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Abstract 

Spectral image clustering is an unsupervised method that identifies distributions of 
pixels using spectral information without requiring a previous training stage. Sparse 
subspace clustering methods assume that hyperspectral images lie in the union of multiple 
low-dimensional subspaces. Therefore, sparse subspace clustering assigns spectral 
signatures to different subspaces, expressing each spectral signature as a sparse linear 
combination of all the pixels, ensuring that the non-zero elements belong to the same class. 
Although such methods have achieved good accuracy for unsupervised classification of 
hyperspectral images, their computational complexity becomes intractable as the number of 
pixels increases, i.e., when the spatial dimensions of the image become larger. For that 
reason, this paper proposes to reduce the number of pixels to be classified in the 
hyperspectral image; subsequently, the clustering results of the missing pixels are obtained 
by exploiting spatial information. Specifically, this work proposes two methodologies to 
remove pixels: the first one is based on spatial blue noise distribution, which reduces the 
probability of removing neighboring pixels, and the second one is a sub-sampling procedure 
that eliminates every two contiguous pixels, preserving the spatial structure of the scene. 
The performance of the proposed spectral image clustering framework is evaluated using 
three datasets, which shows that a similar accuracy is achieved when up to 50% of the 
pixels are removed. In addition, said framework is up to 7.9 times faster than the 
classification of the complete data sets. 

 
Keywords 

Spectral images, Spectral clustering, Sparse subspace clustering, Sub-sampling, Image 
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Resumen 

El agrupamiento de imágenes espectrales es un método no supervisado que identifica las 
distribuciones de píxeles utilizando información espectral, sin necesidad de una etapa 
previa de entrenamiento. Los métodos basados en agrupación de subespacio escasos 
suponen que las imágenes hiperespectrales viven en la unión de múltiples subespacios de 
baja dimensión. Basado en esto, la agrupación de subespacio escasos asigna firmas 
espectrales a diferentes subespacios, expresando cada firma espectral como una 
combinación lineal escasa de todos los píxeles, garantizando que los elementos que no son 
cero pertenecen a la misma clase. Aunque estos métodos han demostrado una buena 
precisión para la clasificación no supervisada de imágenes hiperespectrales, a medida que 
aumenta el número de píxeles, es decir, la dimensión de la imagen es grande, la complejidad 
computacional se vuelve intratable. Por este motivo, este documento propone reducir el 
número de píxeles a clasificar en la imagen hiperespectral y, posteriormente, los resultados 
del agrupamiento para los píxeles faltantes se obtienen explotando la información espacial. 
Específicamente, este trabajo propone dos metodologías para remover los píxeles: la primera 
se basa en una distribución espacial de ruido azul que reduce la probabilidad de que se 
eliminen píxeles vecinos; la segunda, es un procedimiento de submuestreo que elimina cada 
dos píxeles contiguos, preservando la estructura espacial de la escena. El rendimiento del 
algoritmo de agrupamiento de imágenes espectrales propuesto se evalúa en tres conjuntos 
de datos, mostrando que se obtiene una precisión similar cuando se elimina hasta la mitad 
de los pixeles, además, es hasta 7.9 veces más rápido en comparación con la clasificación de 
los conjuntos de datos completos. 

 

Palabras clave 

Imágenes hiperespectrales, agrupación espectral, agrupación de subespacios escasos, 
submuestreo, clasificación de imágenes. 
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1. INTRODUCTION 

 

Hyperspectral images (HSIs) have 

become a valuable tool for monitoring the 

Earth surface since they provide a wealth 

of spectral information compared to 

traditional RGB images [1,2]. HSIs are 

commonly represented as a 3D data cube, 

where two dimensions (𝑥, 𝑦) correspond to 

the spatial information and the third one, 

to the spectral domain (𝜆). In the 3D cube, 

each spatial position is represented as a 

vector, known as a spectral signature, 

whose values correspond to its intensity in 

each spectral band. Since the amount of 

radiation that each material reflects, 

absorbs, or emits varies according to the 

wavelength, the spectral signature of each 

pixel is used as a descriptor in a wide 

range of applications, such as classification 

[1], target detection [2], and spectral 

unmixing [3] among others [4-10]. 

The classification of hyperspectral 

images can be defined as the process of 

assigning each pixel to one class. This task 

is mainly carried out under supervised 

methods that know some spectral pixel 

labels which are used in the training stage 

[1]. Then, in the testing process, each 

unknown pixel is assigned the label of the 

spectral signature that presents the least 

spectral difference [11]. 

However, in some applications, the 

labeled samples are unavailable or difficult 

to acquire [12]. For that reason, 

unsupervised techniques such as 

clustering can be an effective alternative 

because they group a set of similar pixels 

without previous information of the data. 

As it is widely known, HSIs are high-

dimensional data with large spectral 

variability and complex structure that 

make the clustering problem very 

challenging. 

To date, some clustering algorithms 

have been used for HSIs. Specifically, they 

can be divided into four groups: (a) 

centroid-based clustering methods [13-15], 

(b) density-based methods [16], [17], (c) 

biological methods [18], [19], and (d) 

spectral-based methods [8], [20]. In 

general, spectral-based methods have 

achieved a good and robust performance 

for spectral images [9]. Said methods 

include two main steps: (i) building an 

adjacency matrix that describes the 

relationship between the spectral pixels 

and, then, (ii) applying centroid-based 

clustering methods to the Laplacian matrix 

formed by the adjacency matrix to obtain 

the clustering results. 

Assuming that spectral signatures, 

which correspond to a land cover class, lie 

in the same low-dimensional subspace, a 

known spectral-based method called sparse 

subspace clustering (SSC) builds the 

adjacency matrix by expressing each 

spectral pixel as a linear combination of all 

spectral signatures of the scene. In 

addition, such solution is restricted to be 

sparse, which guarantees that the spectral 

signatures that correspond to those sparse 

coefficients belong to the same subspace 

[8]. However, in the traditional SSC 

scheme, only spectral information is used 

to discriminate the different classes, thus 

ignoring the rich spatial information 

contained in the HSIs. To overcome those 

limitations, different methods have been 

proposed to incorporate a 2D or 3D spatial 

regularizer into the SSC algorithm [9], 

[21–23]. Said methods use 2D/3D 

smoothing filters in a reshaped coefficient 

matrix based on the fact that adjacent 

coefficients generally belong to the same 

class. Although those methods have shown 

good performance for HSIs, when the 

number of points increases (i.e., the spatial 

dimension of the image is large), they 

become computationally intractable [22], 

[24]. 

For that reason, this work proposes to 

remove some spectral pixels from the 

image in order to reduce the number of 

points to classify. Consequently, the 

computational time of the clustering task 

is reduced. Afterward, the clustering 

results of the incomplete pixels are 
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assigned using a kind of filter that selects 

the predominant label in a given 

neighborhood. Specifically, this work 

proposes two schemes to remove some 

spectral pixels. The first one is based on 

spatial blue noise coding [22,25], and it 

allows uniform elimination in the spatial 

dimensions of the scene, avoiding clusters 

of removed pixels, which are properties 

desired in the filtering step. The second 

one is a sub-sampling scheme that 

eliminates every two contiguous pixels 

preserving the spatial structure of the 

images, which allows the use of SSC-based 

methods that employ the spatial 

information to improve the clustering 

result [21], [26]. The performance of the 

spectral image clustering framework 

proposed in this study is evaluated using 

three datasets, and a similar accuracy is 

obtained when up to 50% of the pixels are 

removed compared with the full data using 

the proposed designs. In addition, the 

proposed scheme is up to 7.9 times faster 

classifying the data sets compared to the 

full data sets. 

 

 

2. SPARSE SUBSPACE CLUSTERING FOR 

HYPERSPECTRAL IMAGES 

 

Let 𝐅 ∈ 𝑅𝐿×𝑀𝑁 be a hyperspectral image 

reorganized as 𝐅 = [𝐟(𝟏), … , 𝐟(𝑀𝑁)], where 𝑀 

and N represent the spatial dimensions, L 

stands for the number of spectral bands, 

and 𝐟(𝑘) ∈ 𝑅𝐿 denotes the spectral signature 

of the k -th pixel. The SSC method 

assumes that the HSIs lie in the union of n 

low-dimensional subspaces ⋃ 𝑆𝑖
𝑛
𝑖=1  such 

that each subspace corresponds to a 

certain land-cover class [26]. In order to 

group spectral pixels, SSC assumes that 

each spectral signature 𝐟(𝑘) that 

corresponds to a specific land-cover class 

belongs to the same independent subspace 

[9]. Specifically, first, the SSC builds a 

sparse similarity matrix, which describes 

the relationships between pixels exploiting 

the fact that each spectral signature is 

represented as a linear or affine 

combination of few pixels in the same 

subspace [8]. This affinity matrix is built 

using the coefficient matrix 𝑪 ∈ 𝑅𝑀𝑁×𝑀𝑁 
obtained from the sparse optimization 

problem, which is modeled as follows (1): 

 

min
𝐶,𝑍

  ||𝑪||0 +
𝜆

2
||𝒁||𝐹   

2                                   

𝑠. 𝑡.  𝑭 = 𝑭𝑪 + 𝒁,  diag(𝑪) = 0,  𝐂𝐓𝟏 = 𝟏 

(1) 

 

where, ℓ0-norm is the number of nonzero 

elements of 𝑪; 𝒁, the error matrix; and λ, a 

regularization parameter for the sparsity 

coefficient and noise level trade-off. The 

constraint diag(𝑪) = 0 is used to eliminate 

the trivial ambiguity where a point is 

represented by itself, and the constraint 

𝑪𝑻𝟏 = 𝟏 ensures that it can work even in 

case of affine subspaces [8], [24]. After 

solving (1), the k-th column of 𝑪, which 

corresponds to a data point 𝐟(𝑘) that lies in 

a 𝑑𝑖 dimensional subspace 𝒮𝒾, is expected 

to have only 𝑑𝑖 non-zero elements. 

However, since ℓ0-norm is an NP-hard 

problem, the relaxed ℓ1-norm is usually 

adopted to relax the problem as (2): 

 

min
𝑪,𝒁

  ||𝑪||1 +
𝜆

2
||𝒁||𝐹   

2                                   

𝑠. 𝑡.  𝑭 = 𝑭𝑪 + 𝒁,  diag(𝑪) = 0,  𝑪𝑻𝟏 = 𝟏 
(2) 

 

where, the ℓ1-norm promotes sparsity, i.e., 

each spectral signature is represented by 

few pixels [8]. This formulation can be 

efficiently solved using the alternating 

direction method of multipliers (ADMM) 

with a computational complexity 

𝒪(𝐿(𝑀𝑁)2) [27]. After solving (2), each 

column of 𝑪 is normalized to better deal 

with different norms of the spectral 

signatures as 𝒄𝒋 = 𝒄𝒋/||𝒄𝒋||∞. Subsequently, 

𝑪 is used to construct the non-negative 

similarity matrix 𝑾 as (3): 

 
𝑾 = |𝑪| + |𝑪|𝑻 (3) 
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where, 𝑾𝑖,𝑗 represents the similarity 

between the i-th and j-th pixels.  Finally, 

to obtain the segmentation of the data into 

different subspaces, a weighted graph 𝒢 =
(ν, ε, 𝑾) is built, where 𝜈 denotes the set of 

NM nodes of the graph that correspond to 

NM pixels of the image; ε ⊆ ν × ν, the set of 

edges between the node; and 𝐖 ∈ R𝑀𝑁×𝑀𝑁, 

the weights of the edges. Then, the data is 

clustered by applying spectral clustering 

methods [8,28] over the graph 𝒢 which, 

naively implemented, has a computational 

complexity 𝒪((𝑀𝑁)3)[8]. 
 

 

3.  SPARSE SUBSPACE CLUSTERING FOR 

HYPERSPECTRAL IMAGES WITH 

INCOMPLETE PIXELS 

 

Note that this sparse representation 

builds the 𝑪 matrix using only spectral 

information, i.e., the sparse representation 

of the k-th pixel is the same regardless of 

its spatial position. Therefore, considering 

that land-cover materials are distributed 

homogeneously (i.e., contiguous pixels in a 

spectral image generally belong to the 

same material), different constraints have 

been applied to 𝑪 in order to incorporate 

the spatial information of the scene [9], 

[21]–[23], [26], [29]. Specifically, different 

smoothing filters are applied at each 

iteration of the ADMM algorithm to a 

reshaped version of the 𝑪 matrix in order 

to obtain the same value in a neighborhood 

of pixels [9], [21]–[23]. Furthermore, the 

use of smoothing operators on the image 

has been explored for SSC [23], [29]. 

Although said method has shown good 

results in non-supervised classification 

tasks, when the spatial resolution of those 

images increases, they become 

computationally intractable [24]. 

For that reason, we propose to remove 

certain pixels from the image before 

solving step (2) and the spectral clustering 

method in order to reduce the 

computational time of those steps. 

Mathematically, the incomplete image can 

be represented as (4): 

 

𝑭̃ = 𝑭𝐇, (4) 

 

where, 𝑭̃ is the incomplete image, and 𝐇 ∈
{0,1}𝑀𝑁×𝑃 is the selecting matrix that has 

only one non-zero value per row, with P as 

the number of preserved pixels. Therefore, 

the SSC model is applied to obtain the 

clustering results for those pixels. This 

segmentation can be represented in 𝒔 ∈ 𝑅𝑃, 

which is a vector with the labels of the 

preserved pixels. In order to obtain the 

incomplete labels, let 𝒔̂  =  𝐇𝒔 be a vector 

where the missing positions are present. 

Then, this vector is reorganized in a matrix 

𝑺 ∈ 𝑅𝑀×𝑁 (see Fig. 1), where the incomplete 

labels are obtained applying a kind of filter 

that selects the predominant label in a 

given window; in this case, of a 3 × 3 size. 

Specifically, when 𝜒 = {1, . . . , 𝚤} denotes the 

set of 𝚤 class labels, those missing values 

are given by (5): 

 

𝑺𝒙,𝒚 = argmax
𝜒={1,...,𝚤},

∑ ∑ 𝜹(𝑺𝒙,𝒚, 𝜒),

⌊𝒘/𝟐⌋

𝒋 = 𝒚−⌊𝒘/𝟐⌋

𝒙+⌊𝒘/𝟐⌋

𝒊=𝒙−⌊𝒘/𝟐⌋

 (5) 

 

where w=3 is the size of the window; ⌊. ⌋, 

the floor function; and 𝜹, the Kronecker 

delta function, which is 1 if the arguments 

are equal and 0 otherwise. 

Fig. 1 represents the step-by-step of the 

proposed method and Algorithm 1 

summarizes the computations described 

above. Note that the quality of the 

proposed methodology mainly depends on 

the structure of matrix H. For that reason, 

the two following sub-sections propose 

different strategies to design selecting 

matrix H in an efficient way.  
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Fig. 1. Visual step-by-step process of the sparse subspace clustering for hyperspectral images with 

incomplete pixels showing the full data in a 3D structure. Source: Authors’ own work. 

 

Algorithm 1: Spectral Subspace 

Clustering for incomplete hyperspectral 

image 

 

Input: F, n, 𝝀, H, p 

 

1. Design matrix H, holding p pixel 

positions 

2. Extract the selected pixels as 𝑭̃ =
𝑯𝑭. 

3. Solve the sparse optimization 

problem in (2) with the incomplete 

image 𝑭̃. 
4. Normalize the columns of C as 𝒄𝒋 =

𝒄𝒋/||𝒄𝒋||∞ 

5. Construct the similarity graph 

representing the data point 𝑾 =
|𝑪| + |𝑪|𝑻. 

6. Apply spectral clustering as in [28] 

to the similarity graph. 

 

7. Complete the non-labeled pixels 

using a 𝟑 × 𝟑 filter for the 

segmentation in step 6 

 

Output: Segmentation of the data S 

3.1 Design of the Selecting Matrix Based on 

Spatial Blue Noise Coding 

 

An important design parameter of the 

selection matrix is the number of pixels 

that will be removed. Therefore, let 𝜁𝑟 be 

the preservation ratio defined as (6): 

 

𝜁𝑟 =
1

𝑀𝑁
∑ ∑(𝑯)𝑖,𝑗

𝑁

𝑗=1

𝑀

𝑖=1

=
𝑝

𝑀𝑁
. (6) 

 

For instance, 𝜁𝑟 = 0.2 means that 20% 

of the pixels would be preserved and 80% 

of the pixels would be removed after 

applying (4). A conventional selection 

matrix uses random entries; however, 

random binary codes tend to form clusters. 

Figure 2 (a) shows an example of a random 

matrix with 𝜁𝑟  = 0.75, where matrix H is 

represented as an M × N matrix where 

white spaces mark the pixels to remove, 

and black represents the pixels to keep. 

Note that the random matrix tends to form 

clusters, which leads to a negative impact 

when the non-labeled pixels in the 

incomplete image are assigned using the 
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strategy presented in Section 3. For that 

reason, a blue noise pixel distribution is 

used in order to reduce clusters and 

achieve uniform selected pixels, as shown 

in Fig. 2. (b) [25]. 

 
3.2 Design of the Selecting Matrix-Based 

Sub-sampling  

 

The random and spatial blue noise 

criteria to remove pixels do not preserve 

the spatial distribution of the scene after 

the reorganization in (4) because more 

rows than columns, or vice versa, can be 

eliminated. Therefore, SSC-based methods 

that incorporate the spatial information 

cannot be directly applied to 𝑭̃. For that 

reason, a sub-sampling scheme that 

eliminates every two contiguous pixels and 

preserved the spatial structure of the 

images is proposed. Specifically, matrix H 

has the structure (7). 

4.  SIMULATIONS AND RESULTS 

 

In this section, the performance of the 

proposed hyperspectral image clustering 

framework is evaluated. The clustering 

result of applying Algorithm 1 to the 

incomplete image is denoted as IP. The 

spectral Indian Pines dataset and two 

regions of Pavia University data set were 

used for these experiments. The results 

presented here are the average of 10 trial 

runs. Overall accuracy (Acc_O), average 

accuracy (Acc_A), and Kappa coefficients 

were used as quantitative performance 

metrics. In the tables, the metric used for 

each land cover class is Accuracy. All the 

simulations were implemented in Matlab 

2017a on an Intel Core i7 3.41-Ghz CPU 

with 32 GB of RAM. In all the tables, the 

optimal value of each row is shown in bold. 

 

(7) 

 

 
Fig. 2. Visual representation of selecting matrix H for (a) random distribution and (b) blue noise 

distribution with 𝜁𝑟 = 0.75, and c) sub-sampling with 𝜁𝑟 = 0.5. Source: Authors’ own work. 
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4.1 Spectral image datasets  

 

The Indian Pines hyperspectral data 

set, sensed by the AVIRIS sensor, has 145 

× 145 pixels and 224 spectral bands [30]. A 

total of 20 water absorption and noisy 

bands were removed, thus leaving 200 

spectral features for the experiments. A 

known sub-image of the Indian Pines data 

set was used in the test; its spatial 

dimensions are 70 × 70 pixels, and it 

includes four main-land cover classes: 

corn-no-till, grass, soybeans-minimum-till, 

and soybeans-no-till [9]. 

The second scene, of Pavia University, 

was acquired by the Reflective Optics 

System Imaging Spectrometer (ROSIS) 

airborne sensor over an urban area of 

Pavia, Northern Italy. The size of the 

image is 610 × 340 pixels and 103 spectral 

bands [9]. For the tests, the authors 

selected a typical area of a size of 140 × 80 

pixels containing eight main land-cover 

classes: asphalt, meadows, trees, metal 

sheet, bare soil, bitumen, bricks, and 

shadows. Furthermore, a different region 

of ROSIS Pavia University data set was 

also used; its size is 64 × 64 pixels, and it 

contains four land-cover classes: asphalt, 

meadows, trees, and bricks. 

The number of classes for each data set 

was manually fixed as an input for 

Algorithm 1. Additionally, parameter 𝜆 

was chosen applying the formulation in [9] 

as (8): 

 

𝜆 =  
𝛽

𝛾
, 𝑤ℎ𝑒𝑟𝑒  𝛾 =  min

𝑘
max
𝑘≠𝑗

|𝐟𝑘
𝑇𝐟𝑗|, (8) 

 

where, 𝛾 is a parameter that directly 

depends on the spectral image that is used 

and 𝛽 is a tunable parameter that was 

fixed for all the experiments at 𝛽 = 1000. 

 
4.2  Quality of classification results vs 

number of eliminated pixels  

 

The first test was performed to show 
the quality of the results and the 

computational time using the number of 
eliminated pixels by means of the 
preservation ratio (𝜁𝑟). For that purpose, 
the proposed methods were compared with 
random elimination and the complete 
image. The Indian Pines and Pavia 
University data tests were used in this 
test. Figure 3 and 4 show the general 
accuracy and the computational time 
obtained with the different configurations 
for the two data sets, respectively. Note 
that, in the sub-sampling method, the 
preservation ratio is fixed at  𝜁𝑟= 0.5 and, 
with the full image, it is  𝜁𝑟= 1. It can be 
observed that, when the number of 
preserved pixels increases, the quality of 
the classification by the designed and 
randomized elimination schemes improves. 
However, the designed blue noise scheme 
outperforms the random selection matrix 
with  𝜁𝑟 ≤0.5 for both data sets. In 
addition, the proposed methods maintain a 
performance comparable to the full data 
when more than half of the pixels are 
conserved. Fig. 3 and 4 also show the time 
spent applying different preservation 
ratios and a drastic increase in 
computational time as the number of 
removed pixels decreases. 

 
4.3 Advantages of the Sub-sampling scheme 

 

The second test shows the advantages of 

the sub-sampling method because SSC 

with spatial regularizer (SSC-SR) 

algorithms can be used. Therefore, the SSC 

with a 3D spatial regularizer (SSC-3DSR) 

was employed for this test [22]. Figure 5 

and Table 1 show the detailed results of 

the classification and computational time, 

respectively, for the Indian Pines data set. 

Note that the SSC-3DSR and SSC-3DSR 

(IP) obtained a better clustering accuracy. 

In addition, the proposed approach 

obtained clustering results comparable to 

the classification of the full data by the 

SSC and SSC-3DSR methods. 

Nevertheless, the proposed method reduces 

the computational time by 83.65% and 

83.23% compared to SSC and SSC-3DSR, 

respectively. 
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Fig. 3. Preservation ratio versus (top) overall accuracy of the clustering result and (bottom) computational time 

for the Indian Pines data set. Source: Authors’ own work. 

 

 
Fig. 4. Preservation ratio versus (top) overall accuracy of the clustering result and (bottom) computational 

time for the Pavia University data set. Source: Authors’ own work.
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Furthermore, Figure 6 and Table 2 

show the visual and numerical results of 

the first region of the Pavia University 

dataset in terms of classification accuracy. 

For this dataset, the best result is achieved 

by the SSC-3DSR without the proposed 

subsampling method. Moreover, the 

proposed scheme provides the shortest 

classification time, thus maintaining a 

good performance. Specifically, it solved 

the clustering problem 6.11 times faster 

than the other methods. 

Finally, the classification performance 

achieved for the other region of the Pavia 

University dataset is shown in Fig. 7, and 

the quantitative results are presented in 

Table 3. Note that the quality is preserved, 

but our method is 5 times faster for this 

subregion of Pavia University. 

 

 

 
Fig. 5. Visual clustering results on AVIRIS Indian Pines image: (a) ground truth, (b) SSC, (c) SSC (IP), (d) SSC-

3DSR, and (e) SSC-3DSR (IP). Source: Authors’ own work. 

 

 
Table 1. Clustering results for the AVIRIS Indian Pines Image. Source: Authors’ own work. 

Class SSC SSC (IP) SSC-3DSR SSC-3DSR (IP) 

Corn-no-till 49.86 40.50 52.48 57.51 

Grass 98.60 97.77 100 99.72 

Soybeans-no-till 70.63 62.84 73.22 62.70 

Soybeans-minimum-till 59.23 70.49 49.73 68.39 

Acc_O 62.62 63.21 60.47 67.30 

Acc_A 69.35 67.90 68.95 72.08 

Kappa 0.4758 0.4715 0.4551 0.5364 

Time [s] 283.88 46.40 179.13 30.03 
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Fig. 6. Visual clustering results on ROSIS Pavia University image: (a) ground truth, (b) SSC, (c) SSC (IP), (d) 

SSC-3DSR, and (e) SSC-3DSR (IP). Source: Authors’ own work. 

 

 

 

 
Table 2. Clustering results for the ROSIS Pavia University image. Source: Authors’ own work. 

Class SSC SSC (IP) SSC-3DSR SSC-3DSR (IP) 

Asphalt 0 57.49 0 0 

Meadows 31.67 61.77 91.76 53.15 

Trees 100 84.77 100 84.62 

Metal sheet 99.68 89.39 100 97.75 

Bare soil 35.09 72.54 53.80 62.57 

Bitumen 92.95 78.15 98.62 94.49 

Bricks 66.27 77.29 99.20 96.39 

Shadows 98.45 90.88 100 100 

Acc_O 72.75 73.73 89.72 82.17 

Acc_A 65.51 76.20 80.42 73.62 

Kappa 0.6452 0.6944 0.8653 0.7670 

Time [s] 5214.8 657.54 14646.9 321.28 
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Fig. 7. Visual clustering results for a region of Pavia University image: (a) ground truth, (b) SSC, (c) SSC (IP), (d) 

SSC-3DSR, and (e) SSC-3DSR (IP). Source: Authors’ own work. 

 

 
Table 3. Clustering results for a region of Pavia University image. Source: Authors’ own work. 

Class SSC SSC (IP) SSC-3DSR SSC-3DSR (IP) 

Asphalt 100 100 100 100 

Meadows 98.44 95.02 96.26 98.44 

Trees 91.08 98.09 98.73 97.45 

Bricks 100 100 99.49 100 

Acc_O 98.48 94.48 98.72 99.28 

Acc_A 97.38 98.28 98.62 98.97 

Kappa 0.0979 0.0979 0.0982 0.9901 

Time [s] 232.02  39.79 135.33 27.15 

 

 

5.  CONCLUSIONS 

 

A method to reduce the computational 

time of sparse subspace clustering for 

hyperspectral images was proposed in this 

work. Such scheme is based on the fact 

that some spectral pixels can be omitted in 

the clustering steps. Therefore, the 

clustering of the removed pixels is 

completed using a special filter that selects 

the most frequent value in a given 

neighborhood. Specifically, this work 

proposed two schemes to remove pixels. 

One is based on spatial uniform blue noise 

coding, and the other is a sub-sampling of 

every two pixels that preserves the spatial 

structure of the scene. In general, the 

results for three different datasets show 

that the proposed clustering achieves 

similar accuracy, but it is up to 7.9 times 

faster than the other methods. However, 

removing some pixels can sharply reduce 

classification accuracy in some images, 

especially when there are few pixels per 

class. Therefore, future work includes 

grouping pixels according to the spatial 

structure of the scene instead of 

eliminating them. 
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