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Abstract 

The automatic segmentation of interest structures is devoted to the morphological 

analysis of brain magnetic resonance imaging volumes. It demands significant efforts 

due to its complicated shapes and since it lacks contrast between tissues and inter-

subject anatomical variability. One aspect that reduces the accuracy of the multi-atlas-

based segmentation is the label fusion assumption of one-to-one correspondences 

between targets and atlas voxels. To improve the performance of brain image 

segmentation, label fusion approaches include spatial and intensity information by using 

voxel-wise weighted voting strategies. Although the weights are assessed for a 

predefined atlas set, they are not very efficient for labeling intricate structures since 

most tissue shapes are not uniformly distributed in the images. This paper proposes a 

methodology of voxel-wise feature extraction based on the linear combination of patch 

intensities. As far as we are concerned, this is the first attempt to locally learn the 

features by maximizing the centered kernel alignment function. Our methodology aims 

to build discriminative representations, deal with complex structures, and reduce the 

image artifacts. The result is an enhanced patch-based segmentation of brain images. 

For validation, the proposed brain image segmentation approach is compared against 

Bayesian-based and patch-wise label fusion on three different brain image datasets. In 

terms of the determined Dice similarity index, our proposal shows the highest 

segmentation accuracy (90.3% on average); it presents sufficient artifact robustness, and 

provides suitable repeatability of the segmentation results. 
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Resumen 

La segmentación automática de estructuras de interés en imágenes de resonancia 

magnética cerebral requiere esfuerzos significantes, debido a las formas complicadas, el 

bajo contraste y la variabilidad anatómica. Un aspecto que reduce el desempeño de la 

segmentación basada en múltiples atlas es la suposición de correspondencias uno-a-uno 

entre los voxeles objetivo y los del atlas. Para mejorar el desempeño de la segmentación, 

las metodologías de fusión de etiquetas incluyen información espacial y de intensidad a 

través de estrategias de votación ponderada a nivel de voxel. Aunque los pesos se 

calculan para un conjunto de atlas predefinido, estos no son muy eficientes en etiquetar 

estructuras intrincadas, ya que la mayoría de las formas de los tejidos no se distribuyen 

uniformemente en las imágenes. Este artículo propone una metodología de extracción de 

características a nivel de voxel basado en la combinación lineal de las intensidades de un 

parche. Hasta el momento, este es el primer intento de extraer características locales 

maximizando la función de alineamiento de kernel centralizado, buscando construir 

representaciones discriminativas, superar la complejidad de las estructuras, y reducir la 

influencia de los artefactos. Para validar los resultados, la estrategia de segmentación 

propuesta se compara contra la segmentación Bayesiana y la fusión de etiquetas basada 

en parches en tres bases de datos diferentes. Respecto del índice de similitud Dice, 

nuestra propuesta alcanza el más alto acierto (90.3% en promedio) con suficiente 

robusticidad ante los artefactos y respetabilidad apropiada. 

 

Palabras clave 

Segmentación de imágenes cerebrales, fusión de etiquetas, segmentación con 

múltiples atlas. 
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1. INTRODUCTION 

 

Magnetic Resonance Imaging (MRI) is 

widely used for the identification of patho-

logical brain changes [1], for building real-

istic head models [2], [3], and for brain 

tumor diagnosis [4], among other applica-

tions. Since the applications above rely on 

the features of anatomical structures of 

interest, brain image segmentation be-

comes an essential task, as it influences 

the outcome of the entire analysis [5]. This 

task is the process of tagging the voxels in 

the image with biologically meaningful 

labels. Nevertheless, the conventional 

manual annotation is a tedious and very 

time-consuming task. It highly depends on 

the skills of the expert, making its use 

impractical for most clinical applications 

[6]. On the other hand, automatic methods 

attempt to provide reliable results when 

applied to images acquired under different 

conditions. However, conditions like struc-

tural complexity, lack of contrast, and high 

anatomical variability make it hard to 

perform the labeling [7]. To cope with these 

limitations, automated segmentation algo-

rithms incorporate a priori spatial infor-

mation about the brain structures as pre-

labeled images (termed atlases or tem-

plates). Consequently, atlas-guided seg-

mentation encodes the relationship be-

tween the segmentation labels and image 

intensities of the atlases to further label 

the voxels of every unlabeled image [8]. 

The popularity of atlases stems from their 

widespread utility in guiding the segmen-

tation process in areas of poor contrast and 

in helping to distinguish between tissues of 

similar intensities [9]. Since a single atlas 

may be not sufficient to cover the whole 

spectrum of variability within populations, 

multi-atlas strategies propose to combine 

the template images [10]. 

 
Related work 

 

Multi-atlas segmentation strategies 

overcome the shape and size variability in 

brain structures by considering subject-

specific templates. Each template must be 

registered to the input volume so that the 

label fusion stage is carried out within the 

input coordinates [11]. One of these ap-

proaches selects the atlases with the 

greatest similarity to the input image, 

aiming to reduce the population average 

bias [12]. Then, the selected atlases feed 

segmentation models such as active shape 

patterns [13], appearance models [14], and 

probabilistic atlases [15]. These models 

highly rely on the accuracy supplied by the 

pairwise image alignment. In practice, 

such alignment is deteriorated when struc-

tures largely vary [16]. Although non-rigid 

transformations have been proposed to 

cope with this issue, registration is still 

very hard to perform in the presence of 

large structure deformations, as in the case 

of brain lesions or neurodegenerative dis-

ease [17]. 

To deal with the misregistration, the 

non-local methods identify all atlas-to-

target agreements by using a template 

search strategy. As a result, the segmenta-

tion depends on the intensity similarity in 

a predefined neighborhood [10]. Recent 

approaches to non-local methods represent 

a voxel with intensity patches, but they 

differ in the selected fusion strategy. Thus, 

the basic methods estimate the labels by a 

weighted voting based on the similarity 

against neighboring patches [18]. Some 

examples are the weight computation that 

depends on the local registration perfor-

mance [19] and the patch-based augmenta-

tion of the Expectation-Maximization with 

constrained search [20]. In more elaborate 

approaches, the input patch is reconstruct-

ed from the linear combination of patches 

from an a priori dictionary so that the 

mixing factors serve as the voting weights 

[21]. For instance, discriminative diction-

ary learning [22], local atlas selection [23], 

and contextual features [24] have been 

proposed to enhance the voting. Another 

approach suggests stratifying votes, de-

pending on label purity and robust intensi-
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ty statistics [25]. Recently, the sparse 

patch-based representation has been asso-

ciated with tissue probability maps ex-

tracted from the registration stage [26]. 

Nonetheless, these techniques are limited 

by the patch-wise similarity, which is often 

globally handcrafted by the predefined 

features. This similarity reduces the seg-

mentation performance for complexity 

structures [27]. 

In other approaches, the patch diction-

ary and its labels are used to learn an 

introduced classification function [28]. 

Also, the strengths of learning and 

weighted voting strategies join at the label 

fusion stage by the matrix completion 

method. Therefore, the partial label infor-

mation obtained from the regions with 

least uncertainty allows to deal with the 

difficulty of space-varying labeling [29]. 

The probabilistic and patch-based ap-

proaches are combined as in [30]. In that 

case, they compute the target specific pri-

ors by a hierarchical scheme (accounting 

for global information) and a local patch 

search. In [31], a set of adaptive local pri-

ors is extracted from a set of training 

patches by using the local Markov random 

fields to model the local variations of ap-

pearance and shape. Also, a fuzzy c-means 

segmentation algorithm (in a CUDA accel-

erated version) enables to deal with local 

image artifacts [32]. Finally, [20] enhances 

the spatial priors required for the EM-

based segmentation approach by applying 

a patch search algorithm. Nevertheless, 

the above methods demand a significant 

number of atlas voxels, reducing the bene-

fit of the voting strategies [33]. Besides, 

there are regions with such uncertainty 

that very similar atlas patches may bear 

different labels (like the interfaces between 

two tissue structures), making it difficult 

to perform an accurate discrimination by 

using image similarity measures [34]. 

 

 

 

 

Our contribution 

 

This paper introduces a multi-atlas 

weighted label fusion approach that fuses 

labels in a supervised learning scheme to 

improve the segmentation accuracy of 

brain MR images. In order to achieve this, 

we apply the knowledge about the neigh-

borhood as well as the patch structure to 

be segmented. In accordance with the 

aforementioned, we have divided our con-

tributions into several steps: Firstly, we 

adopt a novel methodology for feature ex-

traction from the MRI voxels that is based 

on the linear combination of patch intensi-

ties, generalizing the convolution-like rep-

resentations (e.g., gradients, Laplacians, 

and non-local means). Aiming to improve 

the accuracy of regions with intricate 

shapes, we adapt the features to the image 

location, assuming that structure complex-

ity changes across the image. Secondly, we 

locally compute the linear projection by 

enhancing the similarity between the label 

and extracted feature distributions, build-

ing more discriminative representations 

and improving the interaction with image 

devices. To this end, we maximize the cen-

tered kernel alignment criterion. The lat-

ter assesses the correlation between a 

couple of kernel matrices [35]. Besides, we 

develop a neighborhood-wise procedure, 

providing more information about local 

properties of structures and avoiding the 

influence of small registration issues. 

Moreover, we fine-tuned the parameter by 

using two supervised criteria, namely: The 

radial relevance for patch radius selection, 

accounting for the impact of the voxels 

within patches on the attained projection; 

and the centered kernel alignment score, 

assessing the achieved correlation as a 

function of the neighborhood size. Both 

introduced criteria allow us to set up the 

algorithm off-line, instead of performing 

the segmentation for each parameter set. 

As a result, our proposal improves the 

segmentation accuracy and the perfor-
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mance under high artifact levels in com-

parison with baseline methods. 

This paper is organized as follows: Sec-

tion 2 describes multi-atlas segmentation 

as a standard non-local weighted voting 

label fusion. Section 2.2 introduces the 

mathematical description of the proposed 

supervised local feature learning. Section 3 

describes the experiments that were car-

ried out for tuning the algorithm parame-

ters and the methodology for assessing the 

performance. In section 4 the achieved 

results for segmentation accuracy and 

repeatability are discussed. Finally, in 

Section 5, the concluding remarks and 

future research directions are presented. 

 

 

2. MATERIALS AND METHODS 

 

Let an input atlas dataset, 𝒜 =
{𝒳𝑛, ℒ𝑛, 𝛺𝑛: 𝑛 = 1, … , 𝑁}, described by N 

triplets of pre-labeled images, with 𝒳𝑛 ∈
ℝ𝑀𝑛, ℒ𝑛 ∈ 𝒞𝑀𝑛, 𝛺𝑛 ∈ ℤ3×𝑀𝑛 as the intensity 

image, label image, and three-dimensional 

coordinates of the 𝑛-th atlas, respectively. 

𝑀𝑛 ∈ ℤ+ denotes the number of voxels in 

the 𝑛-th image. The intensity image, 𝒳𝑛 =
{𝑥𝑟

𝑛 ∈ ℝ}, collects the magnitude of the 

radio frequency signal generated at loca-

tion 𝑟 ∈ 𝛺𝑛. The segmentation image, ℒ𝑛 =
{𝑙𝑟

𝑛 ∈ 𝒞}, stores the label assigned to each 

voxel. The label set, 𝒞 = {1, … , 𝐶}, desig-

nates the 𝐶 considered anatomical parti-

tions (tissues or structures of the brain). 

The set 𝛺𝑛 holds the coordinates, usually 

in millimeters, of each voxel within the 

volume in a three-dimensional space. The 

segmentation of an input image, 𝒳𝑞 =
{𝑥𝑟

𝑞
∈ ℝ: 𝑟 ∈ 𝛺𝑞}, designates a single label 

to each voxel coordinate. The multi-atlas-

based segmentation registers the set 𝒜 to 

the input volume, thus allowing to propa-

gate the template labels to 𝛺𝑞. Afterwards, 

all the labels are fused into a single class 

at coordinate 𝑟. 

The main image segmentation procedures 

are outlined as follows: i) Image regis-

tration computes a spatial transfor-

mation 𝜏𝑛: 𝛺𝑛 → 𝛺𝑞; 𝑟 ↦ 𝜏𝑛(𝑟) maximiz-

ing the alignment between 𝒳𝑛 and 𝒳𝑞, 

so that the atlases share the coordinates 

of the input volume. ii) Label propaga-

tion maps each 𝑛-th label image to the 

input coordinates through the transfor-

mation 𝜏𝑛, yielding the label set ℒ
~

𝑛 =
{𝑙𝑟′

𝑛 ∈ 𝒞: 𝑟′ = 𝜏𝑛(𝑟) ∈ 𝛺𝑞}. iii) Label fusion 

combines all labels assigned to each 

voxel {𝑙𝑟
𝑛: ∀𝑛 ∈ 𝑁; 𝑟 ∈ 𝛺𝑞} into a single 

label 𝑙𝑟
𝑞

∈ 𝒞, resulting in the segmented 

image ℒ
~

𝑞. 

 
2.1 Feature-based label fusion within α-

neighborhoods 

 

The widely used multi-atlas label fusion 

builds a set of discriminative functions, 

noted as 𝒢 = {𝑔𝑐(𝑟): ℝ → ℝ+; ∀𝑐 ∈ 𝒞}, com-

puting the level of membership to class 𝑐. 

Therefore, the labeling criterion for each 

voxel 𝑟 ∈ 𝛺𝑞 is given by 𝑙𝑟
𝑞

=
𝑎𝑟𝑔𝑚𝑎𝑥∀𝑐∈𝒞𝑔𝑐(𝑟). In practice, label estima-

tion degrades due to misregistration is-

sues, low-frequency artifacts, and compli-

cated shape structures. Within the locally 

weighted segmentation scheme, we intro-

duce the following weighting factor, that 

varies along the space domain 𝑠, into 𝒢. 

 

𝑤𝑟𝑠
𝑞𝑛

= exp(−‖𝝃𝑟
𝑞

− 𝝃𝑠
𝑛‖2

2); ∀𝑠 ∈ ℬ(𝑟|𝛼) (1) 

 

where 𝜉𝑠
𝑛 ∈ ℝ𝐻 is the 𝐻-dimensional 

feature representation of the 𝑠-th voxel in 

the 𝑛-th atlas, and ℬ(𝑟|𝛼) = {𝑠 ∈ 𝛺𝑞: ‖𝑠 −
𝑟‖𝛺 ≤ 𝛼} is the neighborhood centered at 𝑟, 

with a radius 𝛼 ∈ ℝ+. Notations ‖ · ‖𝛺 and 

‖ · ‖2 denote the norm along the three-

dimensional coordinates 𝛺 and the 𝐿2-

norm, respectively. Then, we rewrite each 

𝑐-th discriminating function in terms of the 

weighting factors as 𝑔𝑐(𝑟) = 𝑤𝑟
⊤𝛿𝑟𝑐, where 

the vector 𝑤𝑟 = {𝑤𝑟𝑠
𝑛𝑞

∈ ℝ+: 𝑛 ∈ [1, 𝑁]} ∈ ℝ𝑁𝑠 

holds 𝑁𝑠 = 𝑁𝑆 weights computed for the 𝑆 

voxels in the 𝛼-neighborhood ℬ(𝑟|𝛼), con-

tributing to the labeling at location 𝑟. 𝜹𝑟𝑐 =
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{𝛿(𝑙𝑠
𝑛 − 𝑐): 𝑠 ∈ ℬ(𝑟|𝛼), 𝑛 ∈ [1, 𝑁]} ∈ ℝ𝑁𝑠 de-

fines the vector of votes for the 𝑐-th label. 

Hence, the segmentation criterion now 

becomes 𝑙𝑟
𝑞

= 𝑎𝑟𝑔𝑚𝑎𝑥∀𝑐∈𝒞𝑤𝑟
⊤𝛿𝑟𝑐. As a re-

sult, the contribution of the voting voxels 

depends on their similarity to the features 

of the input voxel 𝜉𝑟
𝑞
, contained in the cor-

responding voting weight 𝑤𝑟. 

 
2.2 Supervised fusion weights based on 

centered kernel alignment 

 

Aiming to include the local intensity in-

formation in the estimation of the voting 

weights 𝑤𝑟, we propose to calculate the 

feature vector in (1) by using the linear 

projection 𝜉𝑠
𝑛 = 𝐴𝑟𝑥𝑠

𝑛, where 𝑥𝑠
𝑛 = {𝑥𝑡

𝑛: 𝑡 ∈
ℬ(𝑠|𝛽)} ∈ ℝ𝑃 denotes the vector containing 

all 𝑃 voxel intensities within the patch 

centered at 𝑠 with radius 𝛽 ∈ ℝ+ termed 

the beta-patch, and the 𝐻 × 𝑃-sized matrix 

𝐴𝑟 holds scalars 𝐴𝑟 = {𝑎ℎ𝑝
𝑟 ∈ ℝ: ℎ ∈

[1, 𝐻], 𝑝 ∈ [1, 𝑃]}. Each of the scalars repre-

sents the contribution factor of the 𝑝-th 

voxel to build the ℎ-th feature. Then, we 

compute the weights in (1) with the follow-

ing kernel function: 

 

𝑤𝑟𝑠
𝑞𝑛

(𝐴𝑟) = exp(−‖𝐴𝑟𝑥𝑟
𝑞

− 𝐴𝑟𝑥𝑠
𝑛‖2

2); ∀𝑠 ∈ ℬ(𝑟|𝛼) (2) 

 

Particularly, we looked for a projection 

matrix 𝐴𝑟 allowing the weights in (2) to 

represent the similarity in both the feature 

and label spaces. To make the most of the 

available atlas information, the introduced 

supervised learning scheme arranges the 

subset of labeled voxels into two matrices: 

one holding the pairwise weighting factors 

and another one that accounts for label 

similarities. Both matrices are defined for 

the patch vectors within the 𝛼-

neighborhood as follows: 

 

𝐾𝒳(𝐴𝑟) = {𝑤𝑠𝑠
′𝑛𝑛′(𝐴𝑟)

: 𝑠, 𝑠′ ∈ ℬ(𝑟|𝛼); 𝑛, 𝑛′ ∈ [1, 𝑁]} (3a) 

𝐾ℒ = {𝛿(𝑙𝑠
𝑛 − 𝑙𝑠′

𝑛′): 𝑠, 𝑠′ ∈ ℬ(𝑟|𝛼); 𝑛, 𝑛′ ∈ [1, 𝑁]} (3b) 

 

Consequently, the more similar the ma-

trices 𝐾𝒳 ∈ ℝ𝑁𝑠×𝑁𝑠 and 𝐾ℒ ∈ ℝ𝑁𝑠×𝑁𝑠, the 

more related they are to the extracted 

features and the labels. Moreover, the 

symmetry and positive definiteness prop-

erties of both, 𝐾𝒳 and 𝐾ℒ, allow to find 𝐴𝑟by 

maximizing such similarity. The latter is 

measured in terms of the centered kernel 

alignment (CKA) criterion, as in [35]: 

max
𝐴𝑟

⟨𝐾𝒳
∘ (𝐴𝑟), 𝐾ℒ

∘⟩𝐹

√‖𝐾𝒳
∘ (𝐴𝑟)‖𝐹‖𝐾ℒ

∘‖𝐹

 (4) 

 

where 𝐾° = 𝐻𝐾𝐻, is the centered ver-

sion of 𝐾, 𝐻 = 𝐼 − 11⊤/𝑁𝑠, and 1 is the all-

ones vector with size 𝑁𝑠. Notations ⟨·,·⟩𝐹 

and ‖ · ‖𝐹 stand for the matrix Frobenius 

product and Frobenius norm, respectively. 

Therefore, the optimal matrix generates 

the most discriminative weighting factors 

regarding the input set of labeled voxels. 

The introduction of this supervised weight 

computation into the majority voting 

scheme is named Centered Kernel Align-

ment-based Label Fusion (CKA-LF). 

 

 

3. EXPERIMENTAL SETUP 

 
3.1 Database description 

 

We validated the proposed CKA-LF by 

segmenting MRI volumes into five brain 

components, namely: Scalp (SC), skull 

(SK), cerebrospinal fluid (CSF), gray mat-

ter (GM), and white matter (WM). The 

following three datasets are considered for 

assessing the segmentation performance 

(see Fig. 1 for sample images): 

BrainWeb (BW1). This collection holds 

data generated by the BrainWeb MRI sim-

ulator. Phantom atlas subjects were 20 

normal adults (ten females and ten males), 

ages 24 to 37 (Avg. 29.6 y/o). All MRI data 

were simulated by a 1.5 T Siemens Sonata 

Vision clinical scanner with a 30º flip an-

gle, 22ms repeat time, 9.2ms echo time, 

and 1mm isotropic voxel size. This yields 
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volumes of 256 x 256 x 181 voxels in size. 

Besides, a percentage noise level of 3% 

with no bias field was applied. The vol-

umes in the BW1 collection are used to 

tune algorithm parameters, and their re-

sulting segmentations are compared 

against the ground-truth labels. 

BrainWeb (BW2). This collection con-

tains 18 artificial images of the same sub-

ject. The images are generated by the 

BrainWeb MRI simulator for a T1-

weighted contrast with a 308º flip angle, 

18ms repeat time, and 10ms echo time to 

obtain 181 x 217 x 181-sized (1 x 1 x 1mm) 

volumes. The parameters for image arti-

facts are three different levels of the bias 

field (0, 20, 40% RF) and six levels of noise 

(0, 1, 3, 5, 7, 9%). The variety of noise pa-

rameters in this collection enables to eval-

uate the tuned algorithm for robustness by 

segmenting each BW2 image and using the 

BW1 images as the atlas dataset. 

OASIS dataset. From the 416 subjects, 

we analyzed a collection of 20 normal 

anonymized real subjects. They were 

scanned twice in a 90-day period. In this 

subset, there are 12 females and 8 males, 

ages 19 to 34. For each imaging session, a 

motion-corrected, co-registered average 

was extracted from three or four repeti-

tions of the same T1-weighted structural 

protocol. The aim was to increase the sig-

nal-to-noise ratio. All the images were 

acquired using a 1.5-Tesla Vision scanner 

with 10º flip angle, 9.7ms repeat time, and 

4ms echo time. As a result, we obtained 

128 slices at a resolution of 1 x 1mm (256 x 

256 pixels). In this paper, the OASIS da-

taset is considered for evaluating the re-

peatability of the results by comparing the 

resulting segmentations from the same 

subject. 

 
3.2 Methodology description 

 

In accordance with Section 2, brain tis-

sue segmentation is divided into three 

main stages: Image registration, label 

propagation, and label fusion. For the first 

stage, the Advanced Normalization Tool 

(ANTs) spatially aligns the images and it is 

thoroughly evaluated for quantitative 

morphometric analysis [36]. The rigid and 

deformable transformations were calculat-

ed by a quaternion-based mapping and the 

Elast elastic function. Thus we set the 

image metric to mutual information with 

32-bins histograms. Deformable registra-

tion was performed at three sequential 

resolution levels: i) the coarsest alignment 

at 1/8 x Original space and 100 iterations, 

ii) the middle resolution at 1/4 x Original 

space and 50 iterations, and iii) the finest 

one at 1/2 x Original space and 25 itera-

tions. 

Lastly, the Gaussian regularization was 

carried out for the fixed scale 𝜎 = 3 at each 

resolution level. In the second stage, the 

above-calculated deformations were ap-

plied to the label images by using a 0-th 

order interpolator. The goal was mapping 

the atlas labels to the input coordinates. 

Since our contribution focuses on the 

third stage, we achieve target segmenta-

tion as follows. i) Patch representation 

describes atlas voxels, by using their labels 

and patches (red dots and patches in Atlas 

Dataset block of Fig. 2); and input voxels, 

by using their patches (green patches in 

Input Volume block of Fig. 2). ii) Feature 

learning estimates the matrix 𝐴𝑟 from the 

neighbors of the input voxel in the atlas 

dataset by maximizing (4). iii) Feature 

extraction linearly projects patches onto 

the feature space by using the optimal 

matrix. iv) Label fusion computes voting 

weights by assessing the similarity of fea-

ture vectors following (1). The latter as-

signs the most voted structure as the label 

of output voxels. 

 

 

 

 



Multi-atlas label fusion by using supervised local weighting for brain image segmentation 

TecnoLógicas, ISSN 0123-7799 - ISSN-e 2256-5337, Vol. 20, No. 39, mayo - agosto de 2017 

 
(a) Database BW1 

 
(b) Database BW2 

 
(c) Database BW3 

Fig. 1. Axial, sagittal, and coronal slices from an image extracted from each dataset. 

Provided ground-truth for both simulated databases, BW1 and BW2, are overlaid as contours on the images. 

For BW2, the image with 9% Gaussian noise and 40% RF is depicted. Source: Authors 

 

 

Fig. 2. Diagram scheme of the proposed multi-atlas-based segmentation approach. Selected samples from 

the Atlas Dataset are shown in red. Unlabeled samples in the Input Volume are shown in green. 

Mapping Learning shows an example projection from the original neighborhood space to the 

extracted feature space. Label Fusion shows the resulting segmentation for the input volume. 

Source: Authors 

 

 
Fig. 3. Resulting radial relevance versus the feature extraction radius 𝛽. 

Average and standard deviation for 10 folds is depicted. Source: Authors 
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3.3 Neighborhood and patch parameter 

tuning 

 

First, we adjusted the size of the neigh-

borhoods and the patch as the most critical 

parameters of the proposed CKