculo esqueléticos, es decir, la tecnología facilita las operaciones y mejora la seguridad de las fábricas en la industria alimentaria. "Las empresas pueden disminuir el número de trastornos músculo esqueléticos implementando elementos de protección personal, realizando mejoras administrativas o llevando a cabo mejoras de ingeniería, siendo esta ultima la de mayor eficacia, economía y éxito". (OSHA, 2003)

"Las siglas OSHA (Occupational Safety and Health Administration), en inglés, corresponden a la Administración de Seguridad y Salud Ocupacional, una agencia del Departamento de Trabajo de los EE.UU. La única responsabilidad de la OSHA es proteger la seguridad y la salud de los trabajadores". (OSHA, 2002). Las normas OSHA cubren una variedad de riesgos que incluyen: eléctricos, protección contra incendios, higiene industrial, líquidos inflamables y combustibles, superficies de trabajo y traslado, equipos de protección personal, protección en las máquinas, comunicación de riesgos, rutas de salida, planes de acción de emergencia, incendios y demás. "Las normas OSHA son reglas que describen los métodos que los empleadores deben seguir por ley para proteger a sus empleados contra los peligros". (OSHA, 2013)

Es allí donde apunta el diseño e implementación de este proyecto, al utilizar la tecnología para reducir las intervenciones manuales y repetitivas por disparos de equipos, aumentando la seguridad y la producción, permitiendo que el proceso sea más flexible; debido al control manual del proceso en la decantadora de vísceras, se

Código	FDE 089
Versión	03
Fecha	2017-06-15

presentaban paros de línea que demandaban intervenciones y afectaban la calidad del producto.

2.4.1 Factores para tener en cuenta en la instalación eléctrica

El Retie (Reglamento técnico de instalaciones eléctricas) Es un documento técnico legal creado por el ministerio de minas y energía de Colombia, y es de obligatorio cumplimiento, establece medidas para garantizar que las instalaciones eléctricas sean seguras. Los equipos o sistemas eléctricos los deben intervenir solamente las personas calificadas con las competencias profesionales, según el Retie. Teniendo presente lo siguiente:

- "Las piezas activadas a las que un empleado pueda estar expuesto deben desactivarse antes de que el empleado trabaje en ellas o en sus cercanías" (OSHA, 2013)
- El equipamiento eléctrico y su cableado deben ser resguardados de daños mecánicos y del deterioro ambiental.
- Se deben instalar cubiertas o barreras a las instalaciones eléctricas para prevenir el contacto accidental con partes.
- Las instalaciones eléctricas deben de estar provistas de una adecuada protección a sobrecargas de corriente.
- Tomar tierra apropiadamente, "Toda instalación eléctrica que le aplique el Retie, excepto donde se indique expresamente lo contrario, tiene que disponer de un Sistema de Puesta a Tierra (SPT)" (RETIE, 2013)

En el diseño del proyecto se tuvieron en cuenta los riesgos eléctricos que pueden causar la muerte o daño físico, con el fin de realizar una implementación segura y que vaya de la mano con la seguridad industrial.

2.4.2 Normas sanitarias

"Las normas sanitarias de mayor uso en Suramérica dentro del amplio espectro para uniones sanitarias, podemos encontrar las siguientes:

Norma Sueca: SMS 1145, norma Alemana: DIN 11851, norma Inglesa: RJT (BS 1864), normas ISO: FIL-IDF(ISO 2853), Clamp (ISO 2852), norma Danesa: DS 722" (EVANIBQ, 2012)

Código	FDE 089
Versión	03
Fecha	2017-06-15

Un producto o equipo se considera sanitario si cumple las siguientes características:

- En condiciones de operación, todos los materiales en contacto con alimentos deben ser inertes frente a estos productos.
- Las superficies en contacto con alimentos deben ser lisas y pulidas.
- Todas las superficies en contacto con los alimentos deben ser accesibles para su inspección.
- Todas las zonas interiores de los equipos deberán permitir el drenado total de los líquidos alimentarios en contacto con los alimentos.
- El equipo debe estar diseñado para proteger de la contaminación exterior a los productos.

Las normas usadas en este proyecto fueron la norma DIN y la norma CLAMP.

Uno de los objetivos principales en la elaboración de alimentos es impedir que las materias primas se contaminen por la acción de microorganismos, es por ello que en la industria alimenticia se utiliza el acero inoxidable, debido a su resistencia mecánica, excelente acabado superficial, resistencia a las variaciones térmicas y buena resistencia a los agentes ambientales, permite la limpieza profunda y evita la formación de colonias de bacterias.

El diseño exterior de los equipos, tuberías y accesorios tienen importancia en las características sanitarias. Los elementos que tengan una superficie exterior que permita o facilite la acumulación de residuos, va a producir focos de contaminación que perjudican el ambiente de la producción. Es por ello la importancia del diseño, de tal forma que se pueda crear equipos de fácil limpieza y que eviten la generación de puntos muertos. El diseño sanitario permite que el producto pase por muchas operaciones unitarias, sin que se vean afectadas sus características por el medio o proceso a que es sometido. (BEERTEC, 2013)

2.4.3 Averías frecuentes en las decantadoras

Las decantadoras son suministradas por el proveedor con la tecnología solicitada por el cliente, que incluyen variables como medición de temperatura en rodamientos, medición de vibraciones, medición de velocidad y control de torque; en ausencia de automatización, las decanter utilizan un sistema de protección mecánico

Código	FDE 089
Versión	03
Fecha	2017-06-15

denominado clutch que básicamente genera un disparo por el accionar de un resorte cuando llega a un valor de torque predeterminado, accionando así un micro switch para generar alarma, protegiendo el equipo, pero con la dificultad de que queda con carga y para evacuarla se tiene que realizar maniobra mecánica, estas novedades generan paros del proceso y averías mecánicas tanto en caja reductoras como en elementos de protección contra sobrecarga, clutch. Ver Figura 3:

Figura 3. Avería en elemento de protección mecánico contra sobretorque (clutch). Fuente: Elaboración propia.

Debido a la falta de automatización, se presenta incremento del torque que puede afectar la caja de engranajes, la cual tiene un costo considerable y representa una parada mayor, ver Figuras 4 y 5:

Código	FDE 089
Versión	03
Fecha	2017-06-15

Figura 4. Daño en transmisión por incremento de torque. Fuente: Elaboración propia.

Figura 5. Costo de caja reductora de 2.5 kNm para decantado. Fuente: Sistema de información de inventarios de la compañía (sistema uno)

Código	FDE 089
Versión	03
Fecha	2017-06-15

3. METODOLOGÍA

Este proyecto emplea el método de la observación para el reconocimiento de las necesidades tecnológicas en el control de velocidad diferencial de una decantadora en la línea de vísceras de AGROSAN S.A, utilizando la ingeniería para resolver un problema práctico.

Para realizar la automatización de la decantadora, se evaluó el proceso en dicha línea; con el fin de entender las causas de las continuas obstrucciones tales como:

- Una alimentación rápida del fluido a separar.
- Líquido del proceso muy concentrado.
- Velocidad diferencial baja.
- Que la salida de líquidos este obstruida por los sólidos. (Sobrecarga del motor principal.)
- Velocidad del rotor alta.
- Falta de control de variables.

3.1 SELECCIÓN DE ELEMENTOS ELECTRICOS

La selección de los productos o materiales eléctricos, se realizó en función de la seguridad, su utilización e influencia del entorno, por lo que se tuvo en cuenta los siguientes criterios básicos:

- a. Conformidad de Producto conforme al RETIE, NTC, norma 3A, IEC O ANSI.
- b. Compatibilidad de materiales para evitar deterioro por el ambiente.
- c. Corriente de cortocircuito, de modo que las protecciones están provistas para que no causen peligro a las personas.
- d. Corriente, tensión y temperatura de trabajo en el punto de operación.
- e. Espacios disponibles para la operación y mantenimiento de la instalación y de los equipos.
- f. Frecuencia de servicio por la influencia en las características de los materiales.
- g. Influencias externas como el medio ambiente, condiciones climáticas y corrosión.

Código	FDE 089
Versión	03
Fecha	2017-06-15

- h. Otros parámetros eléctricos o mecánicos como el factor de potencia, tipo de corriente, conductividad eléctrica y térmica.
- i. Posibilidades de sujeción mecánica y refrigeración de los equipos.
- j. Potencia de los equipos.
- k. Temperaturas de operación.
- I. Estandarización de tecnología existente en la compañía.

Este último criterio es muy importante para la compañía, debido a la estandarización de los procesos. Tanto para la selección de los variadores de velocidad como para la selección de los módulos adicionales del plc, se tuvieron en cuenta características de los equipos. Ver Figura 6 y Figura 7.

Motor Linea de alimentación					Altivar Process					
Potencia indicada en la placa		Intensidad Potencia de linea aparente		lsc línea presumible máx.	Intensidad máx. permanente	Intensidad transitoria máx.	Referencia (0.00	Peso		
CO.L.			380 V	480 V	380 V	ITIOX.		durante 60 s		
CN:	_	normal ®								
CP:		oesada **								
	kW	HP	А	А	kVA	kA	А	А		kį
THDI	y 44% p		arga del	100%						
CN	15	20	27	23,3	19,4	50	31,7	34,9	ATV630D15N4	13,600
CP	11	15	20,6	18,1	15,0	50	23,5	35,3		
CN	18,5	25	33,4	28,9	24	50	39,2	43,1	ATV630D18N4	14,200
CP	15	20	27,7	24,4	20,3	50	31,7	47,6	1	
CN	22	30	39,6	34,4	28,6	50	46,3	50,9	ATV630D22N4	14,300
CP	18,5	25	34,1	29,9	24,9	50	39,2	58,8	1	
CN	30	40	53,3	45,9	38,2	50	61,5	67,7	ATV630D30N4	28,000
CP	22	30	40,5	35,8	29,8	50	46,3	69,5		
CN	37	50	66,2	57,3	47,6	50	74,5	82	ATV630D37N4	28,200
CP	30	40	54,8	48,3	40,2	50	61,5	92,3		
CN	45	60	79,8	69,1	57,4	50	88	96,8	ATV630D45N4	28,700
CP	37	50	67,1	59,0	49,1	50	74,5	111,8		
CN	55	75	97,2	84,2	70	50	106	116,6	ATV630D55N4	56,500
CP	45	60	81,4	71,8	59,7	50	88	132,0	1	
CN	75	100	131,3	112,7	93,7	50	145	159,5	ATV630D75N4	58,000
CP	55	75	98,9	86,9	72,2	50	106	159,0		
CN	90	125	156,2	135,8	112,9	50	173	190,3	ATV630D90N4	58,500
CP	75	100	134,3	118,1	98,2	50	145	217,5		

⁽¹⁾ Estos valores corresponden a una frecuencia de corte nominal de 4 kHz hasta ATV630D45N4, o 2,5 kHz para ATV630D55N4...D90N4, con utilización de régimen permanente. La frecuencia de corte se puede ajustar de 1 a 16 kHz para todas los calibres.

Superados los 2,5 o 4 kHz (según el calbre), el variador reducirá por si mismo la frecuencia de corte en caso de calentamiento excesivo. Para un funcionamiento en régimen permanente superada la frecuencia de corte nominal, debe aplicarse una desclasificación a la intensidad nominal del variador (ver las curvas de desclasificación en nuestra página web www.schneider-electric.com/pe).

(4) Valores dados para aplicaciones que requieren una sobrecarga pesada (hasta 150%).
(5) Los variadores pueden funcionar con una alimentación monotásica. En este caso, para el mismo calibre del variador, la potencia del motor se divide por 3. Por ejemplo, ATV630D18N4 para un motor de 4 kW.

Figura 6. Características eléctricas de los variadores de velocidad Altivar process. Fuente: Schneider Electric

⁽²⁾ Valor típico para la potencia de motor indicada y para lac de linea presumible máx, (3) Valores dados para aplicaciones que requieren una sobrecarga ligera (hasta 110%).

Código	FDE 089
Versión	03
Fecha	2017-06-15

Referencia	Número de E/S analógicas	Tipo de canal	Rango
TM3AI4	4 E	Total Contract	- 10+ 10 VDC, 0+ 10 VDC
TM3AI8	8 E	Tensión/ Corriente	020 mA, 420 mA
TM3TI4	4 E	Tensión/ Corriente/ Temperatura	Termopares (J, K, R, S, B, T, N, E, C) Sondas de temperatura (RTD) (Ni100, Ni1000, PT100, PT1000 - 10+ 10 VDC, 0+ 10 VDC / 020 mA, 420 mA
TM3TIBT	8 E	Temperatura	Termopares (J, K, R, S, B, T, N, E, C) Termistores NTC y PTC
TM3AQ2	2S	Tensión/ Corriente	
TM3AQ4	4S		- 10+ 10 VDC, 0+ 10 VDC 020 mA, 420 mA
TM3AM6	4 E / 2 S		OLLED HIPS, TALLED HIPS

Figura 7. Módulos adicionales de plc M221. Fuente: Schneider Electric

Los cálculos eléctricos de protecciones y cableado se realizaron en cumplimiento de la norma NTC 2050 y del reglamento técnico de instalaciones eléctricas de Colombia (RETIE), con el fin de garantizar al usuario una utilización segura y confiable de las instalaciones eléctricas y calidad en la ejecución de los trabajos.

3.2 DESCRIPCIÓN DEL PROCESO

Agropecuaria san Fernando es una empresa de rendering que aprovecha los subproductos animales para generar sebos para la industria de jabón y harinas que se utilizan para producir concentrados de alimentación animal.

Para generar una solución con la automatización de la decanter, se requirió entender el principio de funcionamiento de todas las líneas de proceso de la compañía, ya que en todas se utiliza decantadoras y se requiere a futuro estandarizar los automatismos.

El proceso de extracción de aceite en Agropecuaria san Fernando se da en las líneas de carne, en la línea de vísceras y en la línea de carne y hueso mediante decantadoras; todos estos procesos son similares en cuanto al principio.

Inicialmente la materia prima ingresa en una tolva de recepción, se transporta a un superdigestor de alimentación continua que procesa 6 toneladas horas de materia prima, este equipo se encarga de la cocción de la víscera a través de unos satélites

Código	FDE 089
Versión	03
Fecha	2017-06-15

del eje principal giratorio que se calientan con vapor saturado, transfiriendo dicha energía al material, luego es transportado a un tornillo drenador, encargado de iniciar la separación de los sólidos y el aceite, este aceite se trasega a un tambor giratoria que se encarga de disminuir aproximadamente en un 3% el material particulado del aceite, luego de ello el sebo es trasegado hacia un tanque pulmón encargado de suministrar el aceite al proceso de decantación.

El material sólido luego de pasar por el tornillo drenador, es transportado hasta las prensas, las cuales se encargan de generar presión para extraerle a dicho material el aceite restante, este aceite se trasega también hasta el tanque pulmón que alimenta la decanter.

El material sólido pasa por una tolva de recirculación que reduce temperatura del material, luego se pasa este producto por la zona de molienda para triturarlo, de allí es transportado hacia zona de zarandas para la clasificación de productos sólidos por granulometría y la separación de residuos; finalmente pasa por las enfriadoras de harina para disminuir la temperatura aprovechando los chiller, de allí sale para la tolva de empaque.

Los procesos de transformación de materia prima en los superdigestores, generan gases del proceso, los cuales son llevados a un tratamiento ambiental tanto para mitigar temperaturas como olores, inicialmente pasan por los aerocondensadores que son intercambiadores de calor, de allí continúan los gases restantes para ser lavados en un scrubber que implica adición de agentes químicos.

El sebo que llega al tanque pulmón de la decanter es trasegado a través de una bomba de cavidad progresiva, especial para dicho proceso de alimentación. Ver Figura 8.

La línea de carne, la línea de vísceras y la línea de carne y hueso, generan sebos de una manera muy similar a la anterior descripción de la línea de vísceras, todos estos aceites generados luego son trasegados hacia una decanter para disminuirle a un 1% el porcentaje de sólidos. Debido a que la compañía requiere refinar más el sebo, se procesa este material en centrifugas de discos comúnmente llamadas centrifugas clarificadoras, de allí pasan a los tanques de almacenamiento y despacho, ver Figura 9.

