

Algoritmo para un Patrón de Radiación sin Lóbulos Secundarios

Algorithm to Achieve a Radiation Pattern without Sidelobes

> Oscar Cruz-Zamora¹ Marco A. Acevedo-Mosqueda²

Tecno. Lógicas., ISSN 0123-7799, Edición Especial, octubre de 2013, pp. 367-380

Departamento de Telecomunicaciones, Escuela Superior de Ingeniería Mecánica y Eléctrica, México DF-México ocruzz@ipn.mx
 Departamento de Telecomunicaciones, Escuela Superior de Ingeniería Mecánica y Eléctrica, México DF-México macevedo@ipn.mx

[368] Cruz & Acevedo / Algoritmo para un Patrón de Radiación sin Lóbulos Secundarios

Resumen

En este trabajo se describe el procedimiento, basado en sistema de ecuaciones de nulos direccionados para calcular los pesos necesario de un arreglo de antenas lineales, que genere un patrón de radiación (PA) con un lóbulo principal y sin lóbulos secundarios (SLS). Para lograrlo se utilizan las ecuaciones de nulos direccionados. Las ecuaciones permiten encontrar un vector de pesos, y estos pesos son ajustados en tres etapas. Las direcciones de los nulos son seleccionadas para que los lóbulos secundarios sean disminuidos y prácticamente inexistentes (hasta menos del 5 % del valor máximo con respecto al lóbulo principal). Este procedimiento se propone como una técnicas alternativa a los formadores de haces adaptativos. Los resultados del algoritmo propuesto se comparan con el algoritmo formador de haz de mínima varianza sin distorsión (MVDR).

Palabras clave

Nulos Direccionados; algoritmo beamforming; arreglo lineal de antenas; vector de pesos; MVDR.

Abstract

This paper describes a procedure based on equations to null-steering to choose the weights required for a linear antenna array generates a radiation pattern with a main lobe and no side lobes, where the main beam is in the direction of the desired signal. This paper uses the null canceller equation. The equations are related to a weight vector, so that the weights are optimized in three adjustment process. The directions of the nulls are selected so that the side lobes are reduced and virtually nonexistent (to less than 5% of full). This procedure is proposed as an alternative to using the techniques of adaptive beamforming. In addition the results are compared with other beam-forming technique like minimum variance distortionless response (MVDR).

Keywords

Sidelobe cancellation; Beamforming; array antennas; weight vector; MVDR.

1. INTRODUCCIÓN

Un arreglo de antenas es una agrupación de antenas elementales, todas ellas alimentadas en terminales comunes, que trasmiten o reciben de modo conjunto. Los elementos de un arreglo son alimentados con amplitudes y fases adecuadas de modo que los campos radiados por el conjunto proporcionan un PA deseado. El empleo de arreglos permite obtener diagramas unidireccionales estrechos, imposibles de conseguir mediante distribuciones continuas de corriente lineal, el cual, al tomar de manera natural el carácter de onda estacionaria da lugar a patrones multilobulados.

Cuando la separación entre los elementos de un arreglo lineal es equidistante, se le conoce como arreglo lineal uniforme (ULA). La Fig. 1 muestra un arreglo de N elementos. Donde el espacio entre los elementos del arreglo es d, y el plano de la onda llega al arreglo en una dirección de θ trasversalmente. El ángulo θ es medido en sentido de las manecillas del reloj, se le conoce como dirección de llegada de la señal recibida (AoA).

Fig. 1. Arreglo lineal simétrico uniforme. Fuente: Fakhrul 2010

La señal de llegada puede escribirse como:

$$\widetilde{x}_{1}(t) = A_{1}(t)Cos\{2\pi f_{c}t + \gamma(t) + \beta\}$$
(1)

Dónde: A(t) es la amplitud de la señal, f_c es la frecuencia de portadora, γ (t) es la información, y β es la fase.

Si la frecuencia portadora f_c es grande en comparación con el ancho de banda de la señal que incide, la señal puede ser tratada como cuasi-estática durante intervalos de tiempo del orden τ ; para la señal en la segunda antena:

[370] Cruz & Acevedo / Algoritmo para un Patrón de Radiación sin Lóbulos Secundarios

$$\widetilde{x}_{2}(t) = A(t)e^{j\{-2\pi f_{c}\tau + \gamma(t) + \beta\}} = x_{1}(t)e^{j\{-2\pi f_{c}\tau\}}$$
(2)

Por lo tanto, la envolvente compleja de la señal recibida en ienésima (i= 1,2,..., N) elemento puede ser expresado como:

$$x_i(t) = x_1(t)e^{-j\{2\pi\frac{d}{\lambda}(i-1)\sin\theta\}}$$
(3)

Definir un vector columna cuyos elementos contienen la señal recibida en su correspondiente elemento del arreglo, como:

$$x(t) = \begin{bmatrix} x_1(t) & x_2(t) & \dots & x_N(t) \end{bmatrix}^T$$
(4)

$$a(\theta) = \begin{bmatrix} 1 & e^{-j\{2\pi\frac{d}{\lambda}\sin\theta\}} & \dots & e^{-j\{2\pi\frac{d}{\lambda}(N-1)\sin\theta\}} \end{bmatrix}^T$$
(5)

Donde \mathbf{T} es la transpuesta, y $\mathbf{a}(\mathbf{\theta})$ es conocido, como el vector de respuesta del arreglo, el cual está en función de **AoA**, la respuesta de los elementos individuales, la geometría del arreglo, y la frecuencia de la señal. Supongamos que, para el rango de funcionamiento de la frecuencia portadora, el vector de respuesta no cambia. Como hemos definido la geometría en ULA. El vector de la señal recibida se puede escribir:

$$\overline{x}(t) = \overline{a}(\theta)x(t) \tag{6}$$

Por otro lado, Beamforming es la técnica de procesamiento espacial más común aplicada a un arreglo de antenas en los sistemas de comunicaciones celulares, en donde, las señales deseadas e interferencia se originan en distintas ubicaciones espaciales. Esta separación espacial es explotada por un formador de haz, que puede ser considerado como un filtro, que separa en el espacio la señal deseada, de las interferencias. Las señales de los diferentes elementos de la antena, son ponderadas, y sumadas para obtener una señal de calidad óptima. La Fig. 2 ilustra la idea de un formador de haz de banda estrecha. Si tenemos en total K señales, con ángulos distintos de llegada, que inciden en un arreglo de antenas de N elementos; el vector de la señal recibida puede ser escrito como (7):

$$x(t) = \sum_{i=1}^{K} s_i(t) a(\theta_i) + n(t)$$
(7)

Fig. 2 Diagrama del formador. Fuente: Gross 2005

Donde $S_i(t)$ es la señal de i-enésima con un AoA de θ_i , $a_i(\theta)$ es el vector de respuesta para AoA de θ_i y N(t) es el vector de ruido. La salida del arreglo de antenas está dada por:

$$y(t) = w^{H}(t)x(t)$$
(8)

Donde $w = \begin{bmatrix} w_1 & w_2 & \cdots & w_N \end{bmatrix}^T$ es el N × 1 vector de pesos y H es la traspuesta Hermitiana. El vector de pesos se elige para optimizar algún criterio del formador del haz, por ejemplo, el mínimo error cuadrático medio, la máxima relación señal a ruido e interferencia, la relación máxima señal a ruido, módulo constante, de máxima verosimilitud, etc. (Alam,2002). Sabemos, que los ángulos nulos o ceros del FA son cuando:

$$\theta_{nulos} = \sin^{-1}\left(\frac{1}{kd}\left(\pm\frac{2n\pi}{N}-\delta\right)\right) \qquad n = 1, 2, 3, \dots$$
(9)

Donde δ es la diferencia de fase eléctrica entre dos elementos adyacentes. Para los ángulos reales, el seno de θ es menor o igual a uno, por los tanto el argumento de la ecuación debe ser menor o igual a uno (Balanis, 2002). Los ángulos de los lóbulos secundarios son máximos cuando:

[372] Cruz & Acevedo / Algoritmo para un Patrón de Radiación sin Lóbulos Secundarios

$$\theta_s = \sin^{-1} \left(\frac{1}{kd} \left(\pm \frac{(2n+1)\pi}{N} - \delta \right) \right) \qquad n = 1, 2, 3, \dots$$
(10)

El ancho del haz principal se define como la apertura angular del lóbulo principal medido en determinado nivel de potencia constante, y se obtiene:

$$\theta_{\pm} = \sin^{-1} \left(\frac{1}{kd} \left(\frac{\pm 2.782}{N} - \delta \right) \right) \tag{11}$$

Donde θ_+ y θ_- son los puntos de media potencia y se encuentran normalizados para un FA=0,707. El ancho de banda de media potencia es:

$$HPBW = \begin{bmatrix} \theta_{+} & - & \theta_{-} \end{bmatrix}$$
(12)

Con respecto al algoritmo de mínima varianza sin distorsión (MVDR). El término "sin distorsión" se aplica cuando se desea que la señal recibida no se distorsione después de la aplicación del vector de pesos. El objetivo del método de MVDR es reducir al mínimo la varianza del ruido a la salida del arreglo de antenas. Esto suponiendo que la señal deseada, y la no deseada tengan como media el valor cero. Utilizando de referencia el arreglo de la Fig. 2 así como las (7) y (8) (Gross, 2005) tenemos:

$$y = \overline{w}^H \overline{x} = \overline{w}^H \overline{a}_0 s + \overline{w}^H \overline{u}$$
(13)

Con el fin de asegurar una respuesta sin distorsión, entonces:

$$\overline{w}^{H}a_{0} = 1 \tag{14}$$

Sustituyendo (13) en (14), la salida del arreglo es:

$$y = s + \overline{w}^H \overline{u} \tag{15}$$

Tecno Lógicas

Tecno. Lógicas., Edición Especial, octubre de 2013

Además, si la señal no deseada tiene como media el valor cero, el valor esperado de la salida del conjunto está dada por:

$$E[y] = s \tag{16}$$

De donde se calcula la varianza para y como:

$$\sigma^{2}{}_{MV} = E\left[\left|\overline{w}^{H}\overline{x}\right|^{2}\right] = E\left[\left|s + \overline{w}^{H}\overline{u}\right|^{2}\right] = \overline{w}^{H}\overline{R}_{uu}\overline{w}$$

$$(17)$$

$$\overline{R}_{uu} = \overline{R}_{ii} + \overline{R}_{nn} \tag{18}$$

Donde R_{ii} es la matriz de correlación para las interferencias y R_{nn} matriz de correlación para el ruido. Se puede minimizar esta variación mediante el método de LaGrange. Ya que todos los pesos de la matriz son interdependientes e incorporando la restricción de (14) para definir un criterio de rendimiento o función de costo, que es una combinación lineal de la varianza y la restricción, tal que:

$$J(\overline{w}) = \frac{\sigma^2_{MV}}{2} + \xi(1 - \overline{w}^H \overline{a}_0) = \frac{\overline{w}^H \overline{R}_{uu} \overline{w}}{2} + \xi(1 - \overline{w}^H \overline{a}_0)$$
(19)

Donde $\boldsymbol{\xi}$ es el multiplicador de LaGrange y J(w) es la función de costo. La función de costo es una función cuadrática y se puede minimizar al establecer el gradiente igual a cero.

$$\nabla_{\overline{w}}J(\overline{w}) = R_{uu}\overline{w}_{MV} + \xi\overline{a}_0 = 0 \tag{20}$$

Resolviendo para el valor de los pesos, llegamos a:

$$\overline{w}_{MV} = \overline{R}^{-1}{}_{uu}\xi\overline{a}_0 \tag{21}$$

Con el fin de resolver el multiplicador de LaGrange se puede sustituir la (24) en (30) así (Koivo & Heikki, 2009):

2. ALGORITMO PARA UN PATRÓN DE RADIACIÓN SIN LÓBULOS SECUNDARIOS

El objetivo básico de un Cancelador de Lóbulos Laterales es elegir pesos, de tal manera que un valor nulo o cero se coloca en la dirección de la interferencia, y un valor máximo en la dirección de interés. Consideremos un ULA de 7 elementos isotrópicos espaciados a d= λ 2. A partir de (4) obtenemos su FA que por ser elementos isotrópicos, el FA es similar al patrón de radiación (Balanis, 1997)

 $FA = e^{-j3sin\theta} + e^{-j2sin\theta} + e^{-jsin\theta} + 1 + e^{jsin\theta} + e^{j2sin\theta} + e^{j3sin\theta}$ (23)

En la Fig. 3 se muestra el patrón correspondiente a (23), donde los peso son todos de magnitud 1, los llamaremos pesos Wi.

Fig. 3. Patrones de radiación de 7 elementos en distribución lineal uniforme

Utilizando (19), localizamos los máximos secundarios y proponemos semi-nulos en esas direcciones, como los mostrados en la Tabla 1:

Tabla 1. A	Ángulos proj	puestos. Fi	uente: Autores
	Señal	Ángulo	
	Deseada	0°	
	Nulo	±27,5°	
	Nulo	$\pm 48^{\circ}$	
	Nulo	$\pm 65^{\circ}$	

De (8) se tiene el siguiente sistema de ecuaciones, donde w_i son los pesos buscados y los ángulos θ son los propuestos en la Tabla 1.

$$\begin{bmatrix} e^{-j3\pi\sin\theta_1} & e^{-j2\pi\sin\theta_1} & e^{-j\pi\sin\theta_1} & 1 & e^{j\pi\sin\theta_1} & e^{j2\pi\sin\theta_1} & e^{j3\pi\sin\theta_1} & e^{j3\pi\sin\theta_1} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j3\pi\sin\theta_1} & e^{-j2\pi\sin\theta_1} & e^{-j\pi\sin\theta_1} & 1 & e^{j\pi\sin\theta_1} & e^{j2\pi\sin\theta_1} & e^{j3\pi\sin\theta_1} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j3\pi\sin\theta_2} & e^{-j2\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j2\pi\sin\theta_2} & e^{j3\pi\sin\theta_2} \\ e^{-j\pi\sin\theta_2} & e^{-j\pi\sin\theta_2} & 1 & e^{j\pi\sin\theta_2} & e^{j\pi\theta_2} & e^{j\pi\theta_2} \\ e^{-j\pi\theta_2} & e^{-j\pi\theta_2} & e^{-j\pi\theta_2} & 0 \\ e^{-j\pi\theta_2} & e^{-j\pi\theta_2} & e^{-j\pi\theta_2} & 0 \\ e^{-j\pi\theta_$$

Observemos que el sistema está propuesto para que sea practicante cero (magnitud de 0,1). El (24) es resuelto por el método de Godara (2004), y se obtienen los pesos w_i ; después calculamos $w_i'=(W_i).(w_i)$, que a esto le llamaremos herencia (ver Tabla 2).

Tabla 2. Vector de pesos primera aproximación. Fuente: Autores								
Pesos iniciales	Magnitud	Pesos calculados	Magnitud	Pesos w'=(w)(W)	Magnitud			
W1	1	w1	0,1386	w1'	0,1386			
W2	1	w2	0,1181	w2'	0,1181			
W3	1	w3	0,1875	w3'	0,1875			
W4	1	w4	0,2116	w4'	0,2116			
W5	1	w5	0,1875	w5'	0,1875			
W6	1	w6	0,1181	w6'	0,1181			
W7	1	w7	0,1386	w7'	0,1386			

La Fig. 4 ilustra el PA de la primera aproximación con los pesos wi' (Tabla 2). Utilizando este patrón encontramos los máximos secundarios (Tabla 3), y como segundo paso, proponemos un nuevo sistema (25) en base a (8), colocando nulos o semi-nulos (magnitudes 0,05).

os angaios	propacoto	. 1 401100. 1140
Señal	Ángulo	
Deseada	0°	
Nulo	±24°	
Nulo	$\pm 49^{\circ}$	
Nulo	$\pm 65^{\circ}$	
	Señal Deseada Nulo Nulo Nulo	SeñalÁnguloDeseada0°Nulo±24°Nulo±49°Nulo±65°

Tabla 3. Nuevos ángulos propuestos. Fuente: Autores

Fig. 4. Patrón de radiación para la primera aproximación. Fuente: Autores

$e^{-j3\pi\sin\theta_1}$	$e^{-j2\pi\sin\theta_1}$	$e^{-j\pi\sin\theta_1}$	1	$e^{j\pi\sin\theta_1}$	$e^{j2\pi\sin\theta_1}$	$e^{j3\pi\sin\theta_1}$	w_1		1	
$e^{-j3\pi\sin\theta_2}$	$e^{-j2\pi\sin\theta_2}$	$e^{-j\pi\sin\theta_2}$	1	$e^{j\pi\sin\theta_2}$	$e^{j2\pi\sin\theta_2}$	$e^{j3\pi\sin\theta_2}$	<i>w</i> ₂		0.05	
$e^{-j3\pi\sin\theta_3}$	$e^{-j2\pi\sin\theta_3}$	$e^{-j\pi\sin\theta_3}$	1	$e^{j\pi\sin\theta_3}$	$e^{j2\pi\sin\theta_3}$	$e^{j3\pi\sin\theta_3}$	<i>w</i> ₃		0.05	
$e^{-j3\pi\sin\theta_4}$	$e^{-j2\pi\sin\theta_4}$	$e^{-j\pi\sin\theta_4}$	1	$e^{j\pi\sin\theta_4}$	$e^{j2\pi\sin\theta_4}$	$e^{j3\pi\sin\theta_4}$	W_4	=	0.05	(25)
$e^{-j3\pi\sin\theta_5}$	$e^{-j2\pi\sin\theta_5}$	$e^{-j\pi\sin\theta_5}$	1	$e^{j\pi\sin\theta_5}$	$e^{j2\pi\sin\theta_5}$	$e^{j3\pi\sin\theta_5}$	W_5		0.05	
$e^{-j3\pi\sin\theta_6}$	$e^{-j2\pi\sin\theta_6}$	$e^{-j\pi\sin\theta_6}$	1	$e^{j\pi\sin\theta_6}$	$e^{j2\pi\sin\theta_6}$	$e^{j3\pi\sin\theta_6}$	W_6		0.05	
$e^{-j3\pi\sin\theta_7}$	$e^{-j2\pi\sin\theta_7}$	$e^{-j\pi\sin\theta_7}$	1	$e^{j\pi\sin\theta_7}$	$e^{j2\pi\sin\theta_7}$	$e^{j3\pi\sin\theta_7}$	W_7		0.05	

Los pesos encontrados resolviendo (25) les aplicamos la herencia para tener wi''= (wi) (wi'), Tabla 4:

Tabla 4. Vector de pesos segunda aproximación. Fuente: Autor	ores
--	------

Pesos	Magnitud
w1"	0,0497
w2"	0,1377
w3"	0,1894
w4"	0,1965
w5"	0,1894
w6"	0,1377
w7"	0,0497

El PA formado con el vector de pesos de la Tabla 4 es la Fig. 5. Para la tercera aproximación se localizan los lóbulos laterales máximos del PA de la Fig. 5, en los cuales se proponen nulos para los ángulos de la Tabla 5. Finalmente el sistema (26) es igual a cero. r

Fig. 5. Patrón de radiación del arreglo segunda aproximación. Fuente: Autores

[ab	la i	5. /	Angul	\mathbf{os}	propu	iestos	para	la	tercera	apro	oximac	eión.	F	uente:	Αu	itoi	res
-----	------	------	-------	---------------	-------	--------	------	----	---------	------	--------	-------	---	--------	----	------	-----

				Señ	ial	Ang	ulo	
				Des	eada	0°	•	
				Nul	lo	±29)°	
				Nul	lo	± 40)°	
				Nul	lo	± 65	5°	
$\int e^{-j3\pi \sin\theta_1}$	$e^{-j2\pi\sin\theta_1}$	$e^{-j\pi\sin\theta_1}$	1	$e^{j\pi\sin\theta_1}$	$e^{j2\pi\sin\theta_1}$	$e^{j3\pi\sin\theta_1}$	$[w_1]$	[1]
$e^{-j3\pi\sin\theta_2}$	$e^{-j2\pi\sin\theta_2}$	$e^{-j\pi\sin\theta_2}$	1	$e^{j\pi\sin\theta_2}$	$e^{j2\pi\sin\theta_2}$	$e^{j3\pi\sin\theta_2}$	w ₂	0
$e^{-j3\pi\sin\theta_3}$	$e^{-j2\pi\sin\theta_3}$	$e^{-j\pi\sin\theta_3}$	1	$e^{j\pi\sin\theta_3}$	$e^{j2\pi\sin\theta_3}$	$e^{j3\pi\sin\theta_3}$	$ w_3 $	0
$e^{-j3\pi\sin\theta_4}$	$e^{-j2\pi\sin\theta_4}$	$e^{-j\pi\sin\theta_4}$	1	$e^{j\pi\sin\theta_4}$	$e^{j2\pi\sin\theta_4}$	$e^{j3\pi\sin\theta_4}$	$ w_4 =$	= 0
$e^{-j3\pi\sin\theta_5}$	$e^{-j2\pi\sin\theta_5}$	$e^{-j\pi\sin\theta_5}$	1	$e^{j\pi\sin\theta_5}$	$e^{j2\pi\sin\theta_5}$	$e^{j3\pi\sin\theta_5}$	w_5	0
$e^{-j3\pi\sin\theta_6}$	$e^{-j2\pi\sin\theta_6}$	$e^{-j\pi\sin\theta_6}$	1	$e^{j\pi\sin\theta_6}$	$e^{j2\pi\sin\theta_6}$	$e^{j3\pi\sin\theta_6}$	W_6	0
$e^{-j3\pi\sin\theta_{\gamma}}$	$e^{-j2\pi\sin\theta_{\gamma}}$	$e^{-j\pi\sin\theta_{\gamma}}$	1	$e^{j\pi\sin\theta_{\gamma}}$	$e^{j2\pi\sin\theta_{\gamma}}$	$e^{j3\pi\sin\theta_{\gamma}}$	w_7	0

El proceso de herencia permite que el algoritmo SLS conserve información de un escenario previo, similares a lo que realiza los algoritmos adaptativo. El ajuste gradual de nulos (0.1, 0,05, y 0) permite que los ángulos propuestos sean útiles, para no distorsionar el PA (Tabla 6 y Fig. 6). El parámetro para detener el proceso es la relación señal a ruido; por lo que para la tercera aproximación, ya no hay mejora significativa (Tabla 7).

[378]Cruz & Acevedo / Algoritmo para un Patrón de Radiación sin Lóbulos Secundarios

Tabla 6. Vector de p	oesos de la	tercera aproxi	nación. Fuente: Autores
	Peso	Magnitud	
-	w1"	0,0463	
	w2"	0,1244	
	w3""	0,2035	
	w4""	0,2415	
	w5""	0,2035	
	w6"	0,1244	
_	w7""	0,0463	

Fig. 6. Patrón de radiación sin lóbulos laterales. Fuente: Autores

Tabla 7. Relación señal a ruido para cada etapa de aproximación del método SLS. Fuente: Autores

Etapa	1	2	3
SNR dB	2,86	4,92	22,7

COMPARACIÓN DEL ALGORITMO SLS vs MVDR 3.

Para la comparación, se consideró un arreglo de 7 elementos isotrópicos espaciados a $d=\lambda 2$ en ULA; con una distribución de 6 interferencias con AoA similar a los de la Tabla 5. La Tabla 8 nos muestra una comparación de los pesos calculados por MVDR, y el algoritmo SLS, y la Fig. 7 el PA.

Tecno. Lógicas., Edición Especial, octubre de 2013

Pesos	MVDR	SLS
W1	$0,0748 \pm 0,0001i$	0,0463
W2	0,1351 - 0,0003i	0,1244
W3	$0,1788 \pm 0,0055i$	0,2035
W4	0,2160 + 0,0015i	0,2415
W5	0,1823 - 0,0014i	0,2035
W6	0,1363 - 0,0040i	0,1244
W7	0,0767 - 0,0014i	0,0463

Tabla 8. Vector de pesos encontrados con MVDR vs SLS. Fuente: Autores

Fig. 7. Patrón de radiación SLS vs MVDR. Fuente: Autores

Tabla 9. Compar<u>ación de la SNR, HPBW para SLS, y MV</u>DR. Fuente: Autores

	ПРDW	SNR ad	
Original	14,800	3,12	
SLS	19,960	22,7	
MVDR	18,350	10,39	

4. CONCLUSIONES

Una diferencia entre SLS, y los algoritmos ya conocidos, es que estos, intentan que no exista haz en las direcciones de interferencia; el método SLS pretendes que solo exista haz en la dirección de la señal de interés. En la comparación del algoritmo SLS contra el método MVDR no se toma en cuenta la velocidad de convergencia de los algoritmos, solo se compara la SNR, para un escenario estático, es decir un grupo de interferencias con AoA, igual a los ilustrados en la Tabla 5. La Tabla 8 muestra el vector de pesos encontrado por el algoritmo MVDR vs SLS donde se puede observar que

[380] Cruz & Acevedo / Algoritmo para un Patrón de Radiación sin Lóbulos Secundarios

los pesos de SLS no son complejos. La Fig. 7 muestra el PA para el vector de pesos encontrado por MVDR, donde se observan lóbulos secundarios en 47,50 y menos 47,50, mayores al 6% con respecto al lóbulo principal. Sin embargo los lóbulos principales son muy similares, ya que ambos procedimientos tienden a ensanchar el haz. Para SLS el HPBW de 19,960, y para MVDR es de 18,350, pero la SRN es mejor para SLS con 22,7 dB en comparación con los 10,39 dB del método MVDR, esto debido a los lóbulos secundarios. Lo anterior nos permite concluir que el algoritmo SLS presenta mejoras con respecto al método MVDR, para un escenario previamente establecido.

5. REFERENCIAS

- Alam Fakhrul (2002). Space Time Processing for Third Generation CDMA Systems, Thesis doctoral Universidad faculty of the Virginia Polytechnic Institute en Estados Unidos.
- Balanis C.A, Bellofiore S., Foutz, R. Govindarajula, I. Bahceci. (2002). Smart antenna system analysis, integration and performance for mobile ad-hoc networks, Vol. 50, No. 5 (2).
- Balanis C.A. (1997). Antenna theory: Analysis and Design. John Wiley and Sons, NewYork. (4).
- Fakhrul Alam. (2010). Space Time Processing for Third Generation CDMA Systems, Thesis doctoral.
- Godara. Lal Chand. (2004). Smart antennas Adaptive antennas. I. Title. II. Electrical engineering and applied signal processing, CRC Press LLC Pag. 93-159.
- Gross F.B. (2005). Smart Antennas for Wireless Communication, McGraw-Hill, pp. 77, 267(3).
- Koivo & Heikki. (2009). Systems engineering in wireless communications / Heikki Koivo, Mohammed Elmusrati. John Wiley & Sons, United Kingdom.