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Abstract 

 

This article presents an estimation method of neuronal activity 

into the brain using a Kalman smoother approach that takes into 

account in the solution of the inverse problem the dynamic 

variability of the time series. This method is applied over a 

realistic head model calculated with the boundary element 

method. A comparative analysis for the dynamic estimation 

methods is made up from simulated EEG signals for several noise 

conditions. The solution of the inverse problem is achieved by 

using high performance computing techniques and an evaluation 

of the computational cost is performed for each method. As a 

result, the Kalman smoother approach presents better 

performance in the estimation task than the regularized static 

solution, and the direct Kalman filter. 
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Resumen 

 

En este artículo se presenta un método de estimación de la ac-

tividad neuronal sobre el cerebro usando un filtro de Kalman con 

suavizado, que tiene en cuenta en la solución del problema inverso, 

la variabilidad dinámica de la serie de tiempo. Este método es 

aplicado sobre un modelo realista de la cabeza, calculado con ele-

mentos finitos de frontera. Se presenta un análisis comparativo 

entre diferentes métodos de estimación y el método propuesto so-

bre señales EEG simuladas para diferentes condiciones de relación 

señal a ruido. La solución del problema inverso se hace utilizando 

computación de alto desempeño y se presenta una evaluación del 

costo computacional para cada método. Como resultado, el filtro de 

Kalman con suavizado presenta un mejor desempeño en la tarea 

de estimación comparado con la solución estática regularizada, y la 

solución dinámica sin suavizado. 
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Problema inverso, actividad neuronal, filtro de Kalman, mode-

lo fisiológico. 
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1. INTRODUCTION 

 

The identification of dynamic behavior in neuronal activity is a 

main part of the brain pathologies treatment. Commonly, the 

estimation of neuronal activity is made up from electroenceph-

alography (EEG) signals measured noninvasively from the head 

(scalp recordings). The EEG signals allow a better temporal reso-

lution in contrast with other techniques like the functional Mag-

netic Resonance Imaging which brings better spatial resolution. 

EEG source reconstruction or neuronal activity estimation is 

known to be an ill posed inverse problem as there are an infinite 

number of different solutions that give rise to identical scalp re-

cordings. Until recently, most attempts to solve the inverse prob-

lem were based on EEG signals at one single time point. However, 

since neuronal activity has an inherent strong spatial and tem-

poral dynamics, the solution of the inverse problem must take into 

account these dynamics as additional constraints (Peralta et al., 

1998; Pascual et al., 1999; Baillet et al., 2001). This can be done, 

by choosing appropriate dynamic models that pose dynamics con-

straints in the solution (Yamashita et al., 2004; Grech et al., 2008; 

Giraldo et al., 2010). 

For example, in Galka et al. (2004) autoregressive (AR) models 

are used for modeling neuronal activity, assuming that the dy-

namical model is linear and depends of the previous states of 

neuronal activity. As a result, the inclusion of dynamical con-

straints improves the performance of the instantaneous case. On 

the other hand, there are different problems that must be consid-

ered in the implementation and development of the dynamic in-

verse solution. First of all, dynamic estimation of neuronal activity 

is a high dimensional problem and its implementation has a high 

computational load. However, the main restriction is the selection 

of the dynamical model.  

A physiological based model allows a better description of the 

system dynamics. In Robinson et al. (2007) is discussed a differen-

tial equation that can describe satisfactorily the dynamic behavior 

of neuronal activity including the physiological features of EEG 

signals. For example, in Barton et al. (2009) a simple dynamic 

model with resonant behavior is used according to the physiologi-
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cal features of EEG signals. Neuronal activity is estimated 

through Kalman Filtering (KF) and the high dimensionality prob-

lem is addressed by using a modified KF that reduces the problem 

to a set of low dimensional KFs, one at each considered source. 

Anyway, when dynamic model performance is evaluated over real 

EEG signals they obtain problems in spatial coupling as a result of 

the implementation proposed in Barton et al. (2009) and because 

the spatial term of the dynamic model is inaccurate. It is possible 

to improve the performance of the decoupling method proposed in 

Barton et al. (2009) using methods of filter partition as proposed 

in Sitz et al. (2003) or high performance computing (Long et al., 

2006). Additionally, the estimated solution can be improved 

through methods of smoothing that consider the variability of all 

the data (Kaipio et al., 1999; Tarvainen et al., 2004). However, 

smoothed solutions involve high computational load, and high 

capacity for storage information in intermediate steps. 

In the other hand, the solution of the inverse problem do not 

depends only of the dynamic model selection but also of the ade-

quate lead field matrix that relates the sources associated with the 

signals measured on the scalp and reporting directly to the head 

model (Plummer et al., 2008). As head model there can be used 

from simple models (spherical) to complex models (finite element 

method, boundary element method, finite volumes, finite differ-

ences, etc.), which includes the conductivity corresponding tissues. 

These models allow increasing the spatial resolution of the esti-

mated neuronal activity into the brain. However, the more we 

increase the resolution, the higher dimensionality we get for dy-

namic model of neuronal activity and the higher computational 

load we have, but the better mapping of neuronal activity we 

achieve (Deneux et al., 2006; Hallez et al., 2007). Nevertheless, 

selection of head model modifies the accuracy of spatial estimation 

but not its dynamics. For that reason, considering any head model, 

it is possible evaluating the performance of different methodolo-

gies of estimation for neural activity (Grech et al., 2008; Plummer 

et al., 2008). 

This article presents an EEG source reconstruction method 

that solves the inverse problem in a Kalman filtering framework 

using a smoother approach. The methodology is applied over a 
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realistic head model calculated with the boundary elements meth-

od (BEM). The analysis is made up from simulated EEG signals 

for several levels of noise. The solution of the inverse problem is 

achieved using high performance computing techniques. This 

article is organized as follows: section 2 presents methods for 

solving the inverse problem for the static case using a regularized 

solution and for the dynamic case using direct Kalman filter esti-

mation and Kalman smoother approach, and also presents a head 

model using the BEM; section 3 presents the comparative analysis 

between the static and dynamic methods for several noise condi-

tions. Finally, section 4 presents conclusions and future work. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Inverse Problem Framework 
 

The relationship between EEG measurements on the scalp and 

the current density resultant from the neuronal activity into the 

brain is described by the observation (1). 

 

εMxy 
 

(1) 

 

In (1), y
 
denotes a vector of dimension 1d  that contains the 

measures of the EEG on the scalp for d  electrodes. 

 TT

N

T x  xx 1
 
denotes a 13 N  vector that contains the current 

density vectors  Tiziyixi xxx   x   with Ni ,...,2,1  where N  is 

the number of sources inside the brain. Matrix M  has a Nd 3  
dimension and it relates the current density inside the brain x  

with EEG measurements y . M  is called lead field matrix and 

can be calculated using Maxwell equations for a specific head 

model (Yamashita et al., 2004). The vector ε  with 1d  dimension 

is an additive random variable that represents the non-modeled 

features of the system, i.e. observation noise, and it can be as-

sumed as a Gaussian distribution of the form  εΣε
2,0~ G  with 
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known covariance structure εΣ . The forward problem is defined 

as calculation of measurements y  for a given current density 

vector x . Therefore, (1) is used for simulation of EEG signals 

where any variation of ε  can simulate several noise conditions. 

The inverse problem is defined as the estimation of current 

density x̂  from a given measurements y  and establish an ill 

posed problem since the number of scalp electrodes (dimension of 

y ) is much smaller than the number of sources where current 

density of neuronal activity should be estimated (dimension of x̂ ). 

The inverse problem proposed in (1) is recognized as static or 

instantaneous since there are only used measurements in a single 

instant of time for estimation of x̂ . Generally, the estimation of x̂  

can be obtained by minimizing the objective function given in (2). 

 
222

)( xLMxyx
εΣ

E
 (2) 

 

where L  is a matrix with NN 33   dimension and is defined 

as the spatial smoothness constraint, where the ith row vector of 

L  acts as a discrete differentiating operator (Laplacian operator), 

by forming differences between the nearest neighbors of the jth 

source and ith source itself (Yamashita et al., 2004). The parame-

ter  , called regularization parameter, expresses the balance 

between fitting the model and the prior constraint of minimizing 

Lx . The solution of this minimization problem for a given   is 

obtained by (3). 

 

  yΣM LL MΣMx
1-

ε

1-

ε

TTT 12ˆ


 
 

(3) 

 

The parameter   is calculated using methods of parameter se-

lection as L-curve (Hansen et al., 1998). However, the obtained 

solution is achieved for each time independently, and it doesn’t 

take into account the dynamic behavior. Consequently, it is possi-

ble to consider a modification of (2) to achieve an objective function 
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containing the spatial and temporal smoothness constraints, as 

shown in (4). 

 

  2

1

2

2

22

1

2
)(  kkkkkkE xxLxLMxyx

εΣ


 
(4) 

 

where ky
 
is the EEG measurements at time instant k , kx  is 

the state vector that correspond to the neuronal activity in each 

source into the brain at time k , and 
1 , 

2 are defined as regular-

ization parameters. Additionally, the interactions between neigh-

boring sources in time can also be taken into account by including 

the Laplacian matrix L  into the third term of (4). By introducing 

a new parameter A  that represents a balance between the second 

and third terms of (4), we can combine the two penalty terms and 

obtain a more compact expression: 
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(5) 

 

The objective function in (4) and (5) are not equivalent math-

ematically; however, (5) can be regarded as a different way of 

imposing these two kinds of constraints (spatial and temporal). 

Moreover, (5) can be related with a state space representation, as 

shown in (6). 
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(6) 

 

An initial estimate (for 1k ) of the state 1x
 
can be obtained 

by any approach for solving the instantaneous inverse problem. 
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For Nk ,,2 , we can obtain an estimate of kx̂  by minimizing 

(5), as given by (7). 

 

  2

1

22
1ˆminargˆ 


LLΣx

xAx Mxyx
ε

T

k

kkkkk 
 (7) 

 

where 1
ˆ

kx  is the estimate obtained in the previous step. The 

solution of (7) is given by (8). 

 

   1

21121 ˆˆ


  k

TTTT
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(8) 

 

The structure of A  is selected according to a physiological 

based model proposed by (Robinson et al., 2007, Barton et al., 

2009). In the case of a first order linear model kkk ηAxx  1 , A  

is defined as follows 

 

LIA 11 ba 
 

(9) 

 

where 1a
 
considers the variability among sources in time and 

1b  in space. 

 

2.2 Dynamic Estimation 
 

Direct computation of (8) is numerically impracticable because 

it requires the inverse of M ; however, the dynamic inverse prob-

lem in the case of neuronal activity estimation kx  presented in (6) 

is a state space formulation that could be solved through a forward 

Kalman filtering using the recursion given by (10) and (11), which 

are known as time update equation and measurement update 

equation, respectively. 
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where 


kx̂  is defined as a priori estimation of kx̂ , 


kΣ  is de-

fined as a priori covariance, and   1
 LLΣη

T
 is the covariance 

related with η . 
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(11) 

 

Therefore, the estimated neuronal activity kx̂
 
is mapped over 

a realistic head model. However, in spite of kx̂  is estimated for 

each k  using only the data up through time k , it is possible to 

improve the precision of the estimated states kx̂
 
using a smoother 

that computes a smoothed version 
s

kx̂  of the estimated neuronal 

activity kx̂  using all the available data ( Nk ,,1 ) in the exper-

iment from the obtained results of recursion (11) in a backward 

recursion. This smoother applied over the Kalman filter estima-

tion is known as the Rauch–Tung–Striebel smoother (Haykin et 

al., 2001) and is given by (12) for 1,,1 Nk . 
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(12) 

 

where kD
 
is the gain matrix of the smoother and the initial 

values for the backward recursion are N

s

N ΣΣ 
 
and N

s

N xx ˆˆ  . 
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2.3 Realistic Head Modeling through BEM 
 

In head modeling there can be used from simple models such 

as spherical, to complex models like finite elements, BEM, finite 

volumes, finite differences, etc. Modeling with the BEM presents a 

middle point of complexity between the named models, obtaining a 

more realistic approximation of the head model while it keeps 

some properties of simple spherical models (i.e. uniform conductiv-

ity). The head models vary their complexity with the number of 

layers (one layer: the brain; two layers: brain and skull; three 

layers: brain, skull and skin; four layers: brain, skull, cerebrospi-

nal fluid, skull and skin) as described in (Plummer et al., 2008). 

The BEM model consists of a set of point located over every 

layer of head model and that form the vertices of a set of triangles. 

In this way, the realistic model obtained corresponds to an approx-

imation through the set of triangles for every layer which are 

considered isotropic conductivities in the same way as is done for 

the spherical model. In Table 1 are described the properties of the 

realistic head model computed by BEM. 

 
Table 1. Properties of the realistic head model computed by BEM. 

Source: Authors 

Shell 
Conductivity 

( cm/1 ) 

Triangles 

(No.) 

Skin 0,0286 996 

Skull 0,000358 1996 

Brain 0,0286 2996 

 

Thus, the lead field matrix M involves spatial relationships be-

tween sources located within the brain (inner layer) with located 

electrodes over the skin (outermost layer). Fig. 1 shows the head 

model with three layers using BEM. 
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Fig. 1. The head model with three layers using BEM. 

Source: Authors 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Experimental Setup 
 

Three cases are analyzed in this article for estimation of neu-

ronal activity: for the static case the estimation is achieved using 

the regularized Tikhonov solution proposed in (3). For dynamic 

cases, the estimation is performed using two solutions: the direct 

Kalman filter approach proposed in (10) and (11) and the Rauch–

Tung–Striebel smoother approach presented in (12). For the dy-

namic cases, brain dynamic is approximated through a first order 

linear model with the structure of A  proposed in (9). A compara-

tive analysis is performed considering individuals contributions in 

the structure of A  for the variability among sources in time and 

space. In this way, an estimation error e given by (13), according 

to (Grech et al., 2008) is used for each trial: 
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In this line, and in order to consider the relative contribution 

to the filter performance of the several parts of the process model 

for the dynamic inverse problem, the following cases are to be 

considered: 1) static case solution described in (3); 2) first order 

model given in (6) without spatial coupling ( 01 b ) using direct 

Kalman filter approach; 3) first order model given in (6) with 

spatial coupling using direct Kalman filter approach; 4) first order 

model given in (6) without spatial coupling ( 01 b ) using the 

Rauch–Tung–Striebel smoother approach; and 5) first order model 

given in (6) with spatial coupling using the Rauch–Tung–Striebel 

smoother approach. 

A major issue regarding to the inverse solution task is obtain-

ing meaningful evaluations of the estimation results and its per-

formance, because locations of true sources are not available for 

comparison when working with real EEG data. Instead, the most 

common approach is to use simulated EEG data where underlying 

sources are known. Two types of sources will be considered: 

sources randomly located near the surface of the brain and sources 

randomly located deep in the brain. Nonetheless, to generate a 

simulated EEG dataset for this purpose requires selecting a model 

for the brain dynamics, which displays complex spatio-temporal 

behavior. Here, the temporal dynamics are suggested to be mod-

eled using a linear combination of sine functions whose compo-

nents are evenly spaced in the alpha band (8 – 12 Hz), which is 

selected since the clinical data used in typical real EEG recordings 

display prominent alpha activity (Barton et al., 2009). Specifically, 

the simulated brain dynamics where generated for 256 time 

points, assuming a sampling rate of 256 Hz. 

The performance of the inverse solutions is compared with 

simulated EEG data for the following values of signal noise ratio 

(SNR): 5 dB, 10 dB, 15 dB, 20 dB and 25 dB for each type of 

source. Besides, 25 repetitions of one second of synthetic EEG 

data, according to 10-20 system, are generated from the simulated 

current densities by multiplication with the lead field matrix M . 

Prior to computing an inverse solution, we define a discretized 

solution space consisting of 7x7x7 mm gray matter grid points 

(sources), as recommended in (Barton et al., 2009). These sources 
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cover the cortex and basal ganglia. At each source, the 3D local 

current vector is mapped, as usual, to the 19 electrode sites for the 

10-20 system. Finally, an evaluation of the computational load is 

performed for static case using regularization and first order dy-

namic case using direct Kalman filtering and the Rauch–Tung–

Striebel smoother approach. 

 

3.2 Estimation Results 
 

The obtained results for the static case solution of (1), when 

considering several SNR, are shown in Table 2, where a regular-

ized solution is used to solve the inverse problem of (3). In this 

case, a Tikhonov solution with L-curve method for parameter 

selection is used (Hansen et al., 1998). It can be seen that the 

obtained results are similar to the outcomes given in (Grech et al., 

2008), namely, the performance of the considered algorithm is 

highly dependent of the noise. 

 
Table 2. Estimation error (%) for simulated signals for static case. 

Source: Authors 

Case Source 5 dB 10 dB 15 dB 20 dB 25 dB 

1 
Surface 24,42±4,34 13,82±3,21 7,90±1,78 4,39±0,71 2,41±0,35 

Deep 34,46±4,51 20,09±3,35 11,17±1,93 6,18±0,98 3,69±0,41 

 

On the other hand, when temporal constraints are included in 

the solution of the inverse problem, the solution of the inverse 

problem could be improved. In the case of a first order dynamic 

model, where the neuronal activity is estimated using Kalman 

filter, the obtained results are shown in Table 3, which are similar 

with those outcomes given in (Barton et al., 2009), for time invari-

ant parameters (calculated offline). For example, when looking to 

the first order model without spatial coupling (case 2), the results 

are not as good as in the case of the first order model with spatial 

coupling (case 3). It must be quoted that similar result, for the 

considered variations of the dynamic model, where obtained in 

(Barton et al., 2009). 

Nonetheless, it is clear that estimated solution takes into ac-

count only the information available up to k . It is possible to im-
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prove the precision of the estimated solution using a smoother 

that computes a smoothed version of the estimated neuronal activ-

ity using all the available data ( Nk ,,1 ) in the experiment 

from the obtained results of direct Kalman filter approach. There-

fore, applying the Rauch–Tung–Striebel smoother approach over 

the cases 2 and 3, the obtained results are shown in Table 4. 

 
Table 3. Estimation error for dynamic cases using direct Kalman filter approach. 

Source: Authors 

Case Source 5 dB 10 dB 15 dB 20 dB 25 dB 

2 
Surface 6,34±1,14 3,49±0,94 2,21±0,67 1,42±0,45 1,21±0,26 

Deep 7,08±1,44 4,31±1,04 3,02±0,74 2,05±0,49 1,76±0,32 

3 
Surface 1,42±1,11 1,16±0,91 1,05±0,61 1,02±0,41 1,02±0,21 

Deep 1,46±1,13 1,97±0,98 1,79±0,80 1,12±0,52 1,93±0,33 

 
Table 4. Estimation error (%) for dynamic cases using Rauch–Tung–Striebel 

smoother approach. Source: Authors 

Case Source 5 dB 10 dB 15 dB 20 dB 25 dB 

4 
Surface 3,68±1,09 1,95±0,78 1,13±0,54 0,86±0,33 0,61±0,10 

Deep 4,53±1,31 3,01±1,14 2,15±0,78 1,01±0,45 0,88±0,12 

5 
Surface 1,12±0,71 0,97±0,56 0,82±0,59 0,74±0,31 0,39±0,08 

Deep 1,23±0,90 1,06±0,48 1,10±0,91 0,96±0,37 0,87±0,19 

 

Hence, a comparison between Tables 3 and 4 show that the 

smoothed solution improves the precision of the estimation and 

reduces the dispersion of the data. However, this improvement 

leads in high computational load because it is necessary to save 

the estimated kx̂  and covariance 


kΣ  and kΣ  for all k . 

 

3.3 Computational Load 
 

In order to evaluate the performance of the solutions from a 

computational load point of view using the high performance com-

puting techniques, an evaluation of the estimation process time is 

performed for static case, dynamic case using a direct Kalman 

filter approach and a Rauch–Tung–Striebel smoother approach. 
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This analysis is performed over a single computer with dual core 

of 2.6 GHz processor, 2 GB of RAM DDR3 and 120 Gb of hard disk. 

In order to address the limitation of large scale computations, we 

arrange the Kalman filtering computations such that the data 

intensive aspects of the algorithm can run in parallel. The results 

of this evaluation for 25 repetitions of each case are shown in 

Table 5. 

 
Table 5. Time estimation process comparison for a deep source with a SNR of 5dB. 

Source: Authors 

 Static case 

Rauch-Tung-

Striebel smoother 

approach 

Kalman filter 

approach 

Time (s) 22,004±0,879 9,633±0,151 2,417±0,029 

Estimation error (%) 34,46±4,51 4,53±1,31 7,08±1,44 

 

It is noticeable from Table 5, that the estimation time for the 

dynamic cases using direct Kalman filter approach is 10 times less 

than the static case. In particular, the estimation time of using the 

Rauch-Tung-Striebel smoother approach is 5 times more than the 

direct Kalman filter because it requires an additional smoothness 

step but principally because it is necessary to save a lot of infor-

mation for this step. Even so, the smoother approach requires 

almost the half of time than the static case. Besides, it can be seen 

clearly that a lower estimation error is achieved by the Rauch-

Tung-Striebel smoother approach since the estimated model takes 

into account the variability of the whole signal. Therefore, the 

Rauch–Tung–Striebel algorithm must be considered in applica-

tions where an elevated precision is highly desirable over the 

computational cost. 

Finally, the estimated solutions are mapped over a realistic 

head model calculated with BEM as shown in Fig. 2, where the 

pallid sectors into the brain correspond to the estimated activity. 

It is clear by comparison with the true activity (Fig. 2a) that the 

dispersion introduced by the covariance in the Kalman filtering 

(Fig. 2b) is reduced by the Kalman smoother approach along time 

(Fig. 2c). The mapped activity offers an interesting tool for diag-

nostic support because it shows the activity into the brain related 

with the EEG events when is use for real EEG signals. 
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              t=0,1 s t=0,2 s           t=0,3 s 

 

a) Mapping of true activity 

 

b) Mapping of estimated activity using Kalman filtering 

 

c) Mapping of estimated activity using Kalman smoother approach 

Fig. 2. Realistic brain mapping in a BEM model at time instants t=0,1; t=0,2 and 

t=0,3 seconds. Source: Authors 

 

 

4. CONCLUSIONS AND FUTURE WORK 

 

In this paper, we have addressed the dynamical inverse prob-

lem of EEG signals for estimation of neuronal activity, using a 

Kalman filtering smoother approach. According to the obtained 

results, this approach improves the precision of the estimation 

over the Kalman filter but increases the computational load. De-
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spite that, both the Kalman filter and Kalman filter approach are 

faster than the static case, and more precise. 

As expected, the more elaborate a dynamic model is applied, 

the more the resulting inverse solutions will be able to explain the 

observed EEG data. These results were confirmed for each case 

study in this paper for simulated signals over several SNR values 

where the first order model that include in the structure of A  the 

variability among sources in time and space presents reached the 

better performance in comparison with the static case. In order to 

improve the estimated solutions, more complex models could be 

used. However, for the Kalman smoother approach, these elabo-

rated models could increase the computational load, and the re-

duction of the estimation error could not be relevant. 

For future work, a Kalman smoother approach applied over a 

dynamic model with time varying parameters is proposed; with 

the intention of achieve a better performance of the estimator. 
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