Código	FDE 089
Versión	03
Fecha	2017-06-15

Sistema de procesamiento de Víscera

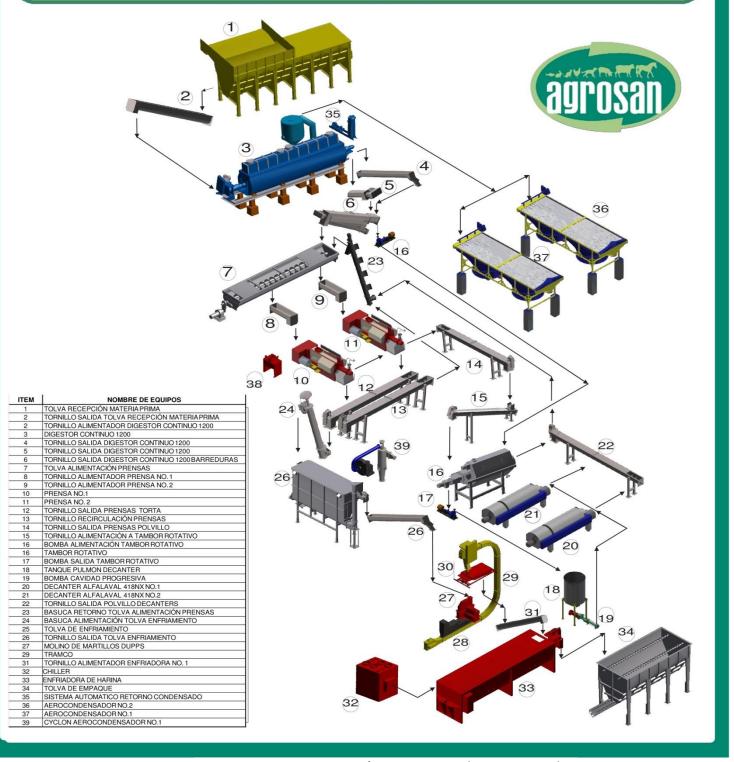


Figura 8. Diagrama proceso vísceras. Fuente: departamento de diseño de la compañía

LINEA DE SEBOS AGROPECUARIA SAN FERNANDO

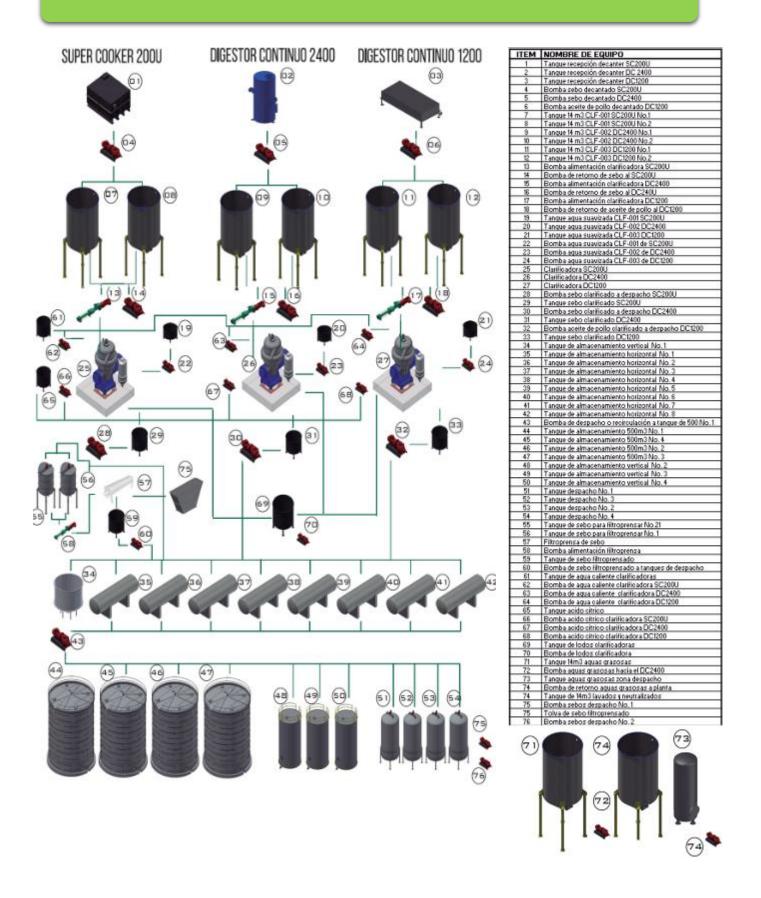


Figura 9. Diagrama de proceso del sebo. Fuente: departamento de diseño de la compañía

Código	FDE 089
Versión	03
Fecha	2015-01-22

3.3 REGISTRO DE INTERVENCIONES EN LA DECANTADORA

Luego de entender el principio de funcionamiento de los procesos, se requirió evaluar las intervenciones realizadas en la decantadora desde su instalación en la línea; se tienen registros de las novedades que generaron paro del proceso por obstrucción, siendo:

U: OT urgente, M: OT menor, P: OT programada

Tenemos:

Tabla 1. Registro de novedades en decantadora año 2014

				des en decantadora an			
	REGISTRO DE NOVEDADES EN DECANTADORA 418-1 EN EL AÑO 2014						
# Orden	Descripción Corta	Tipo	Fecha Solicitud	Descripción Motivo	#.Personas	Tiempo	Planeador
2425	ORGANIZAR MICROSUICHE DE SEGURIDAD Y RESETEAR FALL	U	08/01/2014	EQUIPO CON FALLA	2	1	JGALLEGO
2581	REVISION DE EQUIPO, REPONER	U	10/01/2014	EQUIPO EN FALLA	2	0,84	ABELTRAN
2658	SE RESETEA EQUIPO POR FALLA DE LA RUEDA SOLAR	U	11/01/2014	PRESENTA DISPARO POR SOBRECARGA	2	1,5	ABELTRAN
2669	DESTAQUEO	U	11/01/2014	TAQUEO CENTRIFUGA	2	2	DALVAREZ
3897	CAMBIO DE RUEDA SOLAR	U	05/02/2014	RUEDA SOLAR MALA	2	3	JGONZALEZ
3908	DESTAQUEAR CENTRIFUGA 2 DE LA VISCERA	U	05/02/2014	DISPARO RUEDA SOLAR POR CARGA	3	17	WFLOREZ
3970	DESTAQUEAR CENTRIFUGA 2 DE LA VISCERA,CAMBIO DE CL	U	07/02/2014	DISPARO RUEDA SOLAR POR CARGA	2	4	WFLOREZ
4167	HABILITAR EQUIPO SOBRECARGADO	М	11/02/2014	EQUIPO SOBRECARGADO	2	1,16	JGONZALEZ
5090	REPONER EQUIPO POR SOBRE CARGA	М	28/02/2014	TRABAJOS DE PRODUCCION	2	1,5	JGALLEGO
5245	DESTAQUEAR DECANTER 418	U	28/02/2014	ESTA TAQUEADA	2	2	MMONTOYA
5380	CAMBIAR ACOPLE GS Y RESORTE	U	06/03/2014		2	3	JVASQUEZ
5539	DISPARO DECANTER	М	11/03/2014	SOBRECARGA MOTOR DIFERENCIAL	1	0,42	FOLAYA
5570	REVISION DE CENTRIFUGA POR CONTINUOS DISPAROS	U	12/03/2014	DISPAROS	7	44	WFLOREZ
5918	RETIFICAR ACOPLE DEL BOLT	Р	21/03/2014	DESGASTE PROGRESIVO	1	7	DALVAREZ
6423	REPARACION GENERAL	Р	03/04/2014	FUERA DE SERVICIO	2	16	WFLOREZ
6862	HABILITAR CENTRIFUGA 2 VISCERAS	U	09/04/2014	EQUIPO FUERA DE SERVICIO POR FALTA DE ELEMENTOS ELECTRICOS	2	4	FOLAYA
8372	REEMPLAZAR CAJA REDUCTORA Y HABILITAR EQUIPO	U	23/05/2014	AVERIA INTERNA	2	48	AMUÑOZ
10415	EQUIPO EN FALLA, SE DEJA TRABAJANDO	U	15/07/2014	FALLA TEMPERATURA, EL EQUIPO NO ENCIENDE	2	2	FOLAYA
10816	EQUIPO EN FALLA, QUEDA BIEN	М	25/07/2014	EQUIPO DISPARADO	3	1,5	FOLAYA
11158	DECANTER TAQUEADA	U	01/08/2014	DISPARO DEL BOWL	2	2	WFLOREZ
11208	DECANTER DISPARADA	М	26/07/2014	HABILITACION MANUAL	1		MESCALANTE
11711	POLEA DETERIORADA	U	15/08/2014	DISPAROS EN LA RUEDA	3	4,5	MESCALANTE

Código	FDE 089
Versión	03
Fecha	2015-01-22

Tabla 1. Registro de novedades en decantadora año 2014

	<u> </u>						
	REGISTRO DE NOVEDADES EN DECANTADORA 418-1 EN EL AÑO 2014						
				SOLAR			
	RUEDA SOLAR SOBRE						
11961	CARGADA	U	20/08/2014	DISPAROS CONSTANTES	4	6	MESCALANTE
				DISPARO DE TOTALIZADOR			
14097	REVISION PARO DECANTER	M	09/10/2014	GAVINETE	1	0,5	DVALLEJOS

Fuente: sistema de información de mantenimiento, Infomante

En el año 2014, se observan muchas intervenciones de carácter urgente que generaron paro de equipo y averías mecánicas de alto nivel con un costo elevado.

Tabla 2. Registro de novedades en decantadora año 2015

	REGISTRO DE NOVEDADES EN DECANTADORA 418-1 EN EL AÑO 2015						
# Orden	Descripción Corta	Tipo	Fecha Solicitud	Descripción Motivo	#.Personas	Tiempo	Planeador
18888	HABITAR DECANTER	U	30/01/2015	CENTRIFUGA TAQUEADA	3	3	JVASQUEZ
25124	DESTAQUEAR BOWL	U	07/02/2015	DISPAROS CONSTANTES	3	3	FOLAYA
				DESMONTE DE DECANTER DE			
27145	DESINSTALACION DE DECANTER	Р	17/04/2015	ACEITE DE POLLO	6	10	DALVAREZ

Fuente: sistema de información de mantenimiento, Infomante

En el año 2015, se observan menores intervenciones con respecto al año anterior debido a que la decantadora quedo fuera de servicio por modificaciones en el diseño de la línea en general.

Tabla 3. Registro de novedades en decantadora año 2016

	REGISTRO DE NOVEDADES EN DECANTADORA 418-1 EN EL AÑO 2016							
# Orden	Descripción Corta	Tipo	Fecha Solicitud	Descripción Motivo	#.Personas	Tiempo Real	Planeador	
36244	DESTAQUEAR BOWL Y TUBO ALIMENTADOR	U	19/02/2016	SE RIEGA EL MATERIAL	2	4	LBOHORQUEZ	
36446	DESTAQUEAR BOWL	U	22/02/2016	DISPAROS CONSTANTES	8	22	LBOHORQUEZ	
36595	DESTAQUEAR BOWL	U	27/02/2016	DISPARADA POR TORQUE	3	2	LBOHORQUEZ	
36989	HABILITAR DECANTER	U	06/03/2016	DISPARADA POR OBSTRUCCION	5	7	WFLOREZ	
37219	EQUIPO DISPARADO POR SOBRE CARGA	М	10/03/2016	DECANTER TAQUEADA	3	4,5	LBOHORQUEZ	
37262	DESTAQUEAR DE CANTER	М	10/03/2016	SE DISPARA POR TORQUE ALTO	2	2	JGARZON	
37317	HABILITAR DECANTER	М	12/03/2016	DISPARADA POR SOBRE CARGA	2	2	JDELRIO	
39308	REVIZAR EQUIPO	Р	23/04/2016	SE ESTA APAGANDO SOLA	2	2	JVILLA	
39325	DESTAQUEAR DECANTER	М	24/04/2016	DISPARO CONSTANTE	3	1,5	MESCALANTE	

Código	FDE 089
Versión	03
Fecha	2015-01-22

Tabla 3. Registro de novedades en decantadora año 2016

	Tubia 3. Registro de novedades en decuntadora uno 2010								
	REGISTRO DE NOVEDADES EN DECANTADORA 418-1 EN EL AÑO 2016								
# Orden	Descripción Corta	Tipo	Fecha Solicitud	Descripción Motivo	#.Personas	Tiempo Real	Planeador		
				DECANTER CON					
				TORQUEALTO					
39456	DESTAQUEAR DECANTER	М	29/04/2016	PRECENTANDO DISPARO	5	5	JGARZON		
				TRORQUE ALTO DISPAROS					
39574	DESTAQUEAR DECANTER	М	01/05/2016	POR CARGA	2	2	JGARZON		
				TORQUE ALTO CAUSANDO					
40406	DESTAQUEAR DECANTER	М	21/05/2016	DISPARO DELAMAQUINA	3	3	JGARZON		
40837	DECANTER DISPARADA	U	02/06/2016	DESTAQUIAR DECANTER	3	3	JVASQUEZ		
42025	REPONER EQUIPO	Р	28/06/2016	MICROSUICHE DISPARADO	2	1,34	JVILLA		
	TORNILLO DE AJUSTE DE			TORNILLO DE AJUSTE DE					
42544	TAPA CORTAR Y SOLDAR	U	23/07/2016	TAPA ROSCA PELADA	2	2,5	JVASQUEZ		
				DECANTER OBSTRUIDA (
42891	DESTAQUEAR DECANTER	U	18/07/2016	NO LES HACEN BARRIDO)	2	2	JVASQUEZ		
	DESTAQUEAR TUBERIA DE			NOESTABA ALIMENTANDO					
45348	ALIMENTACION	U	15/09/2016	LA DECANTER	3	4,5	LBOHORQUEZ		
47572	HABILITAR DECANTER	U	05/11/2016	DECANTER OBSTRUIDA	4	8	JDELRIO		
				PRESENTA TORQUE ALTO	·				
				36% AUN EN VACIO					
48864	REVIZAR EQUIPO	Р	07/12/2016	DEBERIA ESTAR EN 10%	3	2,49	JVILLA		

Fuente: sistema de información de mantenimiento, Infomante

En el año 2016, continúan las intervenciones de carácter urgente que generaron paro de equipo y averías mecánicas.

Tabla 4. Registro de novedades en decantadora año 2017

	REGISTRO DE NOVEDADES EN DECANTADORA 418-1 EN EL AÑO 2017						
# Orden	Descripción Corta	Tipo	Fecha Solicitud	Descripción Motivo	# Personas	Tiempo Real	Planeador
	REPARAR TUBO			DECANTER N2 CON FALLA ,			
54657	ALIMENTADOR	М	12/02/2017	EN TUBO ALIMENTADOR	2	1	SQUIROZ
	REVIZAR DECANTER EN FALLA			SE NECESITA HABILITAR			
55971	POR ALTA VIBRACION	М	20/05/2017	EQUIPO	1	1	WZAPATA

Fuente: sistema de información de mantenimiento, Infomante

En el año 2017, luego de la implementación del automatismo, no se observan disparos de equipo, lo que implica disminución de paros de línea, menor número de intervenciones, ausencia de averías en sistemas electromecánicos por falta de control de torque e incremento de confiabilidad en equipo.

Código	FDE 089
Versión	03
Fecha	2015-01-22

3.4 COSTOS Y DISEÑO

Se realizó un estudio económico de la solución para determinar la relación costo-beneficio, fundamentada en las cotizaciones de proveedores; todo ello, dirigido a resolver las continuos paros que se presentaban en la línea de vísceras debido a la falta de automatización de la decanter, permitiendo garantizar un proceso confiable, reducir costos, incrementar la seguridad en operaciones, incrementar la calidad y garantizar la salubridad del producto al realizar el proceso con la mínima intervención del recurso humano; este estudio económico estuvo acorde a la propuesta inicial presentada a la compañía, en términos de alcance en automatización y costos.

Posteriormente, se definió el diseño de la automatización para iniciar la etapa de levantamiento de planos y compra de elementos seleccionados; los planos eléctricos y mecánicos se realizaron mediante el uso de un software de dibujo estándar (CAD), que permitió la interpretación de la lógica cableada, la programación y la fabricación de tableros de control.

Para el levantamiento de planos se tuvieron en cuenta factores como: la seguridad del personal, las variables a controlar en el proceso, la lógica programada, temperaturas de operación de los equipos y demás. Para la programación se tuvo en cuanta la seguridad del personal, la seguridad del activo, las variables del proceso a controlar, el número de entradas y salidas disponibles para el proyecto y las buenas prácticas en programación.

Se realizó cableado e instalación de elementos de potencia y control en el gabinete eléctrico, también la instalación y conexión de elementos de instrumentación y elementos finales de control seleccionados para las nuevas variables tales como vibración, temperatura de chumaceras, velocidades; para estas variables se instalaron nuevos sensores, por lo que se realizan adecuaciones mecánicas que permitieran la sujeción de elementos, tratando de no afectar el diseño original de la máquina.

La comunicación entre el plc y la interfax de comunicación se realizó por medio de protocolo Ethernet para descargar la programación, permitió iniciar las pruebas en vacío, dando relevancia a las variables de seguridad, finalmente se inician pruebas con material y se ajustan las velocidades diferenciales de acuerdo a la cantidad de sólidos del producto.

Código	FDE 089
Versión	03
Fecha	2015-01-22

Las pruebas de trabajo consistieron en someter la decantadora a diferentes porcentajes de alimentación para evaluar el comportamiento del torque, el líquido y el sólido en sus respectivas descargas.

Código	FDE 089
Versión	03
Fecha	2015-01-22

4. RESULTADOS Y DISCUSIÓN

4.1 DESCRIPCIÓN DE ELEMENTOS UTILIZADOS EN LA IMPLEMENTACIÓN

A continuación se describen cada uno de los elementos eléctricos y mecánicos que fueron utilizados en la implementación de la automatización de la decantadora.

4.1.1 Información técnica de la decanter Alfa Laval 418

No de fabricación.: 5121243 Fecha de emisión: 2007-09-17 Líquido de proceso: Min. 0°C (32°F) - max. 130°C (266°F)

Densidad máxima de los sólidos compactos húmedos a la velocidad del rotor máxima: 1.2

kg/dm³

Rotor

Velocidad del rotor máxima: 4000 rpm

Longitud del rotor: 1460 mm Diámetro del rotor: 353 mm

Ángulo cónico: 8.5°

Material: AL 111 2349-02 (AISI 316)

Tornillo transportador

Material: AL 111 2349 (AISI 316)

Carcasa y tapa

Material: Acero inoxidable (AISI 316)

Sistemas de accionamiento

Suministro de corriente eléctrica: 3 x 440 V / 60 Hz Caja de engranajes, tipo: Planetaria – 2 etapas Torsión máxima Caja de engranajes: 2.5 kNm

Caja de engranajes, relación: 1:159

Velocidad principal de funcionamiento: 3250 rpm Fuerza G a la velocidad de funcionamiento: 2084 G

Motor principal: 30 kW (ALFA LAVAL, 2007)

Código	FDE 089
Versión	03
Fecha	2015-01-22

4.1.2 Variadores de velocidad Altivar Process

Los variadores Altivar Process de schneider electric, ayudan a mejorar el rendimiento del equipo, gracias a la optimización del consumo de energía y de las altas prestaciones que ofrece al usuario final.

Estos ofrecen funciones de seguridad y automatización integradas que cumplen con los requisitos de las aplicaciones más exigentes. Además, posee también varias tarjetas de comunicación opcionales disponibles para una integración perfecta a las principales arquitecturas de automatización. (SCHNEIDER ELECTRIC, 2015)

Algunas características:

- Modbus/TCP
- Servicios Ethernet: SNMP, SNTP, BootP & DHCP y IPv6
- Configuración, diagnóstico y control del variador mediante el software Unity Pro
- Conexión a distintos variadores utilizando componentes de conexión multipunto
- Servidor web incorporado
- Diagnóstico de red en tiempo real
- Lectura/escritura de datos
- Programación con software SoMove

Nota: Para el proyecto de automatización se utilizaron los siguientes variadores de velocidad Altivar Process: Variador ATV630D45N4 (60HP) y variador ATV630U75N4 IP21 7.5KW (10HP), ver Figura 6.

4.1.3 Descripción de TM221C Logic Controller

El TM221C16R es un controlador lógico o plc que tiene una amplia variedad de potentes funciones y puede servir para una amplia gama de aplicaciones. La configuración, programación y puesta en funcionamiento se lleva a cabo con el software SoMachine Basic, compatible con los siguientes lenguajes de programación:

IL: Lista de instrucciones

LD: Diagrama de contactos

Grafcet (lista) (schneider Electric, 2014)

Ver Figura 10.

Código	FDE 089
Versión	03
Fecha	2015-01-22

Figura 10. Plc TM221. Fuente: schneider electric

Fuente de alimentación

La fuente de alimentación de TM221C Logic Controller es de 24 V CC o de 100-240V CA.

Entradas/salidas incrustadas

Los tipos de E/S incrustadas que aparecen a continuación están disponibles, en función de la referencia del controlador:

- Entradas normales
- Entradas rápidas asociadas con contadores
- Salidas transistorizadas normales (común negativo y positivo)
- Salidas transistorizadas rápidas (común negativo y positivo) asociadas con generadores de pulsos
- Salidas de relé
- Entradas analógicas
- Salidas analógicas

Almacenamiento extraíble

Los M221 Logic Controller incorporan un slot para tarjeta SD.

Usos principales de la tarjeta SD:

- Inicialización del controlador con una aplicación nueva
- Actualización del firmware del controlador

Código	FDE 089
Versión	03
Fecha	2015-01-22

Funciones de comunicación incorporadas

Hay disponibles los siguientes tipos de puertos de comunicaciones según la referencia del controlador:

- Ethernet
- USB mini-B

Tabla 5. Características del plc TM221C16R

Referencia	Entradas	Salidas	Entradas	Puertos de	Fuente de			
	digitales	digitales	analógicas	comunicación	alimentación			
TM221C16R	5 entradas	7 salidas de relé	si	1 puerto de	100 a 240V CA			
	normales, 4			línea serie y un				
	entradas rápidas			puerto USB				
Fuente: Manual de usuario plc TM221C16R schneider electric								

Para el proyecto se utilizó un Plc TM221C16R con los siguientes módulos adicionales: módulo de temperatura TM3TI4 y módulo de salidas analógicas TM3AQ4, ver Figura 7.

4.1.4 Terminal grafica 5.7" HMISTU

Terminal gráfica de pantalla táctil en color Magelis STU de 5,7 pulgadas. Además de la conexión serie RJ45 estándar, también dispone de una conexión Ethernet integrada para una comunicación más rápida y amplia (a través de los protocolos Modbus TCP, Ethernet IP y Profinet,). Ver Figura 11.

Figura 11. Terminal grafica 5.7" HMISTU. Fuente: schneider electric

Código	FDE 089
Versión	03
Fecha	2015-01-22

Características:

Ethernet Embebido

Puertos RS232 / 485 RJ45 multiprotocolo

Tamaño del Display 5.7 in

Tipo de procesador RISC ARM9

Tensión de Alimentación 24 V dc

Tipo de Puerto COM1, USB 2.0

Color del Display: a color

Velocidad del Procesador 333MHz

Memoria Integrada 128 (copia de seguridad) kB, 16 (aplicación) MB

Dimensiones del Cuerpo 163 longitud x 129,15 ancho x 56,5 mm profundidad

Resolución del Display 320 x 240pixels

Tipo de Display TFT LCD Protección IP IP20, IP65

Temperatura Máxima de Funcionamiento +50°C

Temperatura Mínima de Funcionamiento 0°C Número de Puertos 3 (schneider electric, 2014)

4.1.5 Relé de seguridad PILZ PNOZ X2.8P

El relé de seguridad PNOZX2.8P proporciona una interrupción de seguridad de un circuito de seguridad. Cumple los requisitos de EN 60947-5-1, EN 60204-1 y VDE 0113-1. Es normalmente utilizado en paros de emergencia, interruptor de límite de puerta de seguridad, botón de restablecimiento y cortinas de luz. Ver Figura 12.

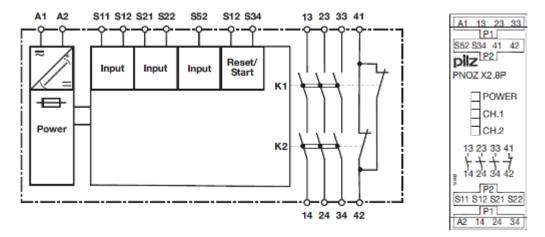


Figura 12. Relé de seguridad PILZ PNOZ X2.8P. Fuente: manual de operaciones PILZ PNOZ

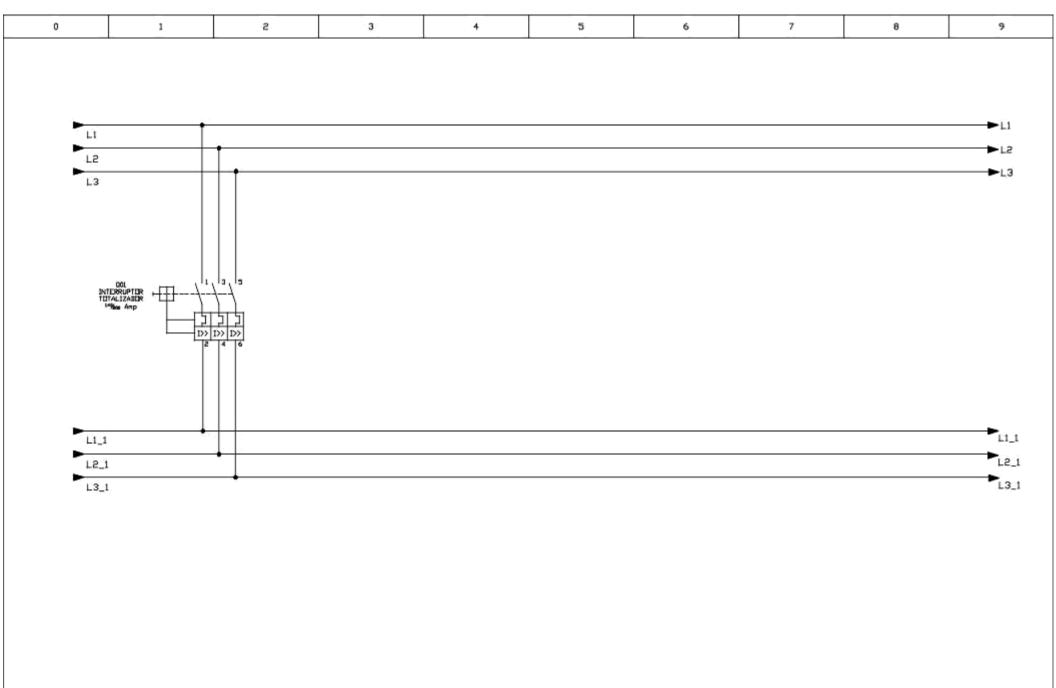
Código	FDE 089
Versión	03
Fecha	2015-01-22

Características y ventajas

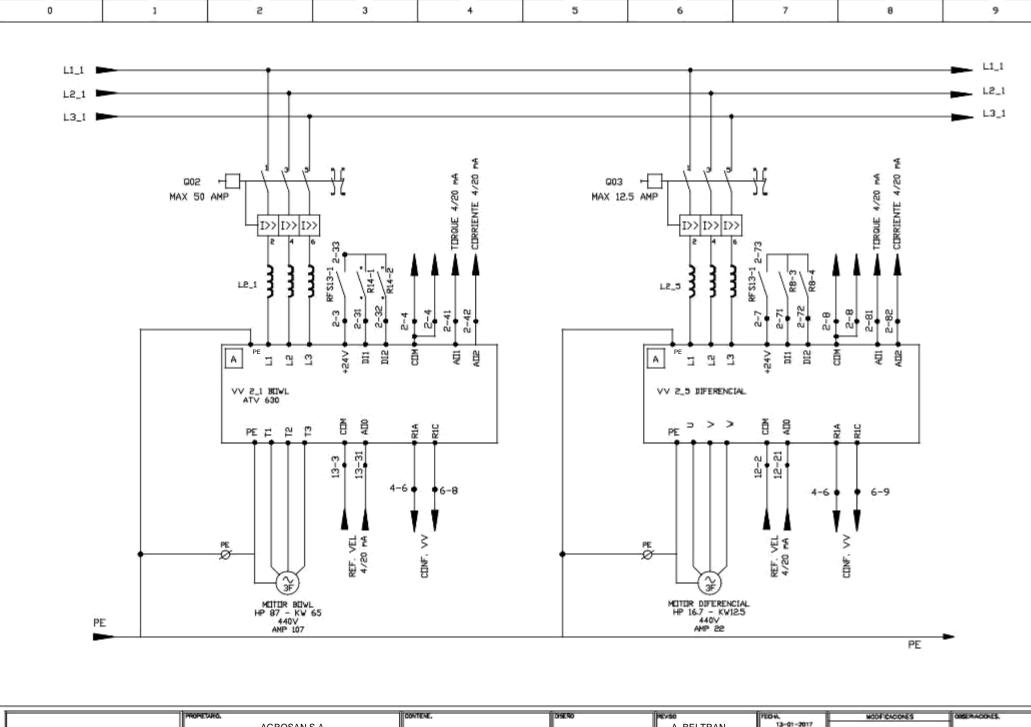
- 3 salidas de seguridad (N/A) y 1 auxiliar (N/C) de relé de guiado positivo instantáneo
- Indicador LED para canal 1/2 de estado del interruptor y tensión de alimentación
- Terminales de conexión por tornillo enchufables
- La función de seguridad permanece efectiva en caso de fallo de un componente
- La apertura y cierre correctos de los relés de función de seguridad se prueba automáticamente en cada ciclo de conexión-desconexión
- Reset automático o manual
- Terminales roscados
- Montaje en carril DIN (Pilz, s.f)

DIAGRAMA DE POTENCIA Y CONTROL

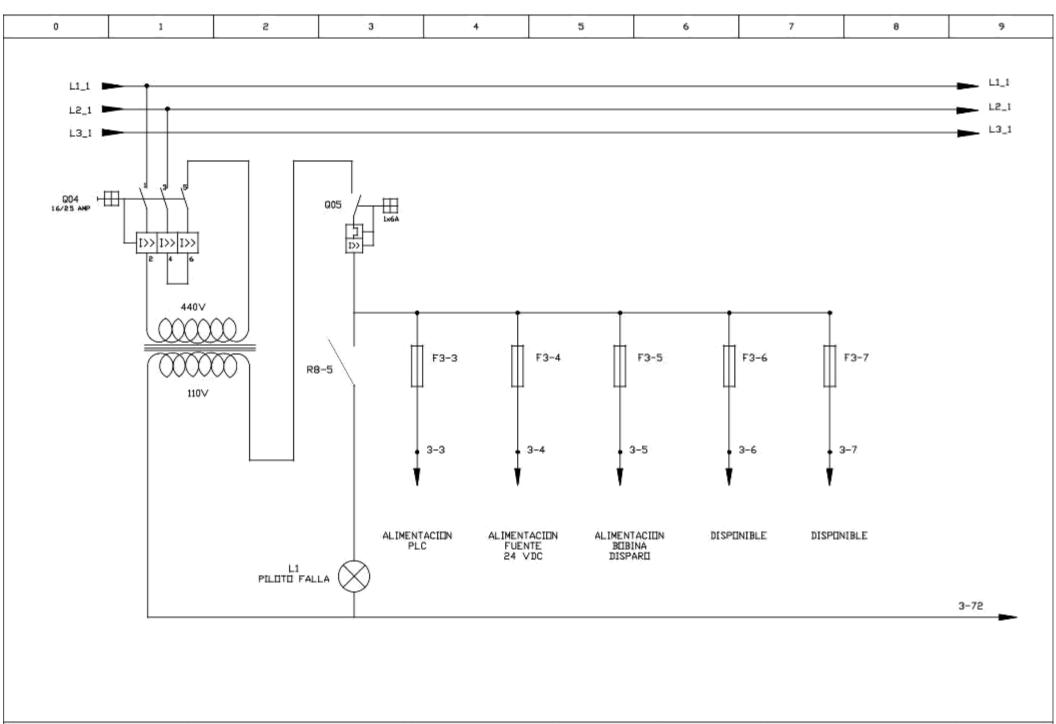
DECANTER 1


418

LINEA VISCERAS


CABLEADO CONTROL Y

POTENCIA


AGROSAN S.A.	DIAGRAMA DE	DSESSO	A. BELTRAN	7EO-W. 13-01-2017	MODIFICACIONES	ORSERVACIONES.
DECANTER 1 - 418 VISCERAS AMAGA / /	1 TIO LINEA	English and the second	рвис.	ESCUA		PLANO N'. De

Ī		PROPETARO.			59£%	PEVSO	7EO-W. 13-01-2017	MODIFICACIONES	ORSER/ACIONES.
	Figura 13. Diagrama de	AGROSAN S.A.		DIAGRAMA DE ALIMENTACION		A. BELTRAN	0.T.		PLANO N.
ı			BICACION.	110.7/40	17 mm	DIBMO.	ESCALA		De
[DECANTER 1 - 418 VISCERAS A	AMAGA / ANTQ	220 17.0	A. BELTRAN				1

PLANO Nr.
HOLA
1 I
=

	PROPETARO.		CONTENE.	DISERS	PEVSO	PEDW.	MODIFICACIONES	OBSERNACIONES.
Figura 15. Diagrama de	AGROSAN S.A				A. BELTRAN	13-01-2017		1 1
I rigura 13. Diagrama de	1	•	DIAGRAMA DE		7522	0.T.		PLANO N'.
distribución 110 VAC	reported to	TOWA CRUST	DIATRIBUCION	APROBO.	pawa.			3 ~
	PHOTECIO.	UBICICION.		V		FSCALA		
	DECANTER 1 - 418 VISCERA	AMAGA / ANTQ	∥ 110 VAC	A. BELTRAN				1
distribución 110 VAC		AMAGA / ANTQ	DIATRIBUCION	14.44	Damo.	ESCALA		3 ne .

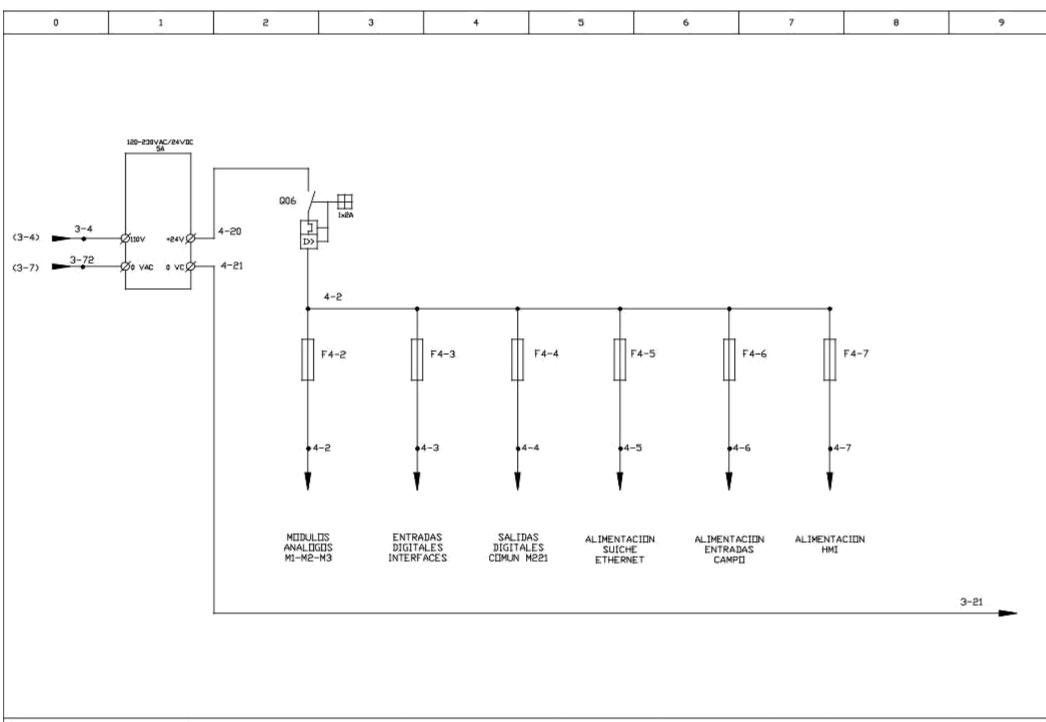


Figura 16. Diagrama de distribución 24 VAC

DIAGRAMA DE DIATRIBUCION 24 VAC

DECANTER 1 - 418 VISCERAS AMAGA / ANTO 24 VAC

DIAGRAMA DE DIATRIBUCION 24 VAC

A. BELTRAN

DECANTER 1 - 418 VISCERAS AMAGA / ANTO 24 VAC

A. BELTRAN

DECANTER 1 - 418 VISCERAS AMAGA / ANTO 24 VAC

DIAGRAMA DE DIATRIBUCION A. BELTRAN

DECANTER 1 - 418 VISCERAS AMAGA / ANTO 24 VAC

DIAGRAMA DE DIATRIBUCION A. BELTRAN

DECANTER 1 - 418 VISCERAS AMAGA / ANTO 24 VAC

DIAGRAMA DE DIATRIBUCION A. BELTRAN

DECANTER 1 - 418 VISCERAS AMAGA / ANTO 24 VAC

DIAGRAMA DE DIATRIBUCION A. BELTRAN

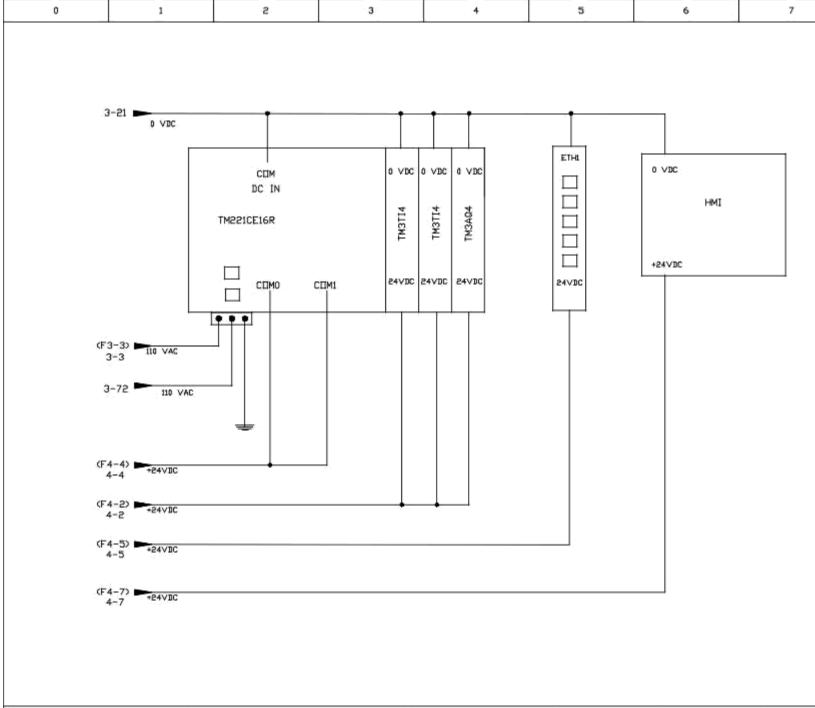

DECANTER 1 - 418 VISCERAS AMAGA / ANTO 24 VAC

DIAGRAMA DE DIATRIBUCION A. BELTRAN

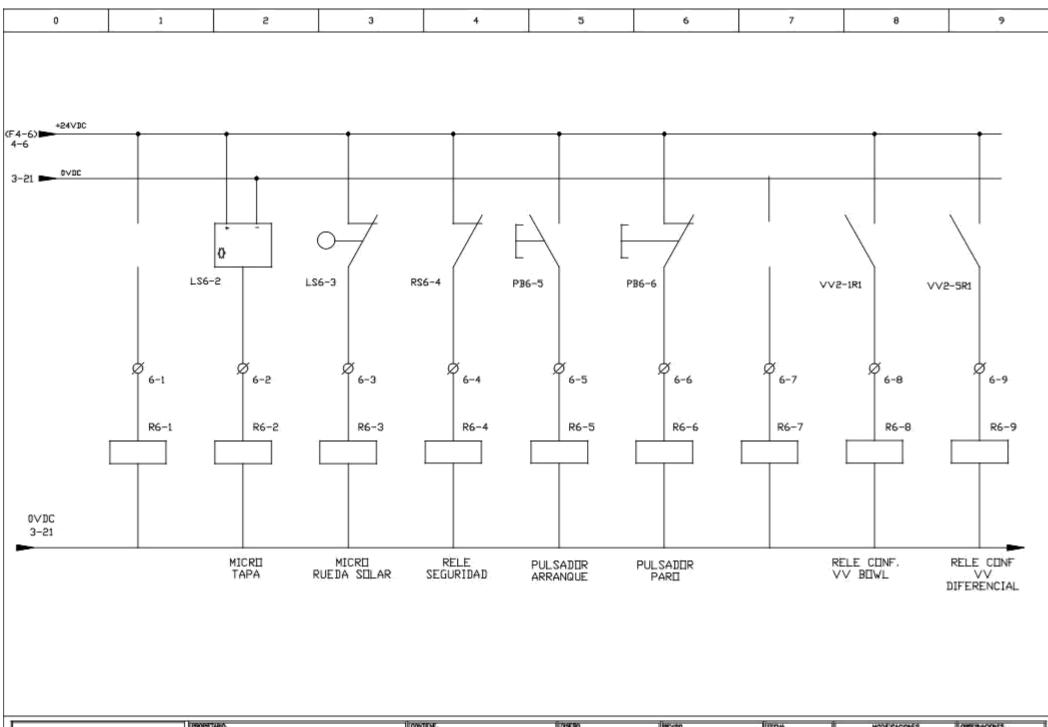

DECANTER 1 - 418 VISCERAS AMAGA / ANTO 24 VAC

DIAGRAMA DE DIATRIBUCION A. BELTRAN

DECANTER 1 - 418 VISCERAS AMAGA / ANTO 24 VAC

Ī	Figura 17. Diagrama de	AGROSAN S.A		DIAGRAMA DE	D4:90	A. BELTRAN	FED-W. 13-01-2017 0.T.	MANO N.
П	distribución módulos	PROVECTO.	UBICACION.	DIATRIBUCION	APROBIO.	DISMO.	ESCALA	_5_ ne
ı		DECANTER 1 - 418 VISCERAS	AMAGA / ANTQ	MODULOS PLC	A. BELTRAN		i anno	HOUR

Figura 18. Entradas	AGROSAN S.A.	CONTENE. ENTRADAS	09£90	A. BELTRAN	FED-W. 13-01-2017 0.T.	MODIFICACIONES	DUBLIMACIONES.
digitales PLC	DECANTER 1 - 418 VISCERAS AMAG	DIGITALES	A. BELTRAN	рвис.	ESCALA		6 ne

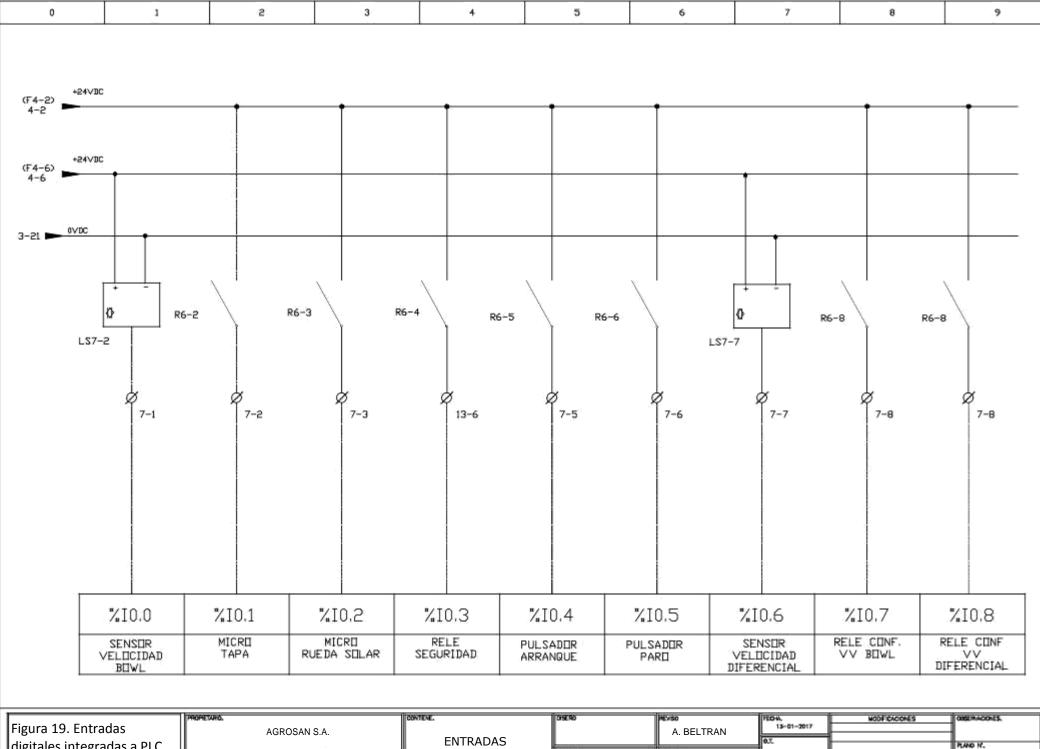
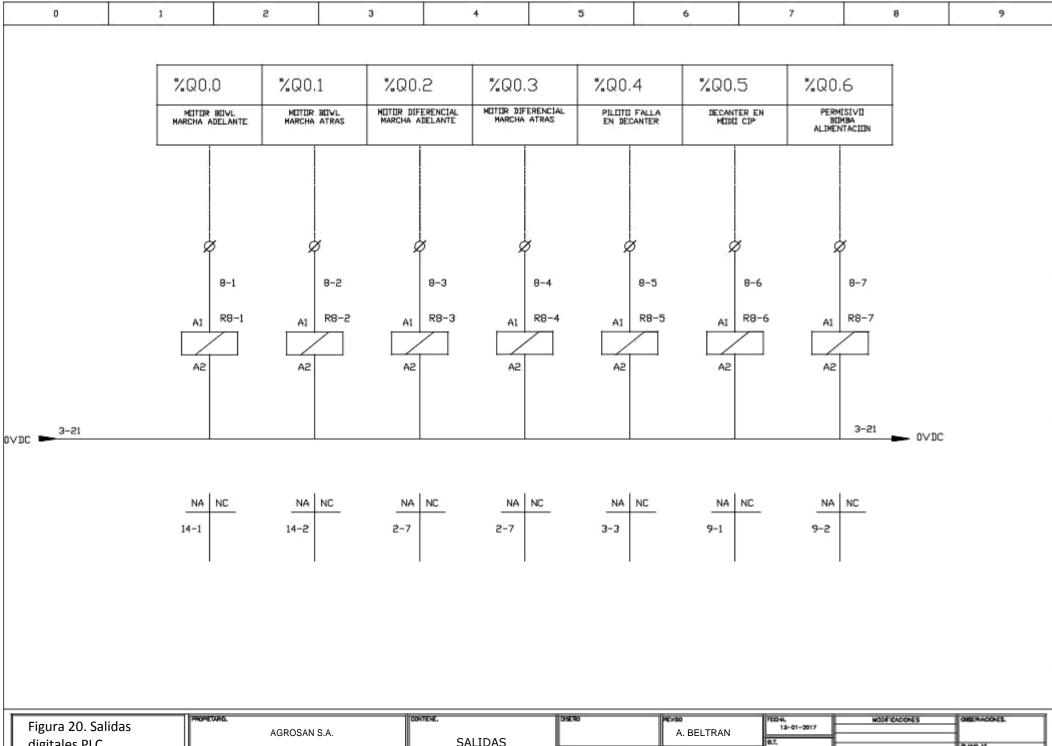
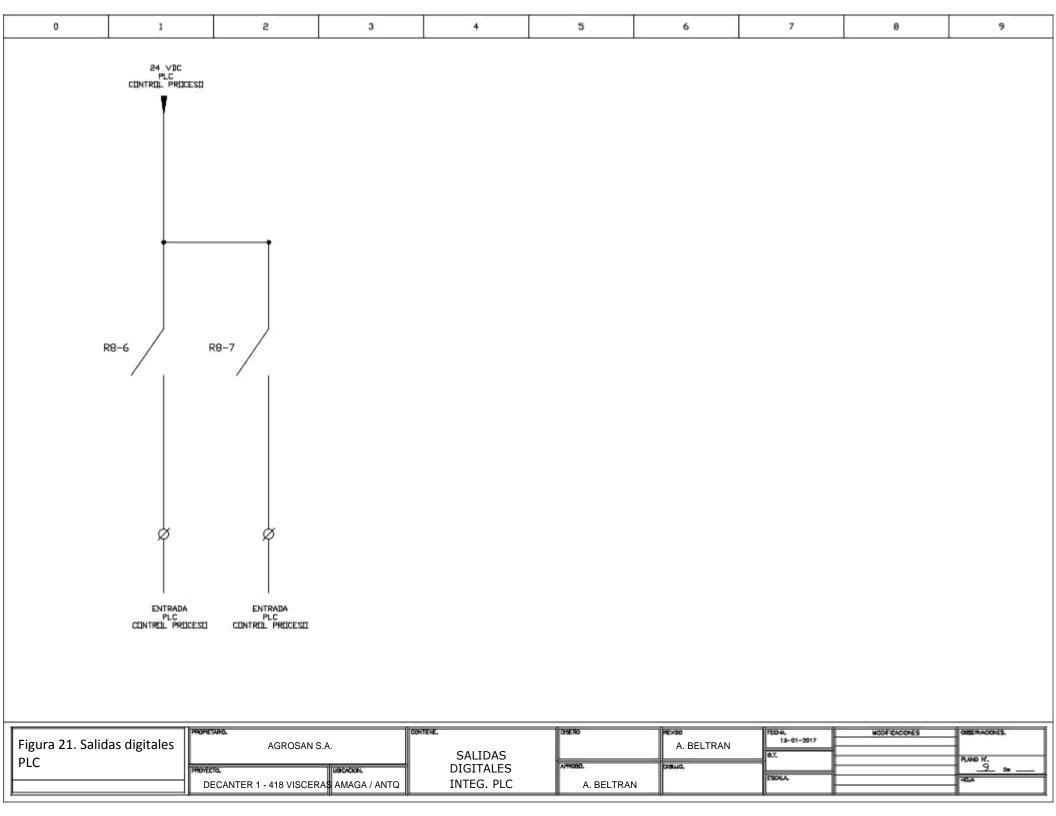
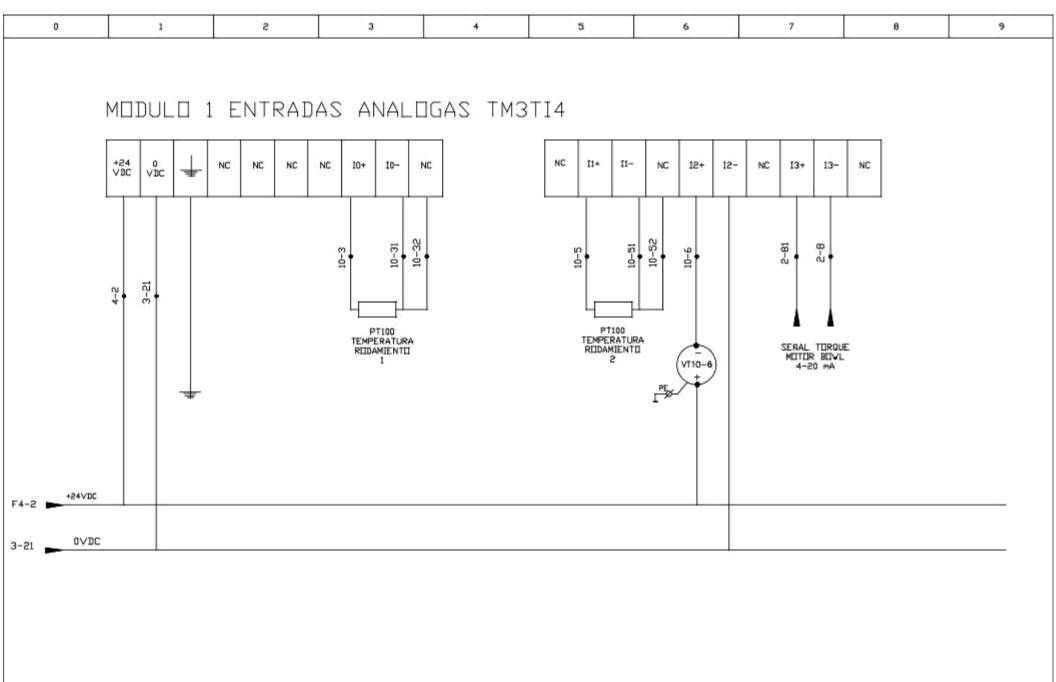
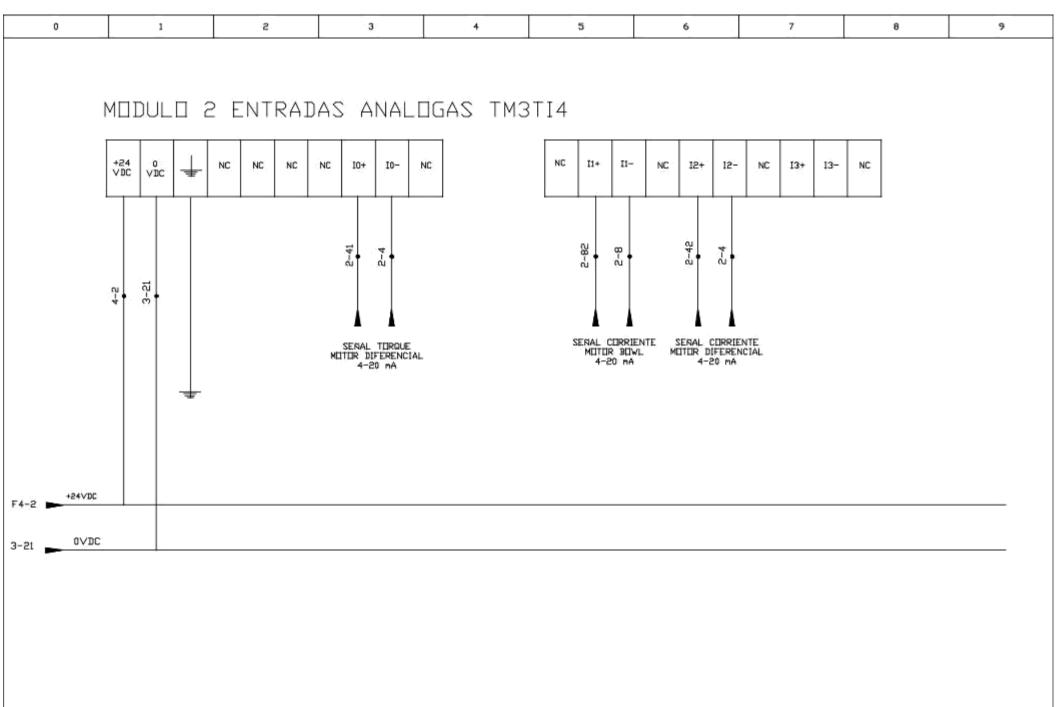
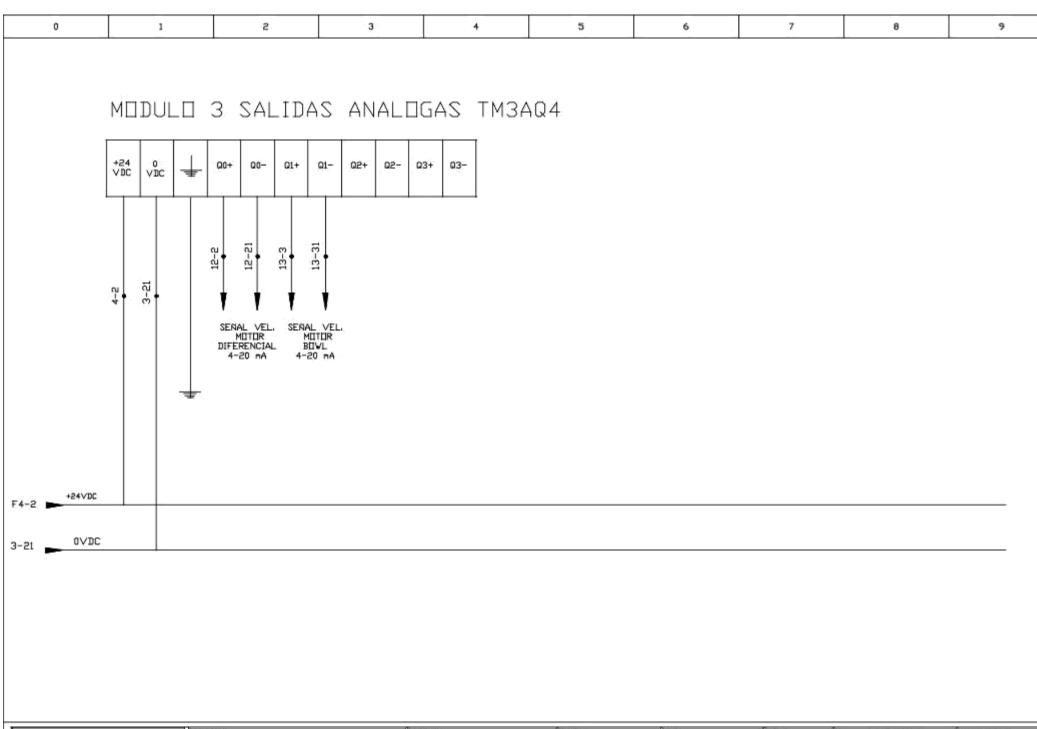
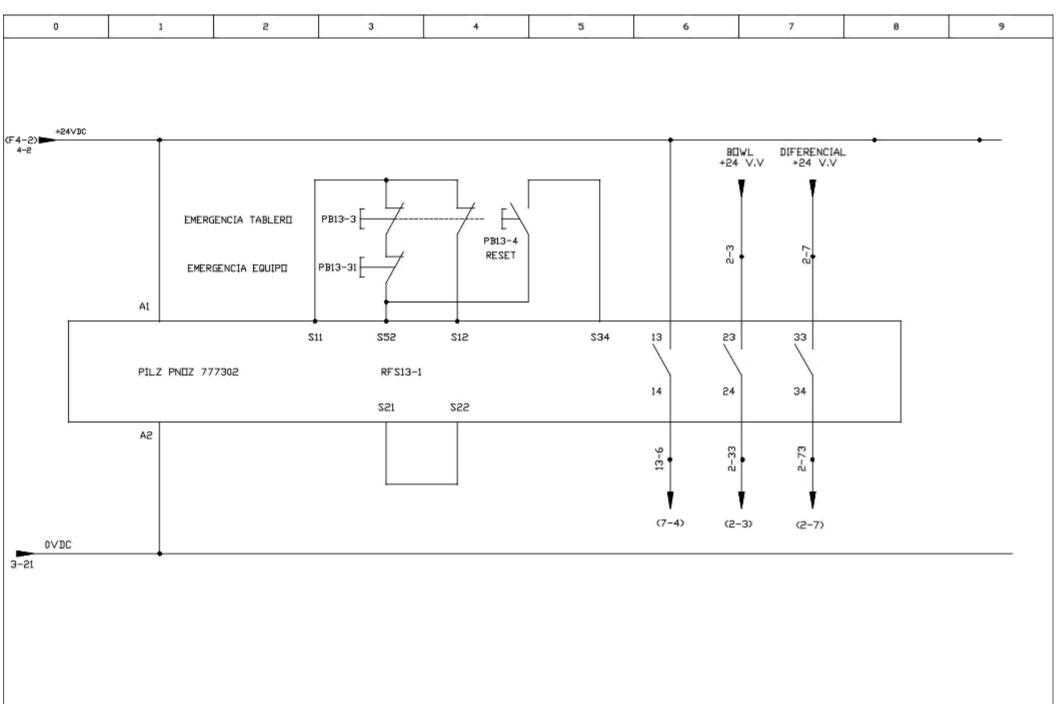
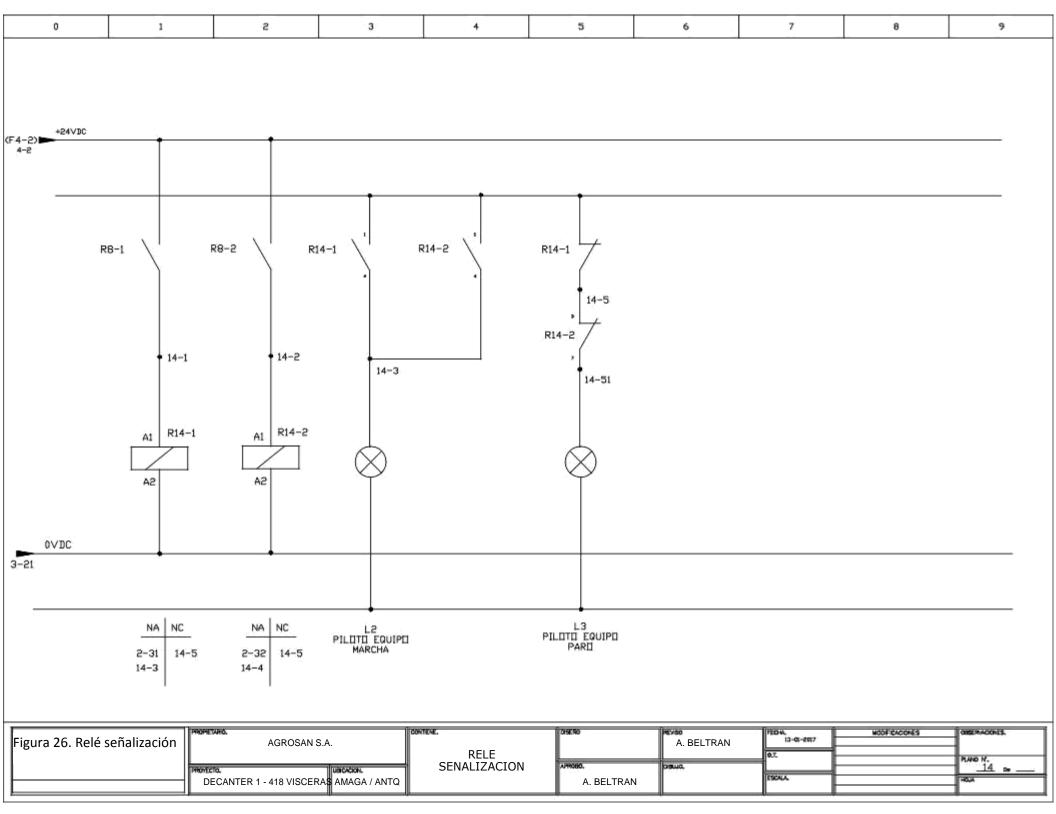





Figura 19. Entradas digitales integradas a PLC


| Montrol
| DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEG. PLC | A. BELTRAN | DECANTER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRATER 1 - 418 VISCERAS AMAGA / ANTQ | INTEGRAT




Г	11	PROPETARO.		CONTENE.	DISERO	PEVSO	PEDW.	MODIFICACIONES	OBSERVACIONES.
ш	Figura 22. Entradas	AGROSAN S.A.				A. BELTRAN	13-01-2017		
ш	rigura 22. Elluadas	1.5.1.557		ENTRADAS		7 322 8	0.T.		PLANO N.
ш	análogas módulo 1	PROVECTO.	UBICACION.		APROBO.	piswa.			10 ~
ш	analogas modulo 1	PHOTECIO.	UBICICION.		7.44	100.774	ESCALA	_	HOA .
ΙГ	1	DECANTER 1 - 418 VISCERAS	AMAGA / ANTQ	MODULO 1	A. BELTRAN			_	
ь		la de la companya de					l		L


ır	1	PROPETARO.		CONTENE.	DISERO	PEVSO	PEOW.	MODIFICACIONES	OBSERVACIONES.
н	Figura 23. Entradas	AGROSAN S.A.				A. BELTRAN	13-01-2017		
н	0	7.6.7.6.6.7.1.	·	ENTRADAS		7 522110	0.T.		W 10 X 10
н	análogas módulo 2				APROBO.	DEMO.			PLANO N.
Н.	·	PROYECTO.	UBICACION.	ANALOGAS	0.00	575775	DECAL A		De
ιŀ	*	DECANTER 1 - 418 VISCERAS	AMAGA / ANTO I	MODULO 2	A. BELTRAN		ESCALA		HOW
L		BEGRATIER 1 116 VIGGETOR	71111710717711110	11000202	71. BEE110111				

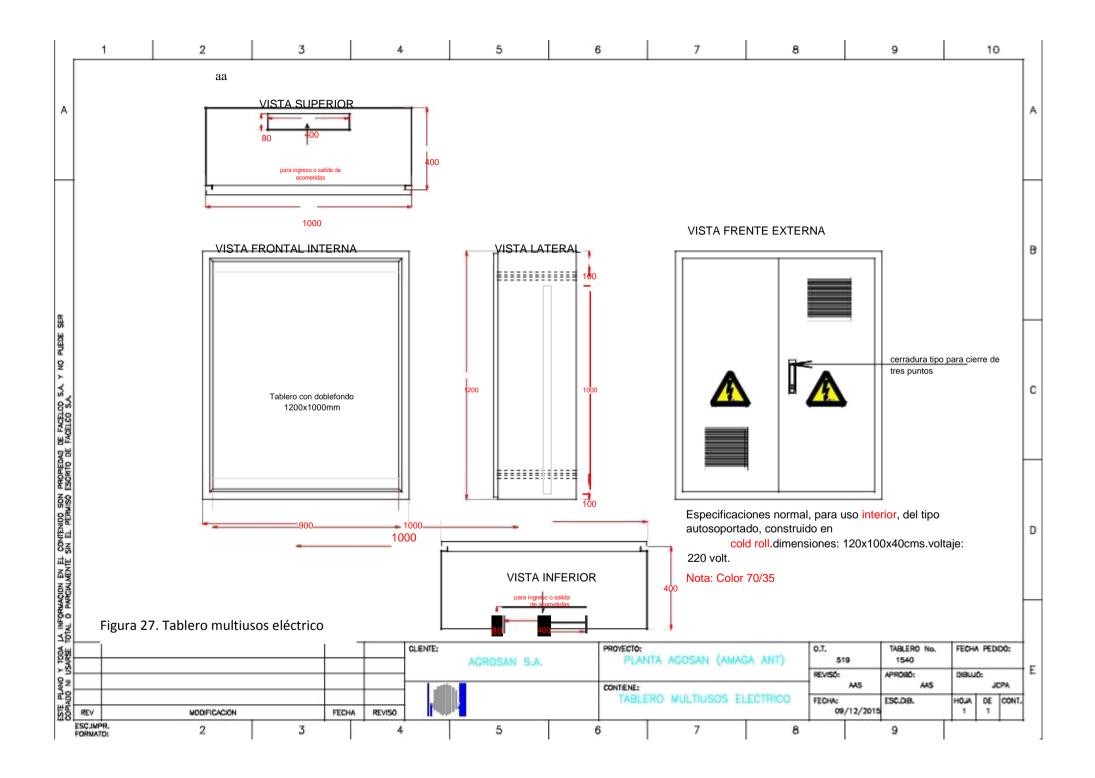


	Figura 24. Salidas	AGROSAN S.A		CONTENE.	DISERO	A. BELTRAN	13-01-2017	MODFICACIONES	OBSERVACIONES.
Ш	análogas módulo 3			SALIDAS ANALOGAS	A49080.	Dave.	O.T.		RAND N.
	_	DECANTER 1 - 418 VISCERAS	AMAGA / ANTQ	ANALOGAS	A. BELTRAN		ESCALA.		HOUA DR

Figura 25. Relé de seguridad	AGROSAN S.A.	RELE	DISERO	A. BELTRAN	7ED-W. 13-01-2017 0.T.	DANO N.
seguridad	DECANTER 1 - 418 VISCERAS AMAGA / ANTQ		A. BELTRAN	DBMG.	ESCALA.	

Código	FDE 089
Versión	03
Fecha	2015-01-22

4.3 VARIABLES ANTES Y DESPUÉS DE LA AUTOMATIZACIÓN

Se realizó seguimiento al comportamiento de las variables antes y después de realizar la automatización, ver Figuras 28 y 29.

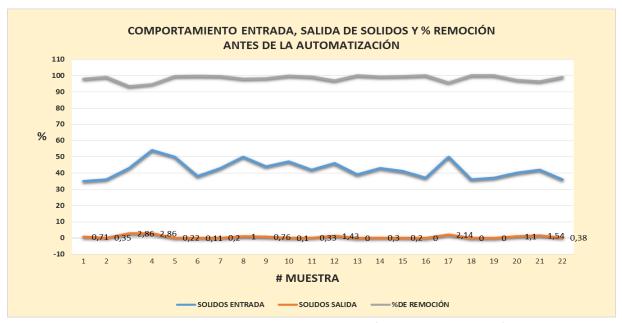


Figura 28. Tendencia del proceso antes de la automatización. Fuente: Elaboración propia.

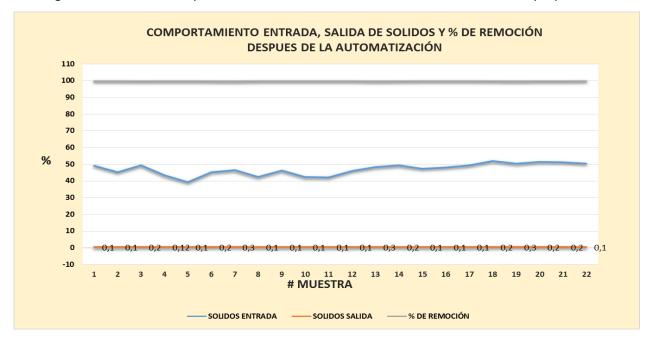


Figura 29. Tendencia del proceso después de la automatización. Fuente: Elaboración propia.

Código	FDE 089
Versión	03
Fecha	2015-01-22

Para el proceso de decantación es muy importante la calidad en la separación de líquidos y sólidos, el porcentaje de sólidos en la entrada normalmente varían entre un 35 y un 50%, siendo natural del proceso.

Los sólidos en la salida corresponden al porcentaje de material particulado en la fase liquida, el porcentaje de remoción de material sólido se calcula de la siguiente manera:

% remoción de solidos =
$$\frac{cant \ solidos \ entrada - cant \ solidos \ salida}{cant \ solidos \ entrada} \ x \ 100$$

Para evaluar el comportamiento del proceso antes y después de la automatización, se analizó diariamente en laboratorio una muestra de sebo a la salida de la decanter durante un periodo de 22 días, obteniendo la siguiente información:

Antes de la automatización se puede visualizar un comportamiento inestable del porcentaje de remoción de sólidos, encontrando valores hasta de un 93.3%, generando baja eficiencia en la separación, encontrando un porcentaje de sólidos en la fase liquida de hasta un 2.86%.

Luego de la automatización se puede visualizar un comportamiento estable del porcentaje de remoción de sólidos, encontrando un promedio del 99.7%, aumentando así la eficiencia en la separación, el porcentaje de sólidos en la salida tiene una tendencia del 0.15%.

Luego de la automatización, se genera mayor estabilidad en el porcentaje de remoción de sólidos, lo que se puede interpretar como mayor calidad en el sebo que separa la decantadora puesto que tiene menor material particulado.

También se realizó seguimiento luego de automatización a la variable de torque, ver Figura 30.

Código	FDE 089
Versión	03
Fecha	2015-01-22

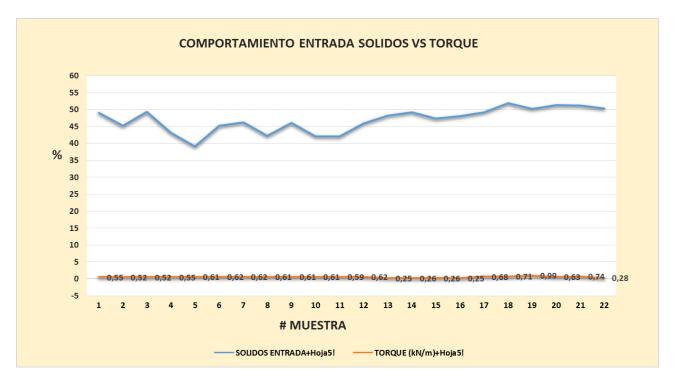


Figura 30. Tendencia del Torque vs porcentaje entrada de solidos

Se observa la inestabilidad del porcentaje de sólidos en la alimentación característica del proceso y un valor de torque con tendencia constante, con promedio de 0.55 kNm, la caja de engranajes tiene por diseño un torque máximo de 2.5 kNm. Por lo anterior, se evitan daños en la transmisión y en el elemento de protección contra torque denominado clutch.

No se tiene un referente del anterior valor de torque puesto que no se contaba con el sistema de medición de dicha variable, mas sin embargo se evidencia que los valores superaban los de diseño, ya que se generaban averías en el clutch y en la transmisión. Ver Figura 3 Y Figura 4.

Código	FDE 089
Versión	03
Fecha	2015-01-22

4.4 INVERSIÓN REALIZADA

Tabla 6. Inversión realizada. Fuente: Elaboración propia.

DESCRIPCIÓN GENERAL	UNID	CANT	VALOR UNIT	TOTAL
TABLERO ELÉCTRICO				
120X100X40CM INOX	UNID	1	\$ 2.950.000	\$ 2.950.000
PLC M221 TM221CE16R	UNID	1	\$ 868.365	\$ 868.365
MODULO 4E TEMPERATURA				
TM3TI4	UNID	2	\$ 801.551	\$ 1.603.102
MODULO 4S ANALÓGICO TM3AQ4	UNID	1	\$ 800.100	\$ 800.100
INTERRUPTOR 5 PUERTOS				
INDUSTRIAL NO ADMINISTRABLE	UNID	1	\$ 524.885	\$ 524.885
FUENTE ABL8REM24050 24VDC 5A	UNID	1	\$ 254.623	\$ 254.623
RELÉ SEGURIDAD PNOZX2.8P	UNID	1	\$ 680.400	\$ 680.400
AISLADOR/REPETIDOR SEÑAL				
ANÁLOGA 3186A1	UNID	1	\$ 251.680	\$ 251.680
TERMINAL GRAFICA 5.7"				
HMISTU855	UNID	1	\$ 1.391.462	\$ 1.391.462
VARIADOR ATV630D45N4 (60HP)	UNID	1	\$ 5.820.000	\$ 5.820.000
VARIADOR ATV630U75N4 IP21				
7.5KW (10HP)	UNID	1	\$ 2.292.500	\$ 2.292.500
BREAKER COMPACT NS160 125-				
160AMP MG	UNID	1	\$ 575.746	\$ 575.746
BREAKER NSX100F MA 50 3P3R				
R.LV429741	UNID	1	\$ 408.885	\$ 408.885
BREAKER NSX100F MA 6.5 3P3R	UNID	1	\$ 403.000	\$ 403.000
	TABLERO ELÉCTRICO 120X100X40CM INOX PLC M221 TM221CE16R MODULO 4E TEMPERATURA TM3TI4 MODULO 4S ANALÓGICO TM3AQ4 INTERRUPTOR 5 PUERTOS INDUSTRIAL NO ADMINISTRABLE FUENTE ABL8REM24050 24VDC 5A RELÉ SEGURIDAD PNOZX2.8P AISLADOR/REPETIDOR SEÑAL ANÁLOGA 3186A1 TERMINAL GRAFICA 5.7" HMISTU855 VARIADOR ATV630D45N4 (60HP) VARIADOR ATV630U75N4 IP21 7.5KW (10HP) BREAKER COMPACT NS160 125- 160AMP MG BREAKER NSX100F MA 50 3P3R R.LV429741	TABLERO ELÉCTRICO 120X100X40CM INOX PLC M221 TM221CE16R MODULO 4E TEMPERATURA TM3TI4 UNID MODULO 4S ANALÓGICO TM3AQ4 INTERRUPTOR 5 PUERTOS INDUSTRIAL NO ADMINISTRABLE FUENTE ABL8REM24050 24VDC 5A UNID RELÉ SEGURIDAD PNOZX2.8P UNID AISLADOR/REPETIDOR SEÑAL ANÁLOGA 3186A1 TERMINAL GRAFICA 5.7" HMISTU855 UNID VARIADOR ATV630D45N4 (60HP) VARIADOR ATV630U75N4 IP21 7.5KW (10HP) BREAKER COMPACT NS160 125- 160AMP MG UNID BREAKER NSX100F MA 50 3P3R R.LV429741 UNID	TABLERO ELÉCTRICO 120X100X40CM INOX PLC M221 TM221CE16R MODULO 4E TEMPERATURA TM3TI4 UNID INTERRUPTOR 5 PUERTOS INDUSTRIAL NO ADMINISTRABLE FUENTE ABL8REM24050 24VDC 5A RELÉ SEGURIDAD PNOZX2.8P UNID AISLADOR/REPETIDOR SEÑAL ANÁLOGA 3186A1 UNID TERMINAL GRAFICA 5.7" HMISTU855 UNID VARIADOR ATV630D45N4 (60HP) VARIADOR ATV630D75N4 IP21 7.5KW (10HP) BREAKER COMPACT NS160 125- 160AMP MG UNID 1 BREAKER NSX100F MA 50 3P3R R.LV429741 UNID 1	TABLERO ELÉCTRICO 120X100X40CM INOX PLC M221 TM221CE16R MODULO 4E TEMPERATURA TM3TI4 UNID INTERRUPTOR 5 PUERTOS INDUSTRIAL NO ADMINISTRABLE FUENTE ABL8REM24050 24VDC 5A RELÉ SEGURIDAD PNOZX2.8P AISLADOR/REPETIDOR SEÑAL ANÁLOGA 3186A1 UNID TERMINAL GRAFICA 5.7" HMISTU855 UNID TERMINAL GRAFICA 5.7" HMISTURE

Código	FDE 089
Versión	03
Fecha	2015-01-22

	R.LV429744				
	BOBINA DISPARO LV429386				
15	MX110-130V50/60HZNSX	UNID	2	\$ 188.468	\$ 376.936
16	CABLE VEHICULAR 18 NEGRO	METRO	50	\$ 291	\$ 14.550
17	CABLE VEHICULAR 18 ROJO	METRO	50	\$ 290	\$ 14.500
18	PATCH CORD C.6 L=1.5M AZUL	UNID	3	\$ 12.702	\$ 38.106
19	VENTILADOR REF.NSYCVF300M115PF	UNID	1	\$ 436.000	\$ 436.000
20	CABLE VEHICULAR BLANCO AWG 18	METRO	30	\$ 290	\$ 8.700
21	TERMINAL PIN 18-22AWG ROJA	UNID	300	\$ 139	\$ 41.700
22	BORNA PORTAFUSIBLE LED 24VDC 24-10AWG	UNID	12	\$ 12.900	\$ 154.800
23	BORNA PORTAFUSIBLE LED 250VA 24-10AWG	UNID	12	\$ 8.400	\$ 100.800
24	PULSADOR EMERGENCIA XB4BT842	UNID	1	\$ 54.266	\$ 54.266
25	PULSADOR START ROJO NC XB4BA42	UNID	1	\$ 24.000	\$ 24.000
26	PULSADOR START NEGRO NO XB4BA21	UNID	1	\$ 23.900	\$ 23.900
27	BOTON PULSADOR VERDE XB4BA31 NA	UNID	1	\$ 30.700	\$ 30.700
28	TERMORR.PT100 BAYONETA TRB-1	UNID	2	\$ 130.500	\$ 261.000
29	SENSOR INDUCTIVO HX-1808-P1 10-30VDC	UNID	2	\$ 129.600	\$ 259.200

Código	FDE 089
Versión	03
Fecha	2015-01-22

30	CANALETA RANURADA 60X80	METRO	4	\$ 30.200	\$ 120.800
	SENSOR INDUCTIVO P+F NBB20-				
31	L3M-A2-C3-V1	UNID	1	\$ 352.000	\$ 352.000
	SENSOR VIBRACIÓN 0-25MM/S 4-				
32	20MA 1/4NPT	UNID	1	\$ 2.400.000	\$ 2.400.000
33	BORNA LEGRAN DE CONTROL 18-22	UNID	60	\$ 1.800	\$ 108.000
	TRANSFORMADOR SECO 0.5KVA				
34	460/220-110V 1F	UNID	1	\$ 230.000	\$ 230.000
35	TERMINAL 2 AWG	UNID	4	\$ 1.150	\$ 4.600
36	TERMINAL 4 AWG	UNID	8	\$ 955	\$ 7.640
37	TERMINAL 10 AWG	UNID	8	\$ 492	\$ 3.936
38	RELE INTER-FAX	UNID	15	\$ 40.500	\$ 607.500
39	BREAKER MULTI 9C60N 2X6	UNID	2	\$ 36.200	\$ 72.400
40	BORNA LEGRAND 100 AMP	UNID	4	\$ 11.150	\$ 44.600
41	BORNA LEGRAN 32 AMP	UNID	4	\$ 5.200	\$ 20.800
42	RELÉ 11 PINES 110V C/BASE	UNID	2	\$ 21.700	\$ 43.400
43	CABLE AWG 6	UNID	80	\$ 2.800	\$ 224.000
44	CABLE COAXIAL AWG12X4	UNID	25	\$ 2.100	\$ 52.500
45	PILOTO LUMINOSO VERDE	UNID	1	\$ 16.500	\$ 16.500
46	PILOTO LUMINOSO ROJO	UNID	1	\$ 16.500	\$ 16.500
				TOTAL	\$ 24.989.082

Código	FDE 089
Versión	03
Fecha	2015-01-22

La inversión realizada tuvo un valor de \$ 24.989.082, incluyendo variadores de velocidad, protecciones y elementos de control; en consulta con representante de la máquina, el control de torque tiene un valor aproximado de \$ 64.000.000 y solo tiene licencia de ejecución, es decir, no se puede modificar ninguna variable; por todo lo anterior, esta implementación representa una disminución de costos aparte de que la compañía elimina la dependencia de la programación que realiza dicho representante.

4.5 PROGRAMACIÓN

4.5.1 Señales digitales

A continuación se muestra la tabla de variables definidas para el proyecto

Tabla 7. Entradas digitales. Fuente: Elaboración propia.

DIRECCION	TIPO	SIMBOLO	COMENTARIO
%i0.0	Entrada digital	DEC_MF1	Medidor velocidad bowl
%i0.1	Entrada digital	DEC_MS01	Micro de tapa
%i0.2	Entrada digital	DEC_MS02	Micro rueda solar
			Relé seguridad
%i0.3	Entrada digital	DEC_RS01	emergencia
			Pulsador arranque
%i0.4	Entrada digital	DEC_PB01	decanter
%i0.5	Entrada digital	DEC_PB02	Pulsador paro decanter
			Medidor velocidad tornillo
%i0.6	Entrada digital	DEC_MF2	diferencial
%i0.7	Entrada digital	DEC_M001_FALLA	Falla variador bowl
			Falla variador tornillo
%i0.8	Entrada digital	DEC_M002_FALLA	diferencial.

Código	FDE 089
Versión	03
Fecha	2015-01-22

Tabla 8. Salidas digitales. Fuente: Elaboración propia.

DIRECCION	TIPO	SIMBOLO	COMENTARIO
			Motor bowl marcha
%Q0.0	Salida digital	DEC_M001_FW	adelante
%Q0.1	Salida digital	DEC_M001_RV	Motor bowl marcha atrás
			Motor tornillo diferencial
%Q0.2	Salida digital	DEC_M002_FW	adelante
			Motor tornillo diferencial
%Q0.3	Salida digital	DEC_M002_FV	atrás
%Q0.4	Salida digital	DEC_P1	Piloto falla decantadora
%Q0.5	Salida digital	DEC_CIP	Decantadora en modo cip
			Control bomba
%Q0.6	Salida digital	DEC_HAB_ALIM	alimentación decanter

4.5.2 Señales análogas

Tabla 9. Entradas y salidas análogas. Fuente: Elaboración propia.

DIRECCION	TIPO	SÍMBOLO	COMENTARIO
%iW0.0	Entrada análoga 0-10 V	DEC_T1	Temperatura chumacera 1
%iW0.1	Entrada análoga 0-10 V	DEC_T2	Temperatura chumacera 2
%QW3.0	Salida análoga 4-20mA	DEC_PAR1	Señal de torque
%QW3.1	Salida análoga 4-20mA	DEC_DIF1	Velocidad diferencial

4.5.3 Contadores de alta velocidad

Tabla 10. Contadores de alta velocidad. Fuente: Elaboración propia.

DIRECCION	TIPO	SIMBOLO	COMENTARIO
%HSC0	Medidor de frecuencia	DEC_V1	Velocidad bowl
			Velocidad tornillo
%iW0.1	Medidor de frecuencia	DEC_V2	diferencial

4.5.4 Programación de plc en lenguaje KOP

La programación del plc se realizó en el Sofware SoMachine Basic, teniendo en cuanta la seguridad de operación del equipo. En la Figura 31 se observa el inicio de la programación, en el apéndice se muestra completa.

Código	FDE 089
Versión	03
Fecha	2015-01-22

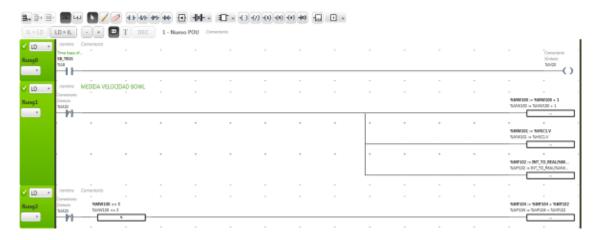


Figura 31. Programación de PLC. Fuente: Elaboración propia.

4.5.5 Imágenes y visualización HMI

La terminal gráfica es programada y articulada con ventanas de visualización que permiten acceder a los diferentes estados de proceso, alarmas y configuraciones, de modo de garantizar un entorno agradable y de fácil acceso para la operación, tales ventanas se muestran a continuación:

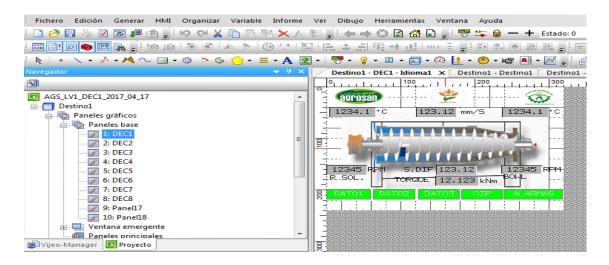


Figura 32. Visualización principal de la decantadora en la HMI. Fuente: Elaboración propia.

Código	FDE 089
Versión	03
Fecha	2015-01-22

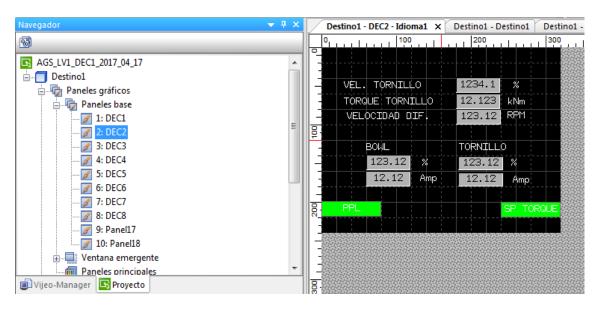


Figura 33. Visualización de velocidades, torque, porcentajes de operación y corriente en la HMI. Fuente: Elaboración propia.

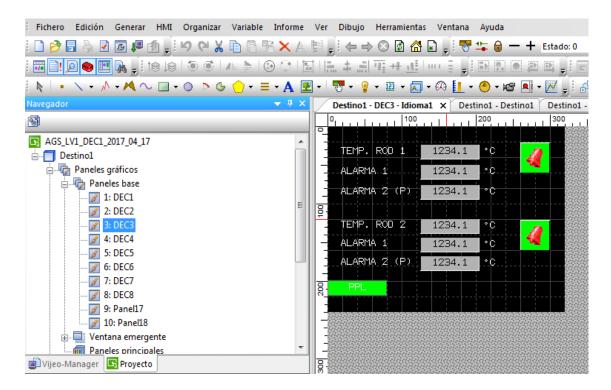


Figura 34. Visualización de alarmas en la HMI. Fuente: Elaboración propia.

Código	FDE 089
Versión	03
Fecha	2015-01-22

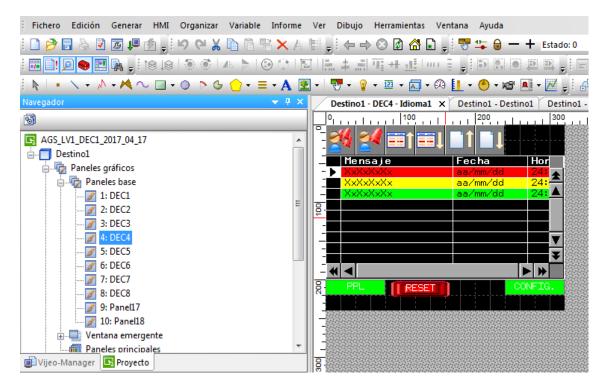


Figura 35. Visualización de históricos de alarmas en la HMI. Fuente: Elaboración propia.

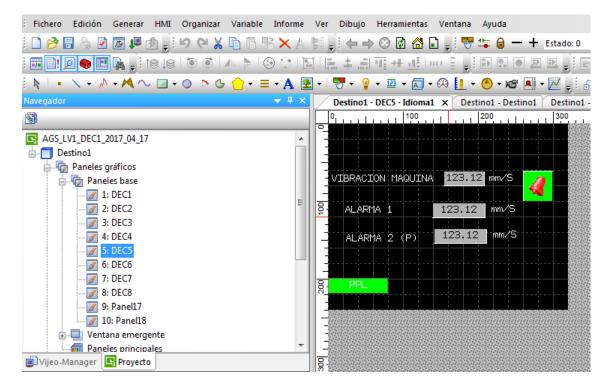


Figura 36. Visualización de la vibración en la HMI. Fuente: Elaboración propia.

Código	FDE 089
Versión	03
Fecha	2015-01-22

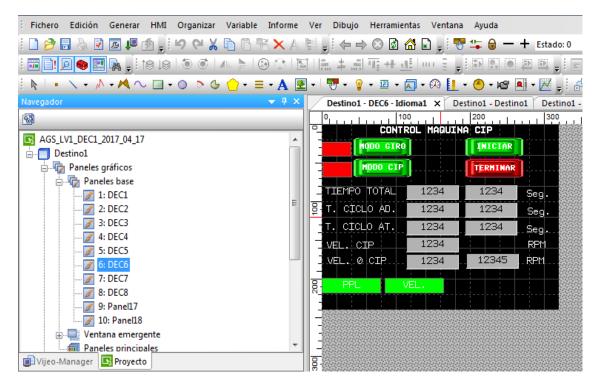


Figura 37. Control del CIP a la decantadora mediante la HMI. Fuente: Elaboración propia.

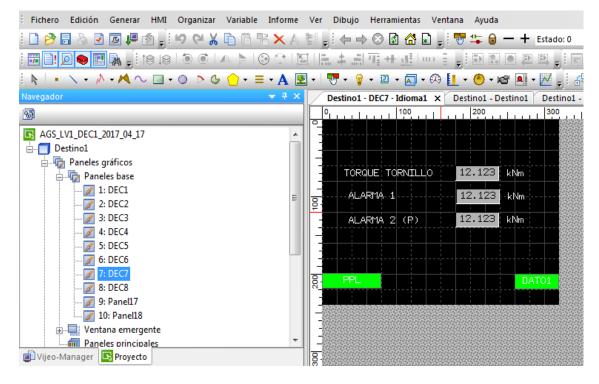


Figura 38. Control del torque del tornillo mediante la HMI. Fuente: Elaboración propia.

Código	FDE 089
Versión	03
Fecha	2015-01-22

4.5.6 Ensamble de elementos

Teniendo en cuenta factores de seguridad, facilidad de instalación y temperaturas de operación, el gabinete de potencia y control fue diseñado y luego enviado a fabricar con personal externo a la compañía, ver Figura 39:

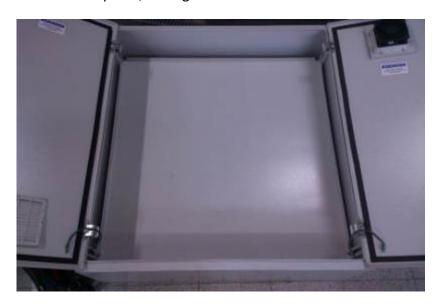


Figura 39. Gabinete eléctrico. Fuente: Elaboración propia

Los equipos seleccionados se pueden observar en la Figura 40, cumpliendo los parámetros inicialmente descritos determinantes en su selección:

Figura 40. Elementos seleccionados para ensamblar

Código	FDE 089
Versión	03
Fecha	2015-01-22

Para el cableado de elementos de control y potencia, se realiza una distribución de los equipos teniendo en cuenta la seguridad para realizar maniobras, la presentación del gabinete y la temperatura del mismo.

Figura 41. Inicio de ensamble de elementos en gabinete eléctrico. Fuente: Elaboración propia.

El resultado final del ensamble de los elementos seleccionados los podemos observar en la Figura 42.



Figura 42. Gabinete eléctrico ensamblado. Fuente: Elaboración propia.

Código	FDE 089
Versión	03
Fecha	2015-01-22

Por último, se realizan las conexiones de los elementos de control y la instalación de la terminal de dialogo que permitirá al operario operar y visualizar el estado del equipo. Ver Figura 43.

Figura 43. Gabinete parte externa. Fuente: Elaboración propia.

En la Figura 44, se puede visualizar la decantadora con su automatización instalada, incluye elementos de seguridad, sensores de temperatura, sensores de velocidad y demás elementos que incrementaron la confiabilidad del equipo.

Figura 44. Decantadora. Fuente: Elaboración propia.

Código	FDE 089
Versión	03
Fecha	2015-01-22

5 CONCLUSIONES, RECOMENDACIONES Y TRABAJO FUTURO

El diseño e implementación de un control de velocidad automatizado de una decantadora en la línea de vísceras de una empresa de rendering, permitió aumentar la confiabilidad del proceso y la eficiencia del mismo al evitar disparos del equipo que generan paros de línea y averías mecánicas.

Al realizar la evaluación del proceso anterior en la decantadora de la empresa Agrosan SA, se logró identificar un proceso manual, dependiente de la habilidad del operario y sin control de variables como velocidad diferencial para controlar el torque y control del flujo para la alimentación; la decantadora se está alimentando a 3.5 toneladas hora con una entrada de solidos del 42%.

Antes de la automatización se visualizaba un comportamiento inestable del porcentaje de remoción de sólidos, con valores promedios del 93.3% y un porcentaje de sólidos en la fase liquida del 2.86%; luego de la automatización se puede visualizar un comportamiento estable, encontrando un promedio de remoción de solidos del 99.7% y un porcentaje de sólidos en la fase liquida de un 0.15% aproximadamente.

La selección de los dispositivos de la cadena de medición, tales como los transmisores, controladores y elementos finales de control, se realiza teniendo en cuenta la NTC 2050, el RETIE, la norma 3A, IEC O ANSI, además de parámetros como corriente, tensión, temperatura de operación y grado de protección IP, de modo de satisfacer los requerimientos de funcionalidad y seguridad.

Al realizar el estudio económico de la solución se encuentra que tiene un costo de \$ 24.989.082 incluyendo variadores de velocidad, protecciones y elementos de control; el control de torque por parte del representante tiene un valor aproximado de \$ 64.000.000 y solo incluye licencia de ejecución de programa, por lo que no se puede modificar.

Los planos electromecánicos se realizan con base a la norma IEC1082-1 para la conexión de los dispositivos y el montaje de los equipos, mediante el software de dibujo Autocad.

Código	FDE 089
Versión	03
Fecha	2015-01-22

La automatización de la decantadora permitió realizar un control de velocidad diferencial, incrementando la confiabilidad del proceso de aceite de vísceras, esto debido a que se controla el proceso y por ende ya no se presentan las obstrucciones que generaban tiempos de paros del equipo y averías, además ya no se tiene la dependencia de personal externo, cuya asistencia nunca fue menor de 8 días para presentarse en la compañía.

Se recomienda a la compañía, estandarizar los procesos de decantación en las demás líneas de producción con esta misma implementación, solo realizando ajustes debido a la diferencia de productos como sangre y aguas residuales.

Código	FDE 089
Versión	03
Fecha	2015-01-22

6 BIBLIOGRAFÍA

- Agencia Europea para la Seguridad y la Salud en el Trabajo. (2010). *mantenimiento seguro-industria de los alimentos y las bebidas.* Bilbao (España).
- ALFA LAVAL. (2007, 09 17). Decantador centrifugo. Manual del operario.
- Alfa Laval. (s.f). *Alfa Laval.com*. From http://www.alfalaval.com/products/separation/centrifugal-separators/decanters/Olive-Oil-Y/
- Altieri, G., Di Renso, G., & Genovese, F. (2013). Horizontal centrifuge with screw conveyor (decanter): Optimization of oil/water levels and differential speed during olive oil extraction. *Elsevier*.
- BEERTEC. (2013, Mayo 20). DEPARTAMENTO DE ADMINISTRACIÓN Y OPERACIONES BEERTEC, Tecnologia cervecera. Retrieved Agosto 16, 2013 from BEERTEC, Tecnologia cervecera: http://beertec.galeon.com/productos1436533.html
- cbbdecanter. (s.f). cbbdecanter. From tarjeta Dpc: http://www.cbbdecanter.com/es/productos/tarjetadpc/controladorprocesodecantador#page
- Cerretani, L., Gómez Caravaca, A. M., & Bendini, A. (2009). El Aceite de Oliva Virgen: Tesoro de Andalucía (Capítulo 6: Aspectos tecnológicos de la producción del aceite de oliva). Málaga: Servicio de Publicaciones de la Fundación Unicaja.
- Duffie, T., Hensley, G., & Hilpert, L. (2004). Patent No. US 20040138040 A1. EE.UU.
- EVANIBQ. (2012, Octubre). *BUENAS TAREAS.COM*. Retrieved Agosto 16, 2013 from BUENAS TAREAS.COM: http://www.buenastareas.com/ensayos/Ingeniero/5671395.html
- Flottweg, separation technology. (2016). *Flottweg.com*. From https://www.flottweg.com/fileadmin/user_upload/data/pdf-downloads/Separator-ES.pdf
- Hilpert, J. (2016). Patent No. US 20160318042 A1. EE.UU.
- instituto de la grasa CSIC. (s.f). Tecnología de la elaboración de aceite de oliva y aceitunas de mesa. *TDC* olive.
- ISHS International Society for Horticultural ScieHermoso, M. U.-O. (1999). Preliminary results of NIR « on line» measure of oil content and humedity in olive cakes from the two phases decanter. *ISHS International Symposium on Olive Growing*.
- Lemitec. (s.f). *s.n*. Retrieved mayo 8, 2017 from www.lemitec.com: http://www.lemitec.com/__we_thumbs__/473_1_Section_view_decanter.jpg

Código	FDE 089
Versión	03
Fecha	2015-01-22

Leung, W. (1998). Torque requirement for high-solids centrifugal sludge dewatering. Elsevier.

Leung, W., Shapiro, A., & Yarnell, R. (1997). Patent No. US 5643169 A. EE.UU.

OSHA. (2002). Todo sobre la osha. NW, Washington: Departamento de trabajo de los EE.UU.

OSHA. (2002). Todo sobre la OSHA. NW, Washington: Departamento de trabajo de los EE.UU.

OSHA. (2003). Ergonomia en acción. California: departamento de relaciones industriales.

OSHA. (2011). guia de bolsillo para la industria de la construcccion. cal/osha, 188.

OSHA. (2013). *Boletin para la industria en general.* NW, Washington: departamento de trabajo de los EE.UU.

OSHA. (2013). perfil de OSHA. NW, Washington: departamento de trabajo de los EE.UU.

Pilz. (s.f). Reles de seguridad PNOZ. Ostfildern, Alemania.

RETIE. (2013). *Reglamento técnico de instalaciones electricas*. Bogotá, Colombia: Ministerio de minas y energía.

schneider electric. (2014, 10). Magelis HMISTU655/855. Manual de usuario.

schneider Electric. (2014, 11). Modicon M221. Guia de programacion. España.

SCHNEIDER ELECTRIC. (2015). Variadores de velocidad altivar process 600. catalogo. Arequipa, Peru.

Código	FDE 089
Versión	03
Fecha	2015-01-22

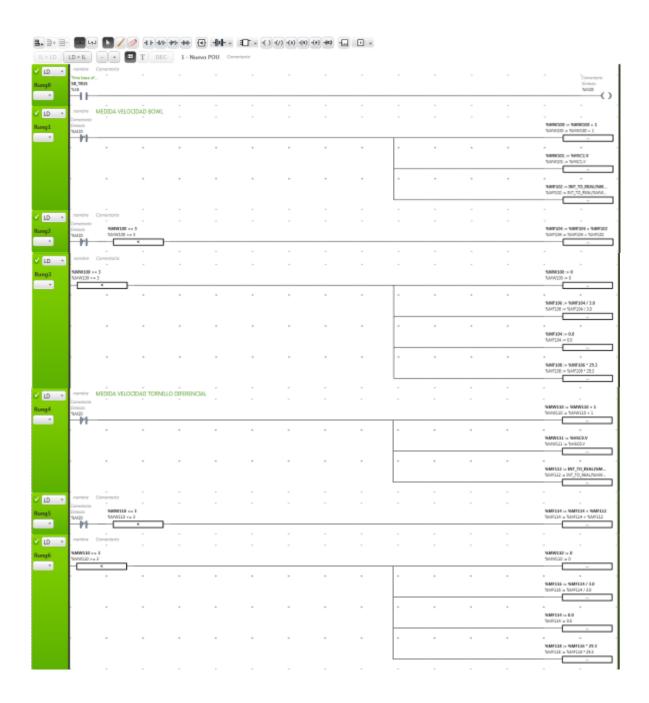
7 APÉNDICE

Señores

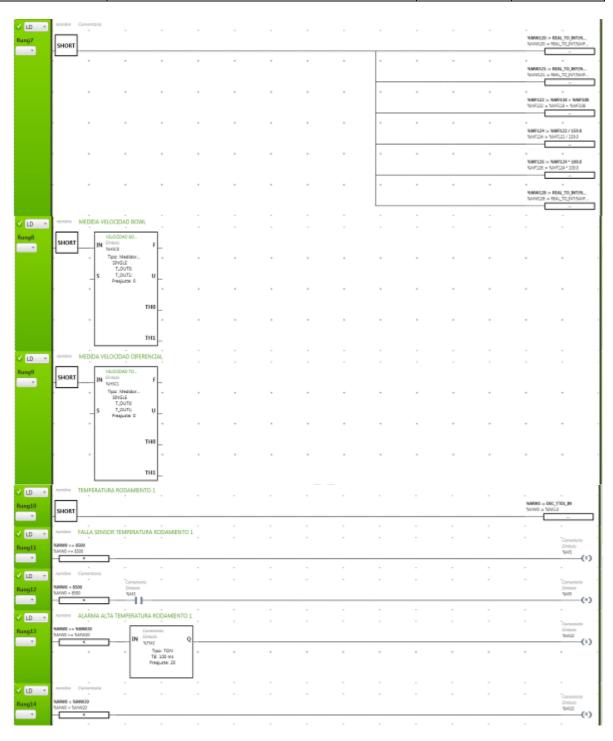
Instituto Tecnológico Metropolitano (ITM).

Yo Andrés Beltrán Gaviria identifico con CC 15'515,048 con cargo de jefe de Mantenimierto eléctrico instrumentación y control en la Agropecuaria San Fernando, doy constancia que los señores Wilson Ferley Flórez con CC 1'033.336.070 y Frederson Olaya Velásquez con CC 98'6C2.856; Realizaron el diseño e implementación de la automatización de una decantadora Alfa Laval 418 en la línea de visceras. Cumpliendo con los requerimientos de producción y automatización contemplados en la propuesta inicial de acuerdo con el presupuesto asignado por la compañía; obteniendo resultados tales como mayor disponibilidad del equipo, menores tiempos de paros por obstrucciones y control cel torque del equipo que representa menores averías mecánicas, además, se elimina la nependencia de asistencia técnica del representante del equipo.

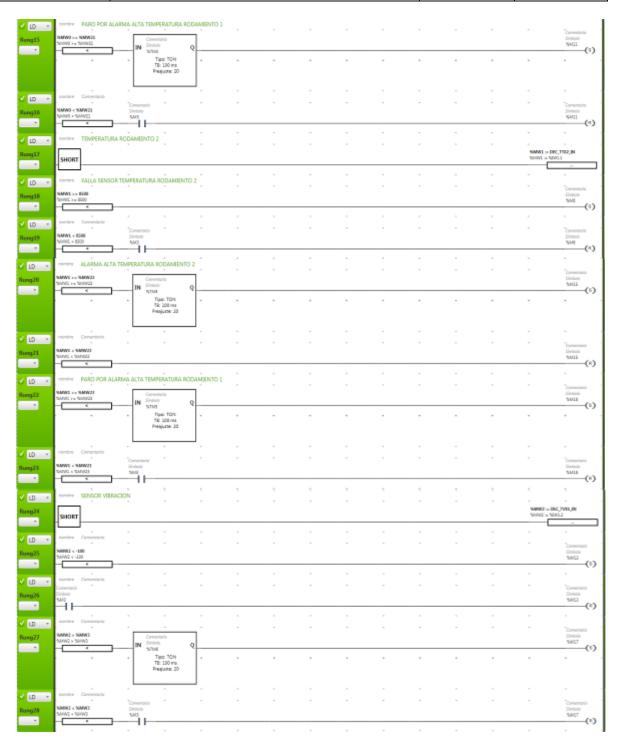
Atentamente


Andkés Beltrán Gaviria.

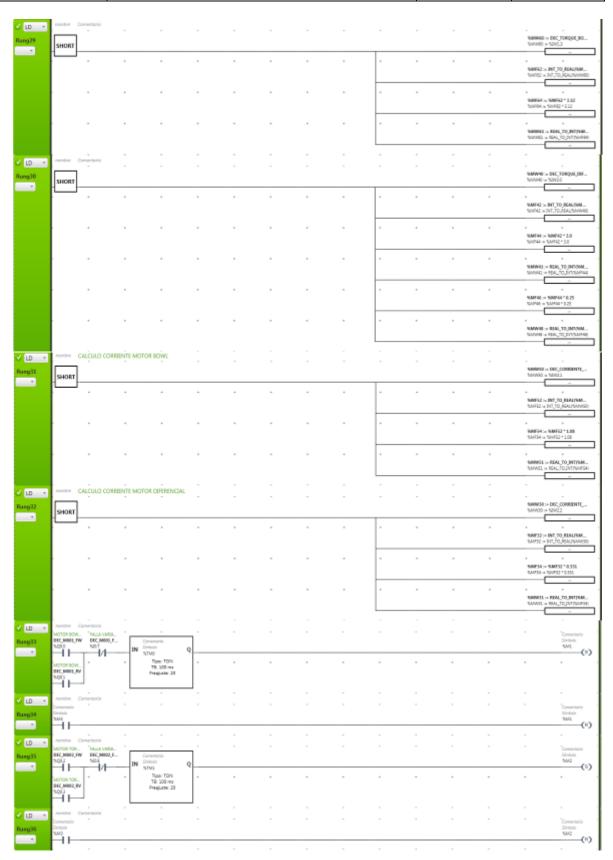
Código	FDE 089
Versión	03
Fecha	2015-01-22


7.1 PROGRAMACIÓN DEL PLC

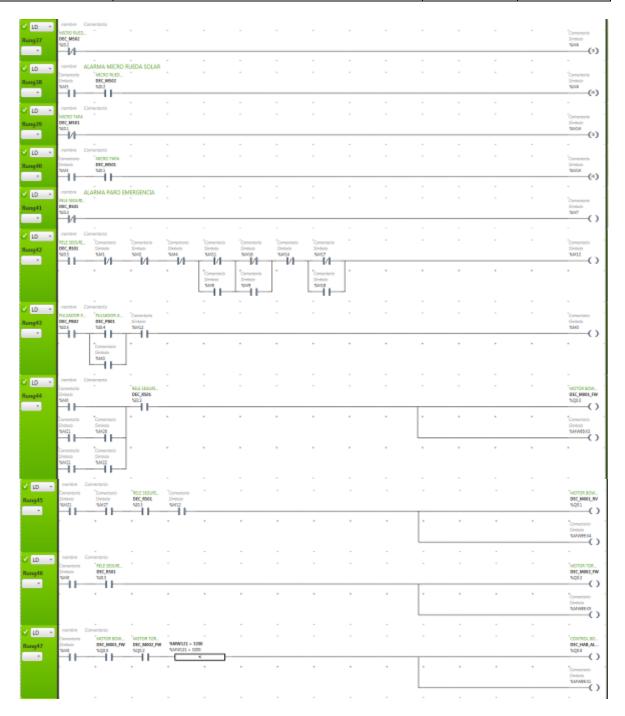
La programación del plc se realizó en el Sofware SoMachine Basic, Como se puede ver a continuación:



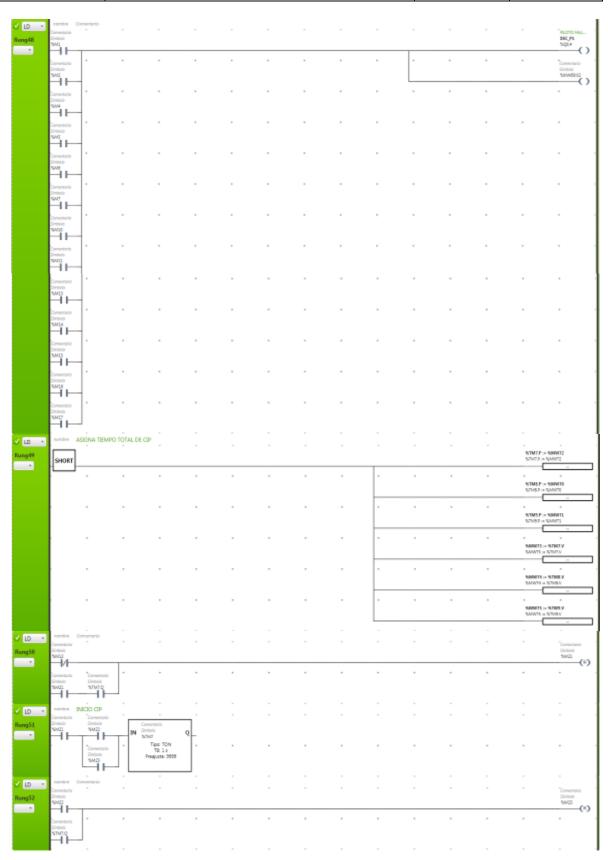
Código	FDE 089
Versión	03
Fecha	2015-01-22



Código	FDE 089
Versión	03
Fecha	2015-01-22



Código	FDE 089
Versión	03
Fecha	2015-01-22



Código	FDE 089
Versión	03
Fecha	2015-01-22

Código	FDE 089
Versión	03
Fecha	2015-01-22

Código	FDE 089
Versión	03
Fecha	2015-01-22

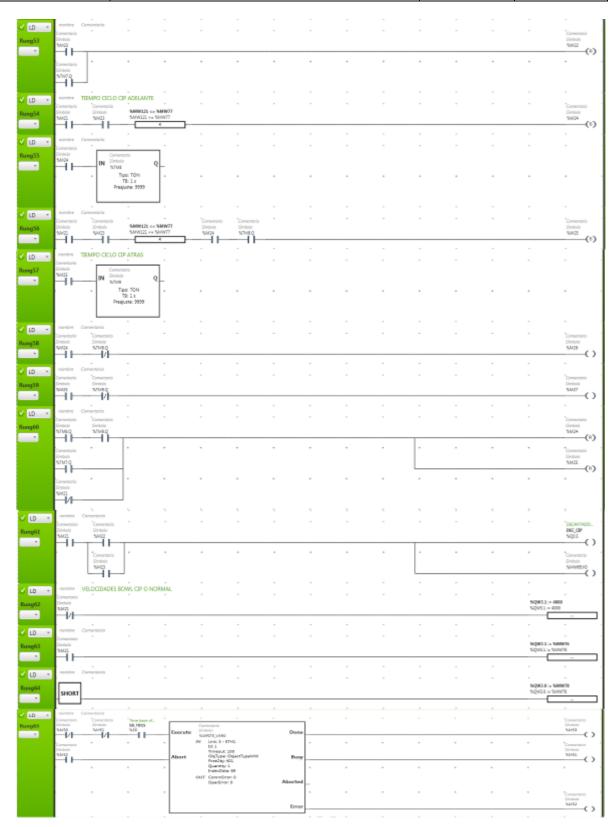


Figura 45. Programación de PLC. Fuente: Elaboración propia.

Código	FDE 089
Versión	03
Fecha	2015-01-22

FIRMA ESTUDIANTES
Fredorson Olaya.
FIRMA ASESOR
Primera entrega de informe final.
Primera entrega de informe final, Junio 16/2017
FECHA ENTREGA: 16/06/2017
FIRMA COMITÉ TRABAJO DE GRADO DE LA FACULTAD
RECHAZADO ACEPTADO ACEPTADO CON MODIFICACIONES
ACTA NO
FECHA ENTREGA:
FIRMA CONSEJO DE FACULTAD
ACTA NO
FECHA ENTREGA: