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Máquinas Inteligentes y Reconocimiento de Patrones (MIRP)

Research Group:
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Abstract

A Brain Computer Interface (BCI), is a system created for performing communication and

control of computational devices by the analysis of brain signals. Particularly, Motor Im-

agery (MI) based BCI systems allow a real-time interaction by using the electrical signals

that are generated by the brain when the user imagining certain movements or actions. Ac-

quisition of these signals can be done by invasive and non-invasive devices, among which,

electroencephalography is a non-invasive technique that is widely used. It is based on the

superficial placement of the electrodes on the scalp, which avoid affecting the health and

well-being of potential users, also is a portable technology and lower-cost than other alter-

natives. From the different stages required to develop a BCI, the signal characterization and

the classification tasks continue to be the main research challenges, since the performance

of the whole system depends on them. This thesis proposes the use of convolutional neural

networks (CNN) for the classification of electroencephalographic signals, in order to identify

the action imagined by a person. The proposed network architecture is trained with repre-

sentations of the spectral power density (PSD) of the signals; and the hyperparameters of

the network are defined by a metaheuristic optimization algorithm, which obtains the best

accuracy in the signal classification in training stage. The proposed approach was evaluated

using two public and well-known databases, i.e. BCI Competition IV 2a and BCI Competi-

tion IIIa. According to the results, this approach provides a reliable strategy to differentiate

movement imagination, outperforming state of the art that used the same datasets. These

results demonstrate that this is a valuable and promising strategy for the design of brain

computer interfaces.

Keywords: Brain Computer Interfaces (BCI), Electroencephalography (EEG), Power

Spectral Density (PSD), Deep Learning, Convolutional Neural Network (CNN), Meta-

heuristic Optimization Algorithm (MOA), Hyperparameter Tuning .
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Resumen

Una interfaz cerebro-computadora (BCI, por sus siglas en inglés), es un sistema que permite

la comunicación y control de dispositivos a partir del análisis de las señales cerebrales del

usuario. Entre los diferentes esquemas BCI, se destacan los basados en Imaginación Motora

(MI, por sus siglas en inglés); los cuales, permiten una interacción en tiempo real, utilizando

sólo las señales eléctricas generadas por el cerebro cuando imagina ciertos movimientos o

acciones. La adquisición de estas señales se puede realizar mediante diferentes metodoloǵıas

invasivas y no invasivas, siendo la electroencefalograf́ıa una de las técnicas no invasivas más

empleadas, debido a que, como se basa en la colocación superficial de los electrodos en el cuero

cabelludo, no afecta la salud y el bienestar de los potenciales usuarios, además de ser una tec-

noloǵıa portable y de bajo costo, con respecto a otras alternativas. Entre las diferentes etapas

que conforman un BCI, las tareas de caracterización y clasificación de las señales, continuan

siendo los mayores retos de investigación, pues de estas depende el desempeño del sistema en

general. Esta tesis propone la implementación de redes neuronales convolucionales (CNN,

por sus siglas en inglés) para la clasificación de señales electroencefalográficas, con el fin de

identificar la acción imaginada por una persona. La arquitectura propuesta es entrenada con

representaciones de la densidad espectral de potencia de las señales, y los hiperparámetros de

la red son definidos por un algoritmo de optimización metaheuristico, para obtener la mejor

exactitud en la clasificación de las señales. El desempeño del método propuesto fue evaluado

utilizando bases de datos públicas y bien conocidas, como son BCI Competition IV 2a y BCI

Competition IIIa. De acuerdo con los resultados obtenidos, el método propuesto proporciona

una estrategia confiable para diferenciar imaginación de movimiento, superando resultados

del estado del arte para el mismo conjunto de datos, lo que demuestra que esta es una es-

trategia valiosa y prometedora para el diseño de interfaces cerebro computador. Además, se

encontró que la arquitectura definida mediante el algoritmo de optimización metaheuristico

mostró un desempeño muy superior al de la arquitectura sintonizada manualmente, lo cuál

demuestra que el uso de algoritmos de optimización metaheuristicos para definir los hiper-

parámetros de una red neuronal profunda es una estrategia altamente recomendada.

Palabras clave: Interfaz cerebro computador (ICC), Electroencefalograf́ıa (EEG),

Densidad espectral de potencia (DEP), Aprendizaje Profundo, Red Neuronal Con-

volucional (RNC), Algoritmo de Optimización Metaheuŕıstica (AOM), Sintonización

de Hiperparametros.
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1. Introduction

A Brain-Computer Interface (BCI) is a communication and control system that measures

and analyzes brain signals. Among the different BCI schemes, there are those based on mo-

tor imagination (MI), which consists in the use of signals based on the modulation of brain

activity for allowing real-time interaction between the brain and computer devices, using

only the electrical signals generated by the imagination of particular movements or actions

[56]. Therefore, a BCI system replaces the nerves and muscles that cause the movement,

with hardware and software that measures brain signals and translates it into actions.

The first attempts to develop BCI systems date back to 1973 [77]; however, it was in the

last two decades when this research area showed the most relevant advances [43, 42]. Those

advances have been motivated by the development of new acquisition and processing tech-

nologies but also by the emerging use of BCI into new applications besides of clinical appli-

cations to disabled people [13], including video-games, toys, advertising, safe-driving, among

others [59, 23, 68, 20].

A BCI system is composed of four main stages: neurophysiological signal acquisition, signal

feature extraction, signal classification, and device control or communication. According to

this, neurophysiological signals captured by acquisition systems are translated into output

orders that represent the user intention movements and do not depend on the standard out-

put pathways of the peripheral nerves and muscles [51].

Neurophysiological signals acquisition can be performed by different invasive and non-invasive

techniques. In invasive technologies, electrodes are embedded into the brain surgically, caus-

ing physical injury to the individual. Thus, non-invasive technologies, where the measure-

ment sensors are placed outside the head, are preferred. Among them, electroencephalog-

raphy (EEG) has been the most used due to its portability and low cost. Moreover, EEG

preserves the health and well-being of patients, since it is based on the superficial placement

of electrodes on the scalp. EEG technique measures the cerebral activity caused by the

flow of electrical currents during synaptic excitations of neurons dendrites. However, this

technique has several drawbacks, since the signals must pass through the skull and scalp,

introducing noise, so that, when it reaches the electrodes, they have a very low quality and

intensity [58]. Therefore, signal processing and classification are the most challenging pro-

cesses of BCI.
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On the other hand, deep learning methods based on Artificial Neural Networks (ANN), such

as the Convolutional Neural Networks (CNN), have the potential to automatically detect

seemingly unrelated features of a wide range of data thanks to the modeling of high level

abstractions through nonlinear transformations that are not affected by noise, thus being un-

necessary data filtering and preprocessing steps [78]. In addition, the use of new techniques

that allow to avoid over-fitting effectively, such as Dropout and new activation functions such

as Rectified Linear Units (ReLU) which have the advantage of being faster to calculate and

do not suffer from the gradient leakage problem [57]. Among the techniques of deep learning

based on ANN are Recurrent Neural Networks, Deep Belief Networks, Neural Networks with

Time Delays [54], and Convolutional Neural Networks [84].

Although DCNN are naturally suitable for its use in images due to its characteristic of be

able to successfully capture the spatial and temporal dependencies in an image, through

the application of relevant convolutional filters; its suitability to be used in unidimensional

signals, as EEG, opened a door to research in that kind of methodologies [72]. The great

capacities of CNN over brain signals had been shown in the prediction of patient’s epileptic

seizures by classifying brain activity signals[53], [4] and [74]. In these cases, CNN exhibit a

great ability to filter the input data with the convolutional layers, demonstrating the pre-

processing required in a CNN is lower than other classification algorithms. Thus, in this

thesis, the evaluation of CNN as a learning method for identifying the activity imagined by

a person, based on the analysis of their EEG, is proposed.

Important issues in the development of CNN include the need for a large amount of data

for training [40], the propensity to over-fitting [70], the gradient leakage problem [81], and

the high time-consuming process of the training, by which, the exhaustive search of the net-

work hyper-parameters becomes prohibitive[8]. To deal with these issues, some state of the

art techniques were implemented. Initially, a data augmentation strategy was implemented,

which allowed to have a large set of training and testing instances. Then, the technique of

using Dropout layers [70] was implemented to avoid over-fitting, and the ReLU activation

function to avoid the gradient leakage problem. Finally, to deal with the time-consuming

process, the implementation was done over a GPU instead of the CPU’s cores. Addition-

ally, because the strong dependency on the correct selection of the network architecture

hyper-parameters, i.e., minor changes in any hyper-parameter generates a different ANN

architecture, and therefore, a different learning model; the use of an optimization algorithm

was implemented to obtain the network architecture to reach the best accuracy in the clas-

sification task.

The proposed methodology was tested using two public and well-known databases, i.e. the

multiclass BCI Competition IV-2a dataset, and the multiclass BCI Competition IIIa dataset.
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Experimental design included, 1) the evaluation of the proposed CNN with network archi-

tecture hyper-parameters searched by a manual tuning strategy; 2) the evaluation of the

proposed CNN using an automatic hyper-parameters tuning through the meta-heuristic op-

timization algorithm; and 3) evaluation of the optimized network architecture as learning

model for classifying signals in a different database (multiclass BCI Competition III dataset).

Both strategies, i.e. manual and automatic hyper-parameter tuning, reached an accuracy

that outperforms previous works that reported results for the same datasets. However, the

architecture defined by the meta-heuristic optimization algorithm exhibits the best classifi-

cation accuracy, which shows that the use of optimization algorithm for searching network

hyperparameters is a strategy highly recommended.

1.1. Hypothesis

Implementation of deep learning techniques, specifically Convolutional Neural Networks with

ReLU activation functions between the intermediate layers, will allow developing a scheme

for classification of motor imagery signals obtained by EEG. In addition, the use of a meta-

heuristic optimization algorithm for selecting the free parameters of the network architecture

will allow outperforming the classification accuracy of another state of the art machine

learning techniques for BCI systems.

1.2. Objectives

1.2.1. General Objective

To develop a methodology for classifying motor imagery EEG signals by implementing a CNN

architecture with ReLU activation functions, using a meta-heuristic optimization algorithm

for selecting the network parameters.

1.2.2. Specific Objectives

• To design a classifier based on convolutional neural networks by defining convolutional

filters in the space of the EEG electrodes.

• To establish a meta-heuristic optimization strategy for selecting free parameters of the

CNN that allows easy parallelization of the learning process.

• To validate the proposed training and classification method in a multi-class recognition

problem to a BCI system based on motor imagery.
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1.3. Thesis Outline

To document the process followed to comply with the proposed objectives, this document is

organized as follows: Chapter 2 introduces the technical background of BCIs, and the main

theoretical foundations of deep neural networks and optimization algorithms. Section 2.1 is

devoted to describing the main stages of an EEG based BCI system, i.e., signal acquisition,

signal processing, classification, and control of the output devices. For each stage, the

main previous works are summarized. In Section 2.2., the main aspects of deep neural

networks are introduced, with a special emphasis into CNN architectures. At the end of

that chapter, Section 2.3. presents the foundations of optimization algorithms, specifically,

the Derivative Free Optimization based on Radial Bases Function algorithm (RBFOpt),

which was the optimization technique used in this work for selecting the optimal hyper-

parameters of the CNN. In chapter 3, the proposed method for classifying motor imagery

EEG signals based on deep Convolutional Neural Network (CNN) is presented. This method

uses the power spectral density (PSD) representation of EEG signals for training a CNN

that is able to differentiate among four movement imaginations, i.e., left-hand movement,

right-hand movement, feet movement, and tongue movement, which are they recorded into

the BCI Competition IV-2a and BCI competition III datasets. Additionally, the use of

RBFOpt algorithm for tuning the network hyper-parameter is also described. Chapter 4

presents the experimental results of the proposed approach. Results of the three main

experiments are reported, i.e., the classification performance to the manual tuning of the

hyper-parameters of the proposed CNN architecture to the BCI Competition IV-2a dataset,

the classification performance to the automatic tuning of the hyper-parameters performed

by using the RBBOpt algorithm to the same dataset, and the classification performance

reported when the optimal architecture is trained using the instances in the BCI Competition

IIIa dataset. Comparisson with state of the art approaches that used these databases is

also included. Finally, in chapter 5 are presented the conclusions of this work, and the

considerations and future works.



2. Theoretical Background and Previous

Works

2.1. EEG based Brain Computer Interfaces

A BCI system based on EEG from MI signals consists usually of four fundamental stages,

the first one concerns to the signal acquisition, in which a set of electrodes is placed into the

scalp for capturing the neurophysiological electrical signals of the brain. In the second stage

pre-processing and feature extraction techniques are used; in the pre-processing step, signals

are filtered to the necessary frequencies and aims to eliminate signal artifacts since the EEG

is very noise-prone, for this purpose different kind of filters has been implemented, such as

high-pass, Low-pass, Band-stop, and Band-pass filters. Filter selection mainly depends on

the frequencies that are expected to be related to the activities that are to be identified. The

second step, feature extraction, corresponds to the computation of measurements or char-

acteristics from signal segments, which are the most important for distinguishing between

the different movements categories that must be recognized. Several feature extraction al-

gorithms have been proposed [64]. However, the accurate representation of those features is

still one of the most challenging tasks in BCI development. The third stage is the classifi-

cation of the samples into one of the expected imagined movement or action by using the

feature vector generated by the second stage. Finally, the last stage consists in executing the

activity imagined by the subject in an electronic device. Figure 2.1 illustrates the four stages

comprising a BCI. Additionally, the main methods reported in the literature to address each

of these stages are described below, going in depth into those that were used in the approach

proposed in this thesis. To delve into other methods, the reader must consult the references

included in each item.

2.1.1. Signal Acquisition

EEG is a technique that allows to record signals from the surface of the skull generated by

the brain activity through a set of electrodes located on the scalp, commonly positioned be-

tween 18 and 40 electrodes as indicated by the International Federation standard of EEG and

neurophysiology. These electrodes are connected to a device that registers electric currents

of an ionic nature. Later the ionic currents are converted into electric currents and taken

to an instrumentation amplifier, depending on the frequency produced by these impulses we
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STAGE 1 STAGE 3STAGE 1

EEG Signal acqusition 

BCI SYSTEM

Feature extraction

A

B

C

Pre-processing

STAGE 4

Output deviceClasification

Figure 2.1.: Common BCI system stages, first the EEG Signal Acquisition, second the Pre-

processing and Feature Extraction stage, third the Classification stage and

finally the Final Device.

could identify several types of waves that can be measured in four bands: the delta bands

0.5 Hz - 4 Hz, theta 4 Hz - 8 Hz, alpha 8 Hz - 13 Hz and beta 13 Hz - 30 Hz, where each of

these frequencies has the information of a specific task [3].

The functioning of the central nervous system is based on electrical impulses that travel

through neurons. The information travel from neuron to neuron through the dendrites,

which are responsible for reception and the axon is responsible for transmission. When a

stimulus is generated, it is perceived thanks to the sensorial systems that we possess, be it

vision, smell, listening, among others. The information perceived by these natural sensors

is transported by the neurons of the nervous system to an integrating component that is

responsible for analyzing this information, then a response is generated, which is conducted

through the neurons to organs or muscles depending on the type of stimulus [3].

The acquisition of EEG signals of MI is done through the catchment of electromagnetic

impulses generated by the simulation of the movements using the imagination. For this,

acquisition protocols are created, in which the test subjects must imagine that they perform

the movement of a limb or body part without actually moving it. For this purpose, it is

usually indicated by means of auditory and/ or visual signals the type of action that should

be performed. It has been proven that the practice of MI considerably improves the quality

of the electrical signals generated, as well as putting rest phases between the different MI

actions that allow to separate them clearly[10].

With the boom in the design of BCI applications by large laboratories, different hardware has

been promoted for EEG low-cost samples acquisition, such as NeuroScan SynAmp, Neurosky

MindSet, and Emotiv EPOC. These tools have similar technical specifications being portable
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and easy to use, these have between 8 and 64 channels for sampling, a great autonomy up

to 12 hours and are widely used tools for the experimentation and development of brain-

computer interfaces [56].

2.1.2. Pre-processing

The main objective of the signal pre-processing stage is to eliminate noise and artifacts gen-

erated by signals that are not inherent to the MI process, since these unwanted signals create

unnecessary data that difficult the extraction of relevant characteristics to discriminate the

carried out actions, since these signals can be overlapped on the time and frequency of the

MI signals [14]. Additionally, pre-processing techniques are also useful to adapt the data

to the requirements of the methodology that is to be applied, some pre-processing actions

could include ordering, data augmentation, windows sliding, among other techniques.

There are many frequency filtering techniques that are commonly implemented in BCI sys-

tems to eliminate noise and artifacts. Its use must be careful about avoiding to eliminate the

desirable signals with a wrong frequency selection. The most common type of filters used in

BCI are[64]:

• Low-Pass filtering: this filter allows to pass only low frequency signals.

• High-Pass filtering: this filter allows to pass only high frequency signals.

• Band-pass filtering: this filter allows to pass a determined range of frequencies

attenuating the rest of them.

• Band-stop filtering: this filter does not allow the pass of signals whose frequencies

are included in a determined range.

Although frequency and spatial filters are commonly used to its utility to eliminate noise

characteristic of EEG signals, in this work was not used due to CNN potential to automat-

ically eliminate useful information and detect seemingly unrelated features of a wide range

of data that may have been omitted previously thanks to the modeling of high level abstrac-

tions through nonlinear transformations. However, it is considered important to mention

the frequency filters due to they are common in the most methodologies [64].

In this work the channel selection was not carried out due to three things, the first one is

the data augmentation scheme to obtain a large amount of training and test samples used,

which creates pseudo images using all the EEG channels available from the dataset. Second,

a clustering algorithm to order the electrodes according to their location in the scalp to

generate spatial relationship among them. This pre-processing scheme is detailed in section

3.3 Preprocessing. And finally, due to CNN’s ability to discriminate between non relevant

and relevant information that may be omitted when a channel selection is applied.
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2.1.3. Feature Extraction

Feature extraction aims to generate patterns that belong to the same class and allows to

discriminate the samples that will be used, grouping these in a certain region of the space

to their subsequent classification, using algorithms that transform the initial spatial domain

of the data. Feature extraction algorithms for EEG signals are commonly found in three

groups [76], those based on temporal analysis, based on frequency analysis and those that

combine both doing a time-frequency analysis.

Of this three groups some of the most used algorithms in EEG signals for BCI [73] are

described below: First one, based on temporal analysis, Fractal Dimension (FD) method is

very common, FD can be interpreted as the degree of irregularity of a signal. In FD method,

the signal is reconstructed by smaller signals of itself [31], there are many techniques with

which it is possible to estimate FD but the common ones are the Higuchi and Katz meth-

ods. Higuchi method creates new waveforms of the original signal in smaller sequences, then

length of the signal curve is calculated to obtain the averages of the data , with these values

the length averages can find and convert the signal into fractal dimensions and calculate its

linear approximations in minimum data [28]. Katz algorithm finds the fractal dimension by

calculating the length of the signal curve, making a sum of the Euclidean distances (The

Euclidean dimensions are all orthogonal) among several successive data being divided by the

longest distances of the data samples [36]. Second based on time-frequency analysis, Wavelet

Decomposition is a very good method that combines frequency-time information having the

information embedded in frequency and time [49]. A wavelet transform uses a variable-size

window, which allows it to perform higher mappings of the signals in those segments where

greater precision is required; then, the signal initiates a process of data separation in portions

of frequencies, doing this process repeatedly until the signal has been broken down into three

levels of signals that are function of frequency, time and amplitude. These data represent

the original signal allowing better discrimination of the information, to later be grouped into

ranges corresponding to each of them resulting in the reconstruction of the original signal [64].

Although these methods are very popular, they present serious disadvantages in the face of

EEG signals, Higuchi’s method decrease accuracy when noise ratio increases [31] and Katz’

method could be affected by reduntant information [64] that benefits Deep Learning Meth-

ods.

Finally, based on frequency analysis, that is the method used in this work, Power Spectral

Density (PSD) shows to be a great algorithm due to its capacity to split the signals means

its power density. PSD allows finding peaks in certain frequency bands, these peaks are the

power density of the signal, such as the Alpha and Betha bands, in which the movements of

the right and left hand are found. Which suggests that the peaks for the two other classes,
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movement of feet and tongue are also clearly differentiable [66].

Power Spectral Density

A Power Spectral Density (PSD) is the measure of signal’s power content versus frequency.

A PSD is typically used to characterize broadband random signals and describes the dis-

tribution of power into frequency components composing that signal. According to Fourier

analysis, any physical signal can be decomposed into a number of discrete frequencies, or a

spectrum of frequencies over a continuous range. The statistical average of a certain signal

or sort of signal (including noise) as analyzed in terms of its frequency content, is called its

spectrum. The amplitude of the PSD is normalized by the spectral resolution employed to

digitize the signal[71].

There are different methods to calculate the PSD of a signal, among which are Periodograms

and the Welch [80] function among others. PSD gives an estimation about the power of a

signal at different frequencies for any temporal signal.

Periodogram Function Periodogram is based on the Fourier Transform, according to which

a series that meets certain requirements can be decomposed as the sum of a finite or infinite

number of frequencies. The periodogram measures contributions to the total variance of

periodic components series of a given frequency, if the periodogram presents a peak at a

certain frequency, this indicates that this frequency has greater relevance than the rest.

This measure is computed over a signal to find the spectrum in different parts. The square

of these results are known as periodograms [48], defined by the expression 2.1:

P =
1

N
A2[ω] (2.1)

Where A2[ω] is the square of the FFT for a signal a[k] with N observations.

If a signal has a non-zero arithmetic mean, its power spectrum has a pulse at zero frequency.

If the value of the mean is large, this component will have a magnitude that will dominate

the estimate of the power spectrum. The magnitude of the periodogram has approximately

the magnitude of the power spectrum.

According with [48], where stochastic quantities are represent with bold letters, the Peri-

odogram of a time-series y(n), n=1,...,N is defined as:

Iy(ωk) =
1

N
|
N∑
n=1

y(n)e−jωkn|2 (2.2)
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with ωk = 2π k/N, k = 1, ..., N . Periodogram ordinates are symmetric around N/2, assuming

N even, i.e., Iy(ωk) = Iy(ωN−k). The value Iy(ωk) is a measure of the energy contribution of

the frequency ωk to the ”signal effect”.

If {y(n), n=1,...,N} are samples of a stationary time-series with autocorrelation sequence

{ry(i),-∞ < i < ∞}, then periodogram ordinates, Iy(ωk), are asymptotically independent

exponential random variables, with mean Sy(ωk). The function sy(ω) is the power spec-

tral density (PSD) of {y(n)} and is given by the Fourier transform of the autocorrelation

sequence {ry(i)}. Notice that the PSD is a deterministic function of ω.

Welch Function The method is described in the original paper [80] as follows: letX(j), j =

0, . . . , N − 1 as a sample from a stationary, second order stochastic sequence. Assume for

simplicity that E(X) = 0. Let X(j) have spectral density P (f), |f | ≤ 1
2
. Segments possibly

overlapped with length L were taken, with starting points of these segments D units apart.

Let X1(j), j = 0, . . . , L− 1 being the first such segment. Then:

X1(j) = X(j) with j = 0, . . . , L− 1 (2.3)

(2.4)

X2(j) = X(j +D) with j = 0, . . . , L− 1 (2.5)

(2.6)

Xk(j) = X(j + (k − 1)D) with j = 0, . . . , L− 1 (2.7)

It is suppose to have k such segments; X1(j), . . . , Xk(j), and that they cover the entired

record, i.e., that (K − 1)D + L = N .The method of estimation is as follows. For each

segment of lenght L a modified periodogram is calculated. That is, is selected a data window

W (j), j = 0, . . . , L−1 and form the sequences X1(j)W (j), . . . , Xk(j)W (j). Then the finite

Fourier Transform A1(n), . . . , Ak(n) of these sequences was calculated here:

Ak(n) =
1

L

L−1∑
j=0

Xk(j)W (j)e−2kijn/L, and i = (−1)1/2. (2.8)

Finally K modified periodograms are obtained by:

Ik(fn) =
L

U
|Ak(n)|2, with k = 1, 2, . . . , K (2.9)
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Where,

fn =
n

L
, with n = 0, . . . , L/2, and (2.10)

U =
1

L

L−1∑
j=0

W 2(j). (2.11)

The spectral estimated is the average of these periodograms, i.e.,

P̂ (fn) =
1

K

K∑
k=1

Ik(fn) (2.12)

Then

E{P̂ (fn)} =

∫ 1/2

−1/2
h(f)P (f − fn)df (2.13)

Where,

h(f) =
1

LU

∣∣∣∣∣
L−1∑
j=0

W (j)e2πifj

∣∣∣∣∣
2

, and (2.14)

∫ 1/2

−1/2
h(f)df = 1. (2.15)

With this the estimator P̂ (f) with a resultant spectral window whose area is unity and

whose width is of the order 1/L was obtained.

This nonparametric approach for PSD estimation is regularly employed, its main advantage

is the no assumption about the distribution of data[60]. Due to this Welch function was

used in the feature extraction stage of this thesis.

2.1.4. Signal Classification

In a BCI system, the classification stage allows to identify or decoding the movement inten-

tion of the subject based on the characteristics of the data that is being collected from the

signals and associated with mental tasks. The commonly used classification techniques in

BCI investigations include both Linear Classifiers and the Nonlinear Classifiers [56].
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Among the methods that have been proposed for this purpose, the most used are Support

Vector Machines (SVM) [41], Artificial Neural Networks (ANN) [75], and other systems

based on machine learning and statistical theory [61]. The methodologies based on SVM

and ANN have performed well [82]. However, development of new methodologies seemed to

have remained stalled until the emergence of deep learning based technologies.

Recently, Helal et al. [27] developed an LDA based method with Autoencoders, which

was composed of five stages: pre-processing, feature extraction, dimensionality reduction,

classification, and evaluation. In the preprocessing, signal artifacts were removed by ap-

plying whitening, CAR and Z-Score normalization to the raw data. Band-power method

was implemented as feature extraction, PCA and Autoencoders were used for dimension-

ality reduction, and finally, LDA was employed in the classification task. Reported results

showed that Autoencoders with non-linear activation function (Sigmoid) achieves better per-

formance compared to PCA, getting a mean classification accuracy of 67%.

In 2015, Bashashati et al. [7] presented a comprehensive comparison of classification models

for identifying movement intentions in several EEG datasets, including the BCI Competition

IV - 2a. The methodology used starts with a filter bank composed by fifth order Butterworth

band pass filters array. Then, a spatial filter (common spatial pattern) is applied before ex-

tracting signal features that were then used for evaluating the classification models. In the

BCI IV competition 2a dataset, the logistic regression and Multi Layer Perceptron (MLP)

classifiers outperformed others, getting a mean accuracy of 74.33% and 74.42% respectively.

However, a high dispersion between the accuracy of each subject makes the results unreliable.

Due to the success of deep learning in different fields and applications, it was presented as

an alternative in the classification of EEG signals of motor imagery for BCI. Recently, many

works have been developed involving deep learning for this purpose, however, it is necessary

to explore, test and compare different architectures of deep learning in search of surpassing

the threshold of performance that is currently in the classification of motor imagery signals.

Neural network architectures based on back-propagation and forward-propagation have been

able to improve the results obtained by SVM-based systems. Wang et al. [79] proposed a

binary classification method for a computer-based interface based on EEG signals using the

packet of the wavelet transform and neural networks. For the feature extraction, a new

method was introduced, which combines the slow cortical potentials (SCPs) and the specific

energy of the time-frequency domain in beta bands through the wavelet transform. The

3-layer perceptron architecture established by backward propagation was compared to the

performance of a Gaussian kernel based SVM. Among the tests, it was found that the 4-5-1

architecture reached a precision of 91.47% in the test set, against a 91.13% obtained by the

SVM with a Gaussian kernel, however the neural network architecture needed a lot of time
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to be trained, being being very susceptible to inital weights and biases and dependent of the

preprocessing techniques and feature extraction algorithms. Subsequent studies compared

ANN techniques to determine their performance. Khare et al. [37] compare the performances

of the following architectures, Gradient Descent Back Propagation, Levenberg-Marquardt ar-

chitecture, Resilient Back propagation, Conjugate Learning Gradient Back Propagation, and

Gradient Descent Back Propagation, in the classification of EEG signals obtained from the

imagination of the right hand movement with respect to an awakened state of relaxation,

feature extraction was performed using the Wavelet Transform (WT). As a result it was

obtained that, for this classification problem, the ANN with Resilient Back Propagation

obtained the highest yield with 95% accuracy.

Amarasinghe eta al. [5] proposed a novel methodology for the recognition of self-organized

mapping patterns (SOM), the recognition methodology that was presented consisted of

a three-step process that uses SOM for the unsupervised grouping of EEG signals Pre-

processed images that were taken as input to an ANN without feedback loops where the

outputs of the neurons go to the next layer but not to the previous layer. Data was taken

with the non-invasive Emotiv Epoc device. The presented method was compared with the

classification of the EEG data using ANN only. The experimental results of the 5 chosen users

showed an improvement of 8% with respect to the classification based on ANN without SOM.

Likewise, Lekshmi [47] presents a comparison between two feature extraction approaches

applied to forward propagation ANN to classify EEG signals at the different frequency lev-

els of the beta, alpha, theta and delta waves produced by human emotions , The first is

principal component analysis (PCA) and the second WT. The study showed that PCA with

ANN is more accurate compared to WT. In addition, it is concluded that the accuracy of

the artificial neural network can be improved by the use of various optimization techniques,

but they do not mentioned which can be.

The aforementioned works were evaluated with the dataset BCI Competition IV 2a, on the

other hand, He et. al. proposed a methodology based on a Bayesian Network architecture

for feature extraction, a SVM for classification and and Gaussian Distribution to simulate

the probability density function of the continuous EEG signals over the BCI III 3a dataset.

The proposed methodology obtained an accuracy of 0.93 but with a high variability between

the subjects [26], [55] proposed a novel feature weighting and regularization method that

utilizes all CSP features to avoid information loss. Results on BCI Competition III Dataset

IIIa demonstrate that the proposed method enhances the classification accuracy comparing

to the conventional feature selection approaches, the accuracy obtained with a LDA classi-

fier was 0.92, hhowever, the proposed approach did not show the consistency to obtain good

performance in all subjects.
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Notwithstanding, currently, methods based on deep learning has shown better performance

among the works that are in the state of the art [82], [62].

2.2. Deep Neural Networks

The deep learning paradigm was developed in recent years thanks to recent advances in

hardware, specifically in graphics processing units (GPUs) that allows the parallelization of

the Deep Learning Algorithms through the GPU’s cores. It is based on existing algorithms

such as ANN, but densifying their architectures (number of hidden layers, number of neurons

per layer, among others). Thanks to this depth, interconnections are achieved that allow

high-level abstractions that extract discriminating characteristics for the learning process in

the classification task performed by the network. Currently there are several types of net-

work such as Recurrent Neural Networks [50], Deep Belief Networks [85], Neural Networks

with Time Delays [54], Convolutional Neural Networks [84], among others.

With the advent of Deep Learning techniques thanks to new hardware capabilities, consid-

erable performance has been achieved in other areas of knowledge such as computer vision,

in [19] a comparative analysis is presented, comparing different types and Architectures of

Deep Neural Networks (DNN), using a technique called Pooling to reduce dimensions, being

Max-pooling the most used in the state of the art, although other functions of pooling can

improve the performance. As conclusions it was observed that the choice of the activation

function is important for the neural network to handle the problem of gradient decrease, in

addition the key to a good activation function is that it should cause shortage and limit the

decreasing gradient flow.

Thanks to this performance, works has begun on the classification of EEG signals taken

from emotional states. Jia et all. [32] propose a semi-supervised learning framework for the

recognition of affective states from EEG signals. For this they used a two-level procedure,

which includes both information from unsupervised tags and information from supervised

structures to make the channel decision, then add a Boltzmann Machine with Restriction

to sort. The experiments performed on the actual EEG dataset showed a good result in the

critical selection of the channel and the superiority of the proposed method in the recognition

of the affective state.

In [85] they present an advanced model of deep learning to classify two categories from data

taken from signals of emotions obtained through EEG. A Deep Belief Network (DBN) with

differential entropic characteristics extracted from several channels was trained, and Hidden

Markov Models (HMM) were added to accurately capture a more reliable emotional state

change. The performance of the proposed system was compared against techniques such

as Nearest K-Neighbors (KNN), SVM, and Graphic Extreme Learning Machine with reg-
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ularization and (GELM). The results showed that the DBN and DBN models with HMM

improve the accuracy in the classification compared to those found in the state of the art.

Methodologies based on deep learning with filter banks and CSP have been also proposed

with promising results. Merinov et al. [52] proposed a spatial filter network (SFN). Their

approach was evaluated using the BCI competition III dataset 3a and the BCI competition

IV dataset 2a. In the preprocessing step, time segments between 0.5-4 seconds from the

instruction cue on set, are taken for obtaining segments of 3.5 seconds as training set, then,

the signals were passed through the frequency bands range of the original CSP algorithm.

In the SFN, authors utilized cross-entropy loss function, a batch learning scheme and data

augmentation. Each learning epoch is composed by 100 batches, in a 5-fold cross validation

loop. This approach reported a best accuracy of 0.65. Sakhavi et al.[67] used the Filter-

Bank CSP (FBCSP) proposed in [6]. A bank of 9 filters from 4 to 40Hz, with a width

of 4Hz was initially applied for extracting a set of features that were then selected by a

mutual information feature selection algorithm. For the CSP process, four pairs of spatial

filters were picked for each frequency band, finally the proposed parallel CNN and linear

architecture were implemented to decode the final movement intention class. Mean accuracy

for all subjects of 70.60% in the BCI IV Competition 2a dataset was obtained. Yang et.al.

[82] used Convolutional Neural Networks (CNNs) to classify multiple classes in EEG signals

obtained from motor imagery using Augmented CSP (ACSP) features based on a varying

the frequency bands with different bandwidths to cover as many bands as possible testing

over the BCI IV competition 2a dataset. They proposed a way to select the feature maps,

namely frequency complementary map selection (FCMS), and compared it with random map

selection (RMS) and with the selection of all feature maps (SFM). Average cross-validation

accuracy of 68.45% for FCMS and 69.27% for SFM was achieved. Nonetheless, approaches

based on Filter banks with CSP highly depends on the filter bands selection and this can

cause loss of relevant information.

In [33], Jingwei et al. propose Multi-Scalar Convolutional Neural Networks, extracting high-

level features called Deep Motor Features (DMF) that can be learned by the network through

non-linear hierarchical mapping. As a result a 100% accuracy was obtained in the classifi-

cation of tasks of motor imagination.

On the other hand, Walker proposes a method to define the convolution filters of a CNN for

separate groups of electrodes in similar regions of the brain in the classification of signals of

motor imagination in real time [78]. The activation function chosen for this was the Tanh

in the intermediate layers obtaining an accuracy of 80.08% in one of the test subjects, sig-

nificantly higher than 50% obtained by a random model.

One of the networks that has obtained very good performance in the classification of EEG
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signals is the Recurrent Neural Networks due to they are designed to work with time series

and allow capturing this temporary information [25].

2.2.1. Recurrent Neural Networks

In certain recognition tasks it is necessary to have prior information of an event that is

required to classify, this is the case of speech recognition, language modeling and videos in

which it is necessary to have temporary information of previous frames to determine what is

happening in the present frame [25]. The classic artificial neural networks do not have the

capacity to take into account previous information, however the Recurrent Neural Networks

solve this problem since these are networks that internally have a loop that allows the infor-

mation to persist in time, endowing the memory network. In the diagram 2.2 a basic scheme

of a RNN operation with the loop that allows the network to have a small memory can be see.

Figure 2.2.: Recurrent Neural Network, being A, a chunk of neural network, ht, the output

and Xt the input.

Internally, a RNN can be considered as a set of interconnected networks, so the first network

has an input x0, being this the signal in the time t0 and having its respective output h0,

consecutively this network is connected to an another network with an input x1 and output

t1 in the next time step, having the same number of connected networks as xt entries. As

can be see, RNN are highly compatible with time series and sequences. Figure 2.3 allows to

visualize the process.
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Figure 2.3.: Inputs over time of a Recurrent Neural Network. As can be see a Recurrent

Neural Network can be interpreted as a chain of networks. Being a determined

output for a specific input in time.

The problem with the RNN is that the longer the chain of connected networks, the more

difficult it will be to relate a certain output to an input that is too far away temporarily. To

solve this, a modification to the basic RNN was proposed, this modification gave way to the

Long Short Term Memory networks (LSTM) [29].

Although RRN are naturally appropriate for time series, this paper proposes the use of CNN

since these have had great performance in the task of classifying EEG signals as shown by

[78]. To this we must add that the filter nature of CNN allows signals to be worked without

the need to use too complex pre-processing algorithms.

2.2.2. Convolutional Neural Networks

A convolutional network is a type of DNN with forward feeding based on the multilayer

perceptron, they are based in the mathematical convolution. It takes one or several inputs

and passes them through several layers of neurons, where each neuron represents a linear

combination of its input, then pass through a function of non-linear activation, which in

the case of this work is the function ReLU, to pass again to another layer of neurons, this

happens successively until reaching the output layer. They have the ability to learn highly

nonlinear functions and were introduced for the first time by [45] showing great performance

in face detection and classification of handwritten characters.

Although they are based on the multilayer perceptron, being considered as deep learning,

their operation is initially given by multiple convolutional layers that allow the extraction of

characteristics given by the filter nature of the convolutional neurons, which alternate with

pooling layers that are in charge of grouping the characteristics correlated with some group-
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ing function like the average or the maximum, finally the classification stage is presented.

In a convolutional network, the connection of the neurons is given by a sparsely connected

architecture (Sparsely Connected), where the neurons in each layer are not connected to

each neuron of the previous layer, thus reducing the probability of overtraining [78]. The

output of each convolutional neuron is given by the equation:

Yj = g(bj +
∑

kij ⊗ Yi) (2.16)

Since Yj is the output of the neuron j, a matrix generated by the linear combination of the

outputs Yi of the neurons in the back layer each multiplied by the convolution core kij corre-

sponding to that connection, this in turn added to the influence factor bj, g is the non-linear

activation function [46]. Figure 2.4 shows the CNN behavior.

Due to the high abstraction capacity of CDNN is difficult to visualize which features were

taken into account for the classification process, being hard to have clearly a physiological

intepretation of the inputs’ of the neurons (weights, biases). However, for the filter nature

of a CNN the highest weights of the network will be linked with the most relevant features

in the classification problem.

Figure 2.4.: Convolutional Neural Network Behavior. The original input is passed through

a convolutional filter, which reduces the dimensions of the input by matching

them with the filter dimensions.
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Back Propagation

Let δ(l+1) be the error term for the (l + 1) − st layer in a network with a cost function

J(W, b;x, y) where (W, b) are the parameters and (x, y) are the training data and label pairs.

If the l− th layer is densely connected to the (l+ 1)− st layer, then the error for the l− th
layer is cumputed as:

δ(l) = ((W (l))T δ(l+1)) • f ′(z(l)) (2.17)

and the gradients are:

∇(l)
WJ(W, b;x, y) = δ(l+1)(a(l))T , (2.18)

∇(l)
b J(W, b;x, y) = δ(l+1) (2.19)

f the l − th layer is a convolutional and subsampling layer then the error is propagated

through as:

δ
(l)
k = upsample((W

(l)
k )T δ

(l+1)
k ) • f ′(z(l)k ) (2.20)

Where k indexes the filter number and f ′(z
(l)
k ) is the derivative of the activation function.

The upsample operation has to propagate the error through the pooling layer by calculating

the error with respect to each unit incoming to the pooling layer. Finally, to calculate the

gradient with respect to the filter maps, border handling convolution operation is used to

rotate the error matrix δ
(l)
k :

∇W
(l)
k J(W, b;x, y) =

m∑
i=1

(a
(l)
i ) ∗ rot90(δ

(l+1)
k , 2), (2.21)

∇b
(l)
k J(W, b;x, y) =

∑
a,b

(δ
(l+1)
k )a, b· (2.22)

Where a(l) is the input to the l − th layer, and a(1) is the input array. The operation

(a
(l)
i )∗δ(l+1)

k is the valid convolution between i − th input in the l − th layer and the error

respect to the k − th filter.

Rectified Linear Units (ReLU)

Normally the output of a neuron as a function of its input is F (x) = tanh (x). Due to

saturating nonlinearity, downward gradient training becomes much slower compared to a
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function F (x) = max (0, x) which has non-saturating non-linearity. This type of function

is known as ReLU.

The ReLU function has advantages with respect to the activation functions traditionally

used, among them is its speed to be calculated and do not suffer from the problem of

gradient leakage [57].

ReLU(z) = max(0, z) (2.23)

In [40] Graphically show that convolutional neural networks equipped with ReLU activation

functions train much faster than with tanh for image classification.

Dropout

Dropout is a technique that consists in canceling certain neurons by putting their output

in 0. The neurons that are to be annulled are those that have a probability of 0.5. As

neurons are nullified, they do not contribute to the backpropagation of the network. This

way every time you change the network entry will change the architecture because different

neurons will be overridden by the Dropout, without ignoring the already determined weights.

In this way, the network is forced to learn more robust characteristics that are useful when

correlating with the random information obtained from other neurons. [70].

2.2.3. Parameterization

ANN hyper-parameters tuning defines the network architecture, this process has great im-

portance since one of the weaknesses of ANNs is its great dependence on the correct selection

of the free parameters of the same and there is no fixed rule or method defined for this be-

cause depending on the data set used depends on the hyper-parameters selection, as is well

known, an architecture designed for a specific task may not perform well in another different

classification task and it is necessary to retrain the network to adjust the weights to this

new classification task.

The hyper-parameters selection process is complex and must be carried out by a specialist

who based on their experience and intuition will make the selection of them, many times

rules of thumbs and brute force search are required.

Each selected hyper-parameter set has a defined architecture, if some parameter changes a

different architecture was obtained, different from the initial one, that is why every time a

set of parameters is selected by a specialist, the network should be trained again and tested
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to calculate its performance. As it can see, the process becomes complex and requires a lot

of time because there are deep architectures that can take days and even weeks to be trained

[40].

It is due to these difficulties that it was proposed to use an optimization algorithm that auto-

matically selects the hyper-parameters of the network in order to obtain the highest accuracy.

2.3. Optimization Strategies

Mathematical optimization consists of selecting from a given set of elements the most ade-

quate one that allows obtaining the best possible result according to some specific criterion.

For this, what is done is to optimize or minimize a function by selecting the best input values

and calculating its result.

Algorithms for optimization can be roughly divided into two categories: exact algorithms

and heuristics. The difference between the two categories is that exact algorithms are de-

signed in such a way that it is guaranteed that they will find the optimal solution in a finite

amount of time. Heuristics do not have this guarantee, and therefore generally return solu-

tions that are worse than optimal [69].

In deep learning optimization methods shows to be promising approaches, [9] proposed a

greedy algorithm to initialize the weights of a Deep belief network using a version of the

wake-sleep algorithm for the classification of digits. As results it was observed that the

greedy algorithm can quickly find a good set of parameters, even in deep networks with mil-

lions of parameters and hidden layers, although the algorithm is unsupervised learning can

be applied to labeled data, in addition the algorithm had the ability to learn a generative

model using the MNIST database that exceeded the discriminative methods found in the

state of the art.

Bayesian methods, although have shown good performance in the hyper-parameters opti-

mization of machine learning algorithms, use probabilistic surrogate models like Gaussian

proccess to approximate and minimize the validation error function, however probabilistic

methods require a low covariance as well as many functions evaluations, reason why that

are inefficient in the task of hyper-parameters tuning of deep networks since these are highly

expensive to evaluate. Because of this, [30] proposed a deterministic method called HORD

for the optimization of hyperparameters that uses Radial Basis Function (RBF) as error

surrogate which only takes into account the most promising parameters through dynamic

coordinate search which requires much less function evaluations, the proposed method out-

performs Bayesian methods that have currently performed as well as GP, SMAC and TPE.
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The method was tested in the MNIST and CIFAR-10 databases, showing to be 6 times faster

than GP-EI in the optimization of 19 hyper-parameters.

Nevertheless, the use of optimization algorithms for the training of a DANN is still a chal-

lenging task because the training of the network is already a process that takes a lot of

time and resources, furthermore it is necessary to prove a lots of architectures. Due to this,

metaheuristics algorithms thanks to its free-derivative nature allows to train and fine tune

the free parameters of deeper networks without being highly expensive or time-consuming.

2.3.1. Meta-heuristics

Metaheuristics Algorithms add rules at a higher level that not only use a heuristic function

(trial and error) but also guide the search to increase its efficiency. In their original definition,

are solution methods that orchestrate an interaction between local improvement procedures

and higher level strategies to create a process capable of escaping from local optima and

performing a robust search of a solution space [21]. All algorithms that use a ’surrogate’ or

auxiliary objective function fall into this category.

Meta-heuristic algorithms are approximate optimization algorithms based on behaviors found

in nature. They are characterized by two fundamental concepts, first the intensification that

is to search in a local and intense way, second the diversification, responsible for ensuring

that the algorithm explores the search space globally [83].

2.3.2. Derivative-Free Algorithms

There are many problems for which the true objective function is quite costly to evaluate.

When this occurs, the evaluation of moves may become prohibitive, even if sampling is used.

An effective approach to handle this issue is to evaluate neighbors using a surrogate ob-

jective, i.e., a function that is correlated to the true objective, but is less computationally

demanding, in order to identify a (small) set of promising candidates (potential solutions

achieving the best values for the surrogate). Among this algorithms there are Gutmann’s

Radial Basis Function (RBF) [24], the stochastic RBF method [65], and the kriging-based

Efficient Global Optimization method (EGO) [34], among others.

2.3.3. Derivative-free Optimization Based on Radial Basis Function

One of the main characteristics of certain machine learning models, such as Deep Learning

is the requirement of the maximization of a performance criterion in which a description in

analytic form is not available. For this reason, the use of classical optimization algorithms
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are discarded since the first or higher order derivatives cannot be computed. In some cases,

first and second order derivatives can be estimated using finite differences, although this

requires a large number of evaluations; e.g. in case of a n-dimensional space at one point it

would be required to evaluate the function at n+1 points at least. However, when the evalu-

ation of the objective function is computationally expensive (main feature of Deep Learning

strategies), it becomes in a non-viable application in practice.

Derivative-free optimization (DFO) is an area of mathematical optimization dedicated to

create optimization approaches depending on zero-order information exclusively [18]. With

these approaches, the interest is based on trying to optimize an objective function f perform-

ing a small number of evaluations, avoiding results in a prohibitive computing time. Since

f is optimized in a space domain described only by upper and lower bounding constraints

and some decision bounds are restricted to integer values; these models could be considered

as a box-constrained problem with integrality constraints. An extensive description of the

large amount and main features of DFO algorithms could be found in [16].

To implement the DFO algorithms for hyper parameter optimization in a Deep Learning

model, it should be considered a main drawback. The parameters values changes during

optimization process should describe a valid network architecture e.g. typically, a network

architecture does not contain empty layers, so this must be imposed. The way to apply

optimization to a network architecture is described as follows. for an upper bound l con-

cerning the maximum size of a single layer belonging to a fixed network architecture, in the

formulation of the DFO algorithm l + 1 decision variables must be considered to determine

the size of the hidden layers, saying x1...xl without loss of generality. The decision variable

xl+1; which aims to determine the number of units in the layers, is constrained to be an

integer belonging to [1, l], since network layers cannot have non-decimal number of units.

For example, if (x1...xl) = (20, 10, 30, 10, 40, 50) for a network architecture of 6 layers, the

model must be constructed with hidden layers of size 20, 10, 30, 10, 40 and 50 respectively.

Additionally, it is important to notice that parameters values are symmetric for the structure

of the network, since several values of (x1..xl) corresponding to the same structure can be

obtained by several permutation of the decision parameters. Symmetry in the DFO model

guarantees a solution in a large space domain using few objective function evaluations. The

approach described below could be implemented using the open source RBFOpt toolbox [17]

available online. The tool allows to implement all experiments modeling the network as a

black-box (box-constrained) problem delimiting the number of units for each layer belonging

to the network as the space domain. The use of the toolbox for the proposed model will be

described in the next chapters.
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2.4. Gutmann’s RBF Method for Black-Box Optimization

In [17] the radial basis function is defined as: Let Ω := [xL, xU ] ⊂ Rn,ΩI := Ω∩ (Zq ×Rn−q)

and its assume that the box constraint on the first q variables have integer endpoints. Given

k distinct points x1, ..., xk ∈ Ω, the radial basis function interpolant sk is defined as:

sk(x) :=
k∑
i=1

λiφ(||x− xi||) + p(x) (2.24)

where φ : R+ → R, λ1, ..., λk ∈ R and p is a polynomial of degree d. The minimum degree

dmin to guarantee existence of the interpolant depends on the form of the function φ. Typi-

cally, the polynomial is picked to be of degree exactly dmin in practical implementations. If

φ(r) is cubic or thin plate spline, dmin = 1 and with d = dmin the next interpolant form is

obtain:

sk(x) :=
k∑
i=1

λiφ(||x− xi||) + hT
(
x

1

)
(2.25)

where h ∈ Rn+1. The values of λi, h can be determined by solving the following linear

system:

(
Φ P

P T 0(n+1)×(n+1)

)(
λ

h

)
=

(
F

0n+1

)
(2.26)

with:

Φ = (Φ(||xi − xj||))i,j=1,...,k, P =

x
T
1 1
...

...

xTk 1

 , λ =

λ1...
λk

 , P =

f(x1)
...

f(xk

 (2.27)

The algorithm follows the next general scheme:

• Initial step Choose affinely independent points x1, ..., xn+1 ∈ ΩI using an initialization

strategy. Set k ← n+ 1

• Iteration step Repeat the following steps.

i Compute the RBF interpolant sk to the points x1, ..., xk, solving.
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ii Choose a trade-off between exploration and exploitation.

iii Determine the next point xk+1 based on the choice at last step.

iv Evaluate f at xk+1.

v If we exceed a prescribed number of function evaluations, stop. Otherwise, set

k ← k + 1.

At Iteration step (ii), exploration implies trying to improve the surrogate model in unknown

parts of the domain, whereas exploitation implies trying to find the best objective func-

tion value based on the current surrogate model. To turn the general scheme above into

fully specified algorithm, we must describe how to choose points in the initial step, and an

implementation of Iteration steps (ii) and (iii).



3. Methods

This chapter describes the main details of the proposed method for classifying motor imagery

EEG signals based on deep Convolutional Neural Networks with RELU activation functions,

which was optimized by using the Gutmann’s RBF method for black-box optimization de-

scribed in the chapter 2.

As will be seen later in this chapter, for addressing the specific objective 1, the electrodes

space was defined following the methodology proposed in [78], which allowed to establish a

spatial correlation between the signals. Then, a feature extraction algorithm based on PSD

was implemented to obtain a representation of the signals that was used as input to a deep

convolutional neural network designed to extract relevant deep features used for the end

classification by the last network layer.

Once the classifier was designed, the specific objective 2 was addressed by the analysis

of the state of the art on meta-heuristic hyper-parameter optimization algorithms in deep

learning. The Gutmann’s RBF Method for Black-Box Optimization was selected, which

was also implemented in an open source toolbox that automatically parallelize and tune

the free hyper-parameters of the network. Thus, both optimization approach and learning

CNN model were implemented on a framework based on TensorFlow library and CUDA for

python, which allowed the parallelization of the process in the GPU cores. This implemen-

tation allowed to obtain an optimal CNN architecture respect to the accuracy classification.

The third objective was two-way addressed. First, the performance of the unoptimized

learning CNN model, with hiper-parameters selected heuristically, was evaluated using the

multiclass BCI competition IV-2a dataset; then, the optimized network, designed by using

the Gutmann’s RBF Method for Black-Box Optimization, was two-fold evaluated, using the

same BCI competition IV-2a dataset and the BCI competition III-2a, which corresponds

also to a multiclass problem.

3.1. Dataset Description

Performance evaluation was initially carried out using the benchmark BCI Competition IV

dataset 2a [10] due to its complexity and extended use in the state of the art. This dataset
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consists of EEG signals from 9 subjects performing four motor imagery tasks namely left

hand, right hand, feet and tongue movements. The database is originally in .GDF format,

which is used for biomedical signals. To access the signals, the MATLAB Biosig toolbox

was used. The signals are in an array of 672528 x 25, the last three rows correspond to

electrodes intended to acquire EOG signals, which are not necessary in the classification

task, so they have been eliminated. Since the matrix contains values that are not typical of

the classification task, it was necessary to extract only the classes, drawing a matrix for each

trial of each class, resulting in 72 matrices of 22x314 for each class in each test, obtaining

a total of 2592 matrices. Each of the matrices was transposed so as to have the electrodes

in the rows and later to make a permutation that allowed the electrodes to be grouped by

distances, thus seeking that the electrodes more adjacent to each other are in a group, and

that each electrode does not belong to more than one group. In this way a spatial correlation

i obtained between the electrodes that are in the same region of the brain that is activated

in front of certain tasks of motor imagination.

With the aim of evaluating the generalization of the proposed learning model, the validation

of the model was again carried out over the BCI Competition III 3a data [1]. This dataset

consists of EEG signals from 3 subjects performing four motor imagery tasks namely left

hand, right hand, feet and tongue movements. The database is originally in .GDF format

too. The dataset has 60 EEG channels, using the left mastoid for reference and the right

mastoid as ground. The EEG was sampled with 250 Hz, it was filtered between 1 and 50Hz

with Notchfilter on. This dataset was made exactly the same treatment as the BCI Compe-

tition IV dataset 2a but without realizing the channels grouping.

It is important to clarify that the tests performed on this dataset were made with the

architecture found with the automatic hyper-parameter Tuning, which was run on the subject

with the worst performance obtained by the manual hyper-parameter tuning.

3.2. Preprocessing

Since CNN requires a large amount of data, and spatial relationships between this data,

which are not necessarily found in one-dimensional MI signals, the preprocessing stage is

herein composed of two steps, the first one seeks to expand the number of training and

testing data, for that purpose, we employed a window-based approach proposed in [78] to

create pseudo images to feed the CNN and the second, reorganize the order of the electrodes

according to its proximity into the scalp, seeking to establish a spatial correlation between

the signals.
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Windows Extraction

A window-based approach over temporal signals was carried out, in order to extract the

enough amount of pseudo images as [78] proposed, but with few differences in the overlapping.

For the sake of generality, we introduce some notation; for each subject suppose a matrix

X ∈ RT×N where T is the amount of temporal observations and N is the number of channels

in the recording process. The main purpose is to use a sliding window of size τ to slice the

temporal axis in several overlapping windows given by xi ∈ Rτ×N ∀ i = 1, . . . , T − τ + 1.

In order to avoid over fitting, the overlap size was 95%(this value was selected as rule-

of-thumb) instead of the maximum overlapping size that gives an almost identical pseudo

image, redefining the classification task. This process can be seen on figure 3.1.

Channels Grouping

Commonly, CNNs are trained using 2D data, where spatial correlation is guaranteed. How-

ever, motor imagery signals are not spatially organized. To overcome this problem, we ensure

spatial correlations among channels by applying k-means clustering over them, in line with

its position in the scalp, unlike [78], where K Nearest Neighbor was applied. Position in the

scalp was based on the electrode montage corresponding to the international 10-20 system

used on [10] as can be see in 3.2, with the value of the coordinates representing the distance

between the electrodes, having an inter-electrode distance of 3.5 cm, obtaining the spatial

matrix:

SP=[0 0;-7 -3.5;-3.5 -3.5;0 -3.5;3.5 -3.5;7 -3.5;-10.5 -7;-7 -7;-3.5 -7;0 -7;3.5 -7;7 -7;10.5 -7;-7

-10.5;-3.5 -10.5;0 -10.5;3.5 -10.5;7 -10.5;-3.5 -14;0 -14;3.5 -14;0 -17.5]

Electrode 1 takes the coordinates (0,0) and the others take its coordinates according to its
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Figure 3.1.: Preprocessing of motor imagery signals. Each element of the vector corresponds

to a EEG channel, being in turn the rows of each pseudo image with the first

element of the vector being the first row and the last element the last row.



3.3 Feature Extraction Based on Power Spectral Density 29

Figure 3.2.: Location of the electrodes on the skull. Electrode 1 takes the coordinates (0,0)

and the others take its coordinates according to its distance in cms to electrode

1. taken from [10].

distance in cms to electrode 1. Then, the 22 channels were organized in four groups, within

each group channels were ranked according to the distance to the center of its group, finally,

all groups are stacked into a single matrix. This method was used by Walker et.al. [78].

To this spatial matrix was applied a K-means clustering algorithm, selecting 4 clusters for this

and finding the Euclidean distance between the electrodes.The K-means algorithm grouped

the electrodes according to its distance making sure that each electrode belong to only one

group at a time. The order of the electrodes found by the K-means was = [4, 1, 3, 5,

10, 8, 9, 14, 2, 7, 15, 12, 6, 11, 13, 18, 20, 21, 16, 22, 19, 17], each element of the vec-

tor corresponds to a EEG channel, being in turn the rows of each pseudo image with the

first element of the vector being the first row and the last element the last row. See figure 3.1.

As can be deduced, it is achieved in this way to obtain information from each electrode for

each class, while at the same time obtaining a spatial relationship between the electrodes,

thereby emulating the correlation given by the adjacency of pixels in an image.

3.3. Feature Extraction Based on Power Spectral Density

The main drawback of the periodigram estimator is the high variance [11]. Conversely, the

Welch method presented in [80] is a more efficient estimator which is based on overlapping

sections, where a sliding window is used to find the periodigram in those segments. Finally
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the result is obtained by averaging the estimations of all sections as is explained in [60].

Figure 3.3 shows this PSD estimation approache.

In this work, PSD was employed for feature extraction in EEG signals using FFT, this is

done for each channel; that is, given a record xi ∈ Rτ×N we computed periodigrams for the

channel j ∀j = 1, . . . , N . PSD implememtation available in the SciPY package [35] was used.

The parameters selected were those configured by default in the function of the package but

with the sampling frecuency according to the signals, established in 250.

3.4. Deep Convolutional Neural Network Architectures

In the presented architectures, the input layer is configured with the dimensions of the in-

put data. The convolutional layers used are responsible for performing the mathematical

process of convolution on the pseudo images generated. Each of these layers is activated

by the ReLU activation function which determines the output value of each neuron. While

the Max pooling Layers are responsible for grouping the original input data, finding the

maximum value between the values that are inside the pool size, to later pass this value as

a summary of characteristics on that area. As a result, the size of the data is reduced by a

factor equal to the size of the sample window on which it is operated. The dropout layers are

Figure 3.3.: PSD estimation approaches. A sliding window is used to find the periodigram

in those segments. Finally the result is obtained by averaging the estimations

of all sections.
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Figure 3.4.: Configuration of the Deep convolutional neural network. Nine convolutional

networks followed by two dense layers and a softmax layer were the base for

the manual and automatic hyper-parameter tuning. Dropout layers were not

included in this scheme.

responsible for disconnecting a portion of neurons from the previous layer to avoid overfit-

ting in this way. The layers that are between the input layer and the output layer are called

hidden layers, these as well as the number of neurons by hidden layers determine how deep

the architecture is, being evident that the greater the depth of the network, the greater the

abstraction capacity of the network, however greater is the computational cost to train it [40].

An pipeline of the architecture with the manual hyper-parameter tuning can be seen in figure

3.4. It is important to note that in this scheme Dropout layers were not included. Convolu-

tional Neural Networks and PSD are able to extract feature maps from non-preprocessed data

obtaining high level abstractions over input data by using trained filters[44]. The weights of

these filters are updated during the training process by stochastic gradient descent or any

other variation of the gradient descent algorithm.

3.5. RBFOpt

The DFO algorithm used in this work is based on a surrogate model of the objective function

f , in which random initial points are evaluated with the aim of balancing the exploration of

unknown areas of the domain. This exploitation allows to identify the most feasible areas

in which the global optimum for an specific set of parameters could be found. To do so, a

radial basis function is employed combined with a polynomial tail of degree 1. The algorithm

evaluates the function f at n + 1 points randomly selected according to a generated Latin

Hypercube design within the domain (S). Then, the algorithm fits the surrogate model for
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f interpolating the set of points S and chooses the next evaluation point (N) according to

two main criteria: the value of the surrogate model at N and the euclidean distance to the

closest point in S. Thus, the problem becomes a bi-objective optimization containing in

general, a possibly infinite set of optimal points; however, since the main purpose of the al-

gorithm is determining a single point in N ; both objectives are normalized and reduced to a

single one using a weighted combination of weights w that determines the trade-off. Besides,

the weights w are chosen according to a cyclic strategy that oscillates between favoring the

maximum-minimum distance criterion. This feature allow to emphasize the exploration of

unknown parts of the domain, and favors the surrogate model value criterion by extract-

ing the choice of points that are supposed to have the largest values for f (maximization

problem). The resulting objective function for the choice of N is be solved using a simple

default genetic algorithm. Thus, it is important to remark that the genetic algorithm is not

applied to the original problem but the auxiliary optimization problem which determines the

correct choice of N . Besides, evaluating f in the original space domain is significantly more

computationally expensive, compared to the evaluation of the value of the surrogate model

and the minimum distance from N to S. Finally, once N is determined, f is evaluated at N ,

results are computed with S, and the iteration would be completed. The number of itera-

tions is selected according to a satisfaction criteria such as ”maximum number of iterations”.

For the hyper-parameter optimization toolbox implementation the steps that were taken

were the following:

• First, a function that constructs the network architecture model was defined based on

the parameters to be optimized (number of neurons per convolutional layer, number

of neurons per dense layer, learning rate). These parameters are taken from a vector

x defined for the selection made by the toolbox according to the search space defined

by a lower bound and an upper bound.

• Second, an evaluation function was defined that receives as input the current network

architecture model and gave as output an estimation of the current network perfor-

mance regarding the accuracy with these parameters through 5-fold cross validation.

• Third, performance function was defined, this function is responsible for call the net-

work architecture constructor defined in the first step and the evaluation function

defined in the second step. It gave as output the higher accuracy obtained.

• Fourth, the parameters of the optimization are selected in the rbfopt configuration

method. The parameters are: the number of network hype-parameters to be optimize,

two vectors with the lower and upper bounds, the data type of each value in the bounds

vectors and finally the performance function defined in third step.
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• Finally, the black-box optimization method was invoked. In this stage the algorithm

select a set of hyper-parameters from the search space, calls the rbfopt configuration

method, calls the performance function defined in the third step, the latter build the

network with the current set of hyper-parameters and computed the accuracy through

the 5-fold cross validation. The algorithm only trains completely the 50 most promising

architectures and the rest are discarded. In the output a vector with the optimal

parameters and the accuracy performance with these are obtained.

The tuning of the hyper-parameters of the network for the training was done in Keras, this

allowed the algorithm of construction and testing of the network based on the parameters

defined by the toolbox RBFOpt as well as the process of selection of the hyper-parameters

to be done in parallel over the cores of the GPU.

3.6. Performance Metrics and Evaluation

Performance evaluation is carried out using the benchmark BCI Competition IV dataset 2a

and BCI Competition III dataset 3a. The data preparation was described in section 3.1

Dataset Description. As result of that process, for the BCI Competition IV dataset 2a 2592

matrices were obtained. After the data augmentation scheme based on windows extrac-

tion, approximately (few variations per subject) 13550 pseudo images of 100x22 per subject

were obtained. After the feature extraction process the size of the pseudo images changed

to 51x22. For each case, a learning model was trained per subject, and performance was

computed using a 5-fold cross-validation strategy, i.e. 80% (10840) of subject samples for

training and 20% (2710) for testing. Thus, nine evaluations, one per subject, were carried

out. Performance measurements are computed as the mean of the five folds per subject, and

the mean for all subjects as the model accuracy and kappa index.

For the BCI Competition III dataset 3a, the following pseudo images were obtained per sub-

ject, subject 1, 6277, subject 2, 4264, subject 3, 4101 with the the same size mentioned above

because the same process was performed on both datasets, all other conditions remained the

same for this dataset.

3.6.1. K-fold Cross Validation

In k-fold cross-validation, sometimes called rotation estimation, the dataset D is randomly

split into k mutually exclusive subsets (the folds) D1, D2, ..., Dk of approximately equal size.

The inducer is trained and tested k times; each time t ∈ {1, 2, ..., k}, it is trained on D\Dt
and tested on Dt. The cross-validation estimate of accuracy is the overall number of correct

classifications divided byt the number of instances in the dataset. Formally, let D(i) be the
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test set that includes instance xi =< vi, yi >, then the cross-validation estimate of accuracy

[39]:

acccv =
1

n

∑
<vi,yi>∈D

δ(L(D \ D(i), vi), yi) (3.1)

The cross-validation estimate is a random number that depends on the division into folds.

3.6.2. Accuracy

The accuracy of a classifier C is the probability of correctly classifying a randomly selected

instance, i.e., acc = Pr(C(v) = y) for a randomly selected instance (v, y)∈X,, where the

probability distribution over the instance space is the same as the distribution that was used

to select instances for the inducer’s training set [39].

3.6.3. Cohen’s Kappa Coefficient

The kappa coefficient (K) measures pairwise agreement among set of coders making category

judgments, correcting for expected chance agreement:

K =
P (A)− P (E)

1− P (E)
(3.2)

where P (A) is the propotion of times that the coders agree and P(E) is the proportion

of times that we would expect them to agree by chance, calculated along the lines of the

intuitive argument presented above [12].
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As was mentioned in the previous chapter, the proposed approach was evaluated by using

two public and well-known databases, which are available to validate signal processing and

classification methods for Brain-Computer Interfaces (BCIs), i.e., the BCI Competition IV-

2a and the BCI competition III datasets. Both cases contain EEG signals captured in a

multi-class motor imagery task, in which the participants were asked to imagine one of the

four activities: left hand, right hand, foot or tongue movements according to a cue. Thus,

three main experiments were performed, the first one evaluated the accuracy of the proposed

classification method to the identification of the action imagined by participants in the BCI

competition IV-2a dataset when network hyper-parameters were manually searched. Then,

a second experiment, evaluated the performance obtained for the same classification task

when the network hyper-parameters were automatically defined by the RBFOpt optimization

algorithm. Finally, to evaluate the robustness of the optimal CNN architecture, It was used

for training a learning model able to classify instances from the BCI III 3a competition

dataset. The performance results obtained for these experiments are presented below.

4.1. Manually Tuned CNN Architecture with BCI

Competition IV-2a Dataset

The proposed network architecture consists of nine convolutional layers, which are respon-

sible for extracting the necessary features from the preprocessed signals. All convolutional

layers are composed of 3×3 kernels. With these kernels, features maps are computed on each

layer, respectively. The first three layers are followed by MaxPooling sub-sampling applied in

2× 2 regions to preserve only the most relevant information, Rectified Linear Unit (ReLU)

activation was chosen to avoid nonlinearities. Each convolutional layer was initialized by

Glorot uniform kernel initializer [22]. Finally, was included a multilayer perceptron (MLP)

that receive the information of the last convolutional layer for MI detection. The output of

the perceptron is connected to an additional dropout function layer, to avoid overfitting, and

finally fed a softmax function layer to classify. The softmax is the output layer of the neural

network, which contains a neuron corresponding to each type of MI (class), for a total of 4

neurons. Adaptive Moment Estimation (Adam) optimizer [38] was selected as the optimiza-

tion algorithm. This method is based on adaptive estimates of lower-order moments and

was selected due to its computational efficiency and its capacity to work with non-stationary
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objectives. The parameters of the optimizer follow those provided in Kingma et.al. original

paper [38], except for the initial learning rate, which was fixed to 0.0001.

The proposed CNN architecture was initially trained by setting the network hyper-parameters

as follows: Kernels size of the convolutional layers: 32, 16, 16, 16, 8, 8, 8, 16, 16; the num-

ber of neurons of each dense layer: 2048 and 1024; and the learning rate to 0.0001. These

values were defined then several heuristic tests. Through experimentation, it was found that

the best performance in terms of accuracy was achieved with this architecture. Heuristic

experimentation showed that the reduction of convolutional layers could give rise to low clas-

sification performance. Additionally, the two PSD estimators, i.e., Periodogram and Welch

function, were also evaluated.

The results obtained by the PSD estimators with the manually tuned network are shown

in Table 4.1, which report the mean testing accuracy and Cohen’s kappa coefficient per

subject in the database, for both Periodogram and Welch PSD estimators, from a 5-fold

cross-validation strategy. As can be observed, the Welch function obtained a higher perfor-

mance compared to the Periodogram function (accuracies of 0.88 and 0.82, respectively).

It is also important to note the small variability (standard deviation) of the proposed ap-

proach in comparison with state of the art methods, as it is shown in Table 4.2, even to

subjects with poor results in previous works such as the subjects 2, 5 and 6, which shown

Table 4.1.: Performance of the PSD estimators with the manually tuned architecture for

each subject in the BCI Competition IV-2a database. Welch function outper-

forms Periodogram PSD estimator.

Welch Periodogram
Subject

Accuracy Kappa Accuracy Kappa

1 0.86 0.82 0.78 0.78

2 0.87 0.83 0.81 0.75

3 0.93 0.91 0.86 0.82

4 0.85 0.81 0.80 0.73

5 0.84 0.79 0.77 0.69

6 0.86 0.82 0.78 0.71

7 0.88 0.84 0.81 0.75

8 0.89 0.86 0.84 0.78

9 0.92 0.89 0.89 0.86

Mean ± std 0.88± 0.030 0.84± 0.039 0.82± 0.042 0.75± 0.056
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Table 4.2.: Accuracy performance comparison with state of the art methods reporting re-

sults for the BCI Competition IV-2a dataset

Subject Yang et

al.

(2015)

Sakhavi

et al.

(2015)

Bashashati

et al.

(2015)

Periodogram

(Pro-

posed)

Welch

(Pro-

posed)

1 0.77 0.81 0.79 0.78 0.86

2 0.50 0.54 0.61 0.81 0.87

3 0.80 0.85 0.86 0.86 0.93

4 0.54 0.65 0.74 0.80 0.85

5 0.65 0.59 0.60 0.77 0.84

6 0.49 0.44 0.57 0.78 0.86

7 0.81 0.84 0.87 0.81 0.88

8 0.84 0.87 0.81 0.84 0.89

9 0.82 0.78 0.84 0.89 0.92

Mean Acc.

± std

0.69± 0.15 0.71± 0.16 0.74± 0.12 0.82± 0.04 0.88±
0.03

that the use of CNN allows to obtain high level representations able to overcome the natural

psychophysiological variability in the signals generated by each subject. Additionally, as can

be observed the proposed approach improves the accuracy reported in state of the art by

Bashashati et al. [7], Yang et al.[82] and Sakhavi et al. [67], for the same dataset.

4.2. Automatically Tuned CNN Architecture with BCI

Competition IV-2a Dataset

For the automatic hyper-parameter tuning, the number of layers and the kernel size were

fixed, as well as, activation functions and maxpooling layers. While, the optimal number

of neurons for each convolutional and dense layer and the optimal learning rate were found

using the RBFOpt algorithm. The lower and upper bounds of the hyper-parameter search

space were from 8 to 256 to the number of neurons for each convolutional layer, from 128 to

256 to the number of neurons for the dense layers, and from 0.0001 to 0.01 to the learning

rate. For greater clarity, The boundaries of the search space for each hyper-parameter can be

seen in the table 4.3. This search space was selected based on to the previous experimental

manual tuning tests and the hardware limitations.
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Table 4.3.: Lower and upper bounds of the hyper-parameter searching space determined

through experimentation.

Hyper-parameter Lower Bound Upper Bound

Conv Layer 1 8 256

Conv Layer 2 8 256

Conv Layer 3 8 256

Conv Layer 4 8 256

Conv Layer 5 8 256

Conv Layer 6 8 256

Conv Layer 7 8 256

Conv Layer 8 8 256

Conv Layer 9 8 256

Dense Layer 1 128 1024

Dense Layer 2 128 1024

Learning rate 0.0001 0.01

Table 4.4.: Comparison of the hyper-parameters of the proposed network architecture se-

lected by the manual and the automatical optimization based strategies

Hyper-parameter Manual

Hyper-parameter

Tuning

Automatic

Hyper-parameter

Tuning

Conv Layer 1 32 8

Conv Layer 2 16 30

Conv Layer 3 16 256

Conv Layer 4 16 255

Conv Layer 5 8 10

Conv Layer 6 8 10

Conv Layer 7 8 254

Conv Layer 8 16 21

Conv Layer 9 16 13

Dense Layer 1 2048 1010

Dense Layer 2 1024 1018

Learning rate 0.0001 0.0001

The RBFopt toolbox was run only one time on the subject with the worst performance

obtained by the manual tuning. A total of 50 architectures were tested, converging towards
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Table 4.5.: Accuracy performance of the manual hyper-parameter tuning compared against

hyper-parameter tuning optimization.

Subject Manual

Hyper-parameter

Tuning

Automatic

Hyper-parameter

Tuning

1 0.86 0.97

2 0.87 0.99

3 0.93 0.99

4 0.85 0.98

5 0.84 0.98

6 0.86 0.99

7 0.88 0.99

8 0.89 0.98

9 0.92 0.99

Mean Acc. ± std 0.88± 0.03 0.98± 0.0068

the optimal values which sought to maximize the accuracy classification performance. Once

optimal hyper-parameters were found, the optimal CNN architecture was used to train the

learning models that identifying the movements imagined by the other subjects. The optimal

hyper-parameter vector found by the optimization algorithm was [8, 30, 256, 255, 10, 10, 254,

21, 13, 1010, 1018, 0.0001]. Table 4.4 shows a comparison between the hyper-parameters de-

finedn by the manually tuned architecture and they obtained by the optimization algorithm.

Table 4.5 shows the comparison between the accuracy performance of the CNN with hyper-

parameter defined by the manual tuning and those found by the optimization algorithm. As

was expected the optimal hyper-parameters make the network achieve better performance

than the selected by the heuristic strategy. Specifically, the optimal CNN architecture im-

proves the manually tuned in a 11, 36%, further reducing the variability observed between

subjects.

Table 4.6 presents a comparison of the best mean accuracy obtained by the proposed ap-

proach, i.e., by using of the Welch function as PSD estimator, for both the automatic and

the manual hyper-parameter tuning, against state of the art works, including some that not

reported results per subject. According with the results, the proposed approach outperforms

the best result reported up to 23.7% in both tuning strategies. Comparison was performed

only with the state of the art works that reported the best results using the BCI Competition

IV-2a dataset, i.e., the same dataset used in the present work.
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Table 4.6.: Accuracy performance comparison with state of the art methods with reported

result to the BCI Competition IV-2a dataset.

Methodology Mean accuracy

Merinov et al., 2016 0.650

Helal et al., 2017 0.670

Yang et al. 2015 0.692

Sakhavi et al. 2015 0.706

Bashashati et al. 2015 0.743

Manual Tuning 0.88

Automatic Tuning 0.98

4.3. Optimal CNN Architecture with BCI Competition III

3a Dataset

To evaluate the robustness of the optimal CNN architecture obtained by the RBFOpt algo-

rithm, This was used to train a classification model for distinguishing the imagine movements

in the BCI Competition III 3a database. In this database subjects were also asked to imag-

ine the same actions that the BCI Competition IV-2a dataset, but in this case each sample

contained signals captured from 60 electrodes and not from 22, such as BCI IV-2a. However,

this issu does not affect the architecture of the designed network, because simply the input

image goes from an array of 22 × 100 to one of 60 × 100 values. Comparative results can

be observed in 4.7, these results show the generalization capacity of the proposed method in

comparison with two state of the art approaches [26], [55].

Table 4.7.: Accuracy performance obtained by the optimal CNN to the BCI Competition

III 3a database against two state of the art approaches

Subject He et. al. 2016 Mishuhina et.

al. 2018

Proposed

Approach accuracy

k3bb 0.85 0.97 0.992

k6b 0.94 0.84 0.989

l1b 1 0.94 0.983

Mean Acc. ± std 0.93± 0.061 0.92± 0.0555 0.98± 0.0037
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In comparison with the state of the art, it is observed that approaches based on Filter banks

with CSP as Merinov et. al., Sakhavi et. al. and Yang et. al., highly depends on the filter

bands selection and this can cause loss of relevant information. Even though Bashashati

et. al. presents one of the best results, but the high dispersion between the accuracy of

each subject makes the results unreliable, the reason is the significant difference among the

accuracy obtained for each subject due to the psychophysiological variability among subjects

[63].

4.4. Computational Cost

The selected framework consisted of the TensorFlow library and Cuda for Python. Tensor-

Flow [2] is a library created for the implementation of deep learning in Python, whereas

CUDA allows the parallelization of the process in the GPU cores. The evaluated deep learn-

ing architectures were implemented in Keras version 2.0.6 [15], a deep learning framework

that uses TensorFlow version 1.5.0 as backend.

Experiments were carried out in Kubuntu Linux distribution, in a Dell Precision T5810 CPU

equipped with Intel Xeon processors of 3 GHz, 8 cores, 64-bit architecture, 16 GB of RAM

and a Nvidia GeForce 1080ti GPU. The preprocessing stage of the database using Matlab

was performed on the same computer.

4.4.1. BCI Competition IV Dataset 2a

The computational cost during training of the manually tuned network was 23 seconds per

epoch, the network was trained during 120 epochs, and this was done 5 times due to the

5-fold cross-validation. It should be noted that this was for each one of the subjects, there-

fore, for the 9 subjects that compose the dataset, the total training time was 34.5 hours. In

a similar way, the computational cost of training the optimal network architecture was 24

seconds per epoch, as well as, this was trained by 120 epochs with 5-fold cross-validation for

each of the subjects, obtaining a total training time of 36 hours.

The optimization process was performed only on the subject with the worse performance

obtained with the parameters tuned manually to this dataset. In the process approximately

50 different hyper-parameters configurations were tested, with a total time of 72 hours, this

thanks to the fact that the network does not fully train the 50 different architectures, only

the most promising ones.
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4.4.2. BCI Competition III Dataset 3a

For the BCI competition III 3a dataset, the computational cost was calculated only to the

automatically tuned hyper-parameters. The result was 10 seconds per epoch, and 120 epochs

were also trained with 5-fold cross-validation. This process was also performed for each of

the 3 subjects that compose the database, having this test a total duration of 5 hours.
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This thesis addressed the problem of classifying EEG signals of motor imagery for BCI

systems through implementation of a convolutional neural network with ReLU activation

functions. Two main challenges were here tackled, the design of a learning model based

on CNN that would allow to differentiate intention of movement in a subject based on the

analysis of EEG signals generated by a motor imagery process, and the optimal selection of

the network hyper-parameters that allows to raise the classification performance of the pro-

posed model. For the design of the CNN based learning model, the use of the power spectral

density (PSD) of the signals as input of a CNN, allows to extract relevant characteristics

of the raw EEG to obtain a model that identified the activity imagined by a subject to

two public databases named the BCI Competition IV Dataset 2a and the BCI Competition

III Dataset 3a. Regarding to the optimization of network hyper-parameters, the use of a

meta-heuristic optimization algorithm, based on radial-based functions, allowed to design

an optimal network that achieved a performance that exceeds not only the model initially

proposed, but also the state of the art methods. It showed how the use of optimization

approaches is a very important task to improve the performance of a deep neural network.

Since EEG signals have not a spatial relationship between channels, two light preprocess-

ing steps were implemented to achieve the design of the CNN learning model in the EEG

electrode space as was proposed in the first specific objective. As first step, a window-

based approach over temporal signals was used, which allowed the signals to be modeled as

pseudo-images converting 1D signals into 2D signals. This strategy, allowed also to generate

a greater number of training data thanks to the window overlapping technique used, because

large amounts of examples are required for training deep learning models. In the second step,

a clustering algorithm was used to generate a spatial matrix that allows to reordering the

position of the EEG channels according to their location in the scalp. It allowed to obtain

the spatial relationship between the electrodes. After these light preprocessing steps, for

feature extraction, the data were modeled in the frequency domain using power spectral

density estimators. In this case, two estimators were evaluated, Periodogram and Welch

function (a modified Periodogram method), according to the reported results the last one

(Welch function) reach a better representation of the signal variations allowing a better sig-

nal classification.

Several manual tuning network architectures were evaluated by changing number of layers



44 5 Conclusions and Future Works

and convolutional filters per layer (results not shown). As was expected, we found that man-

ual tuning of network parameters is unfeasible due to the multiple combinations that must

be evaluated and the lot of time that each combination takes. Even though, the parameters

selected by this way allows to obtain results that outperform state of the art methods to

both evaluated datasets.

To obtain the best CNN architecture based on the hiper-parameter optimization algorithm,

three parameters were modified with variations in a sufficient range of values to evaluate

the performance of the different possibilities contemplated in the search space, among which

are the number of neurons per convolutional layer, the number of neurons per dense layer

and the learning rate. Although the evaluation of other parameters is feasible, it was not

considered due to the computational cost of the model, which took 72 hours per an unique

subject. It is important to remember that the optimization process was performed only

with the subject with the worst performance obtained with the manually tuned parameters,

which shows that the method has enough robustness to be generalized in the other subjects,

and even in another datasets, making it unnecessary to carry out the process for each subject.

An advantage of the proposed approach is that due to the electrodes are input to the neural

network as an ”image” formed up by the alignment of signals from each of them as the

rows of the image, the network architecture not require be modified if a different number of

electrodes is used, because it would be introduced as a larger image to the network. Thus,

electrode selection is not required. Additionally, the majority of the previous works against

which the obtained results were compared, are highly dependent on the stages of preprocess-

ing and feature extraction steps. Many of them are based on filter banks with CSP doing

those highly dependant of the filter bands selection. This preprocessing can cause a loss of

relevant information that could to affects the classification accuracy. In the proposed ap-

proach the use of preprocessing step was not implemented and eventough results outperform

those methods using these filtering stages.

The training process of the manually tuned network, as well as the automatically tuned

network, was carried out over Keras, using the RBFOpt toolbox to run the metaheuristic

optimization algorithm that allowed to find the optimal network hyper-parameters. The use

of those tools allowed to run the process in parallel on the GPU’s cores, in this way it was

possible to evaluate more than 50 different networks with the toolbox used in approximately

72 hours. Process that would have taken weeks if it had been executed in series or over a

CPU. Additionally, It was observed that the computational cost in the training stage is high

due to the optimization process. However, this allows to find optimal network architectures

that reduce the computational cost during the classification with the benefit of increasing

the classification accuracy. It was also shown that the proposed optimization method con-

siderably reduces the execution time compared to manual hyper-parameter tuning, by not
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having to thoroughly evaluate each architecture formed by a certain set of hyper-parameters.

Another advantage of the proposed approach is the capacity of dealing with the high variabil-

ity in the performance obtained between subjects due to the psycho-physiological differences

related to the processes of perception and memory of each subject, as well as the training to

which each subject must be subjected to correctly perform the task of motor imagination.

This generates great variability in the signals of each subject, because the state of concen-

tration in which each one is, affects directly the performance of the task. This fact, has

caused a high dispersion between the accuracy of the state of the art approaches for each

subject, making the results unreliable. However, the proposed approach shows independence

to this variability among subjects thanks to the ability of abstraction of the convolutional

filters that allows to find relevant characteristics to discriminate between the four classes

addressed, as well as the PSD algorithm that can find patterns to discriminate the power

densities found in the mu and betha bands.

The proposed approach addressed the classification of EEG signals problem for a motor

imagery BCI. However, as has been considered by the research comunity, Deep Neural Net-

works are a black box model, by which it is not easy to obtain a physiological interpretation

of the neuron inputs (weights, biases), that is to say it is difficult to visualize which features

were taken into account for the classification process. However, because the filter nature of

a CNN the highest weights of the network will be linked with the most relevant features

in the classification problem, which could be used for try to know which characteristics are

being taken into account plotting the outputs of each of the network layers. However, the

physiological interpretability of the results were out of the scope of this thesis and could be

approaches in future works.

According with the reported results, the proposed method provides a reliable strategy for

differentiating the movement intention in a motor imagery based BCI, outperforming state

of the art methods that were evaluated using the same datasets. In this way, It was demon-

strated that the proposed scheme provides reproducibility and robustness, showing to be a

valuable and promising strategy for the design of Brain Computer Interfaces.

It is evident that in this thesis it was not possible to address all the possible aspects of the

different stages worked, such as the use of spatial and/or frequency filters, the implementation

of different feature extraction algorithms, the extension of the approach to more complex

problems, as well as the inclusion of more hyper-parameters in the process of meta-heuristic

optimization. Thanks to this, as future works other spatial filters could be explored to

evaluate the advantages and drawbacks of the proposed scheme. Also, the implementation

of the proposed method for the development of learning models with other tasks of motor

imagination could be considered. Furthermore the metaheuristic optimization could include
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unproven parameters such as the number of hidden layers, the dropout rate, the size of the

Convolutional filters, the type of activation functions and even the number of training epochs

that would make the process even less expensive and less time-consuming.
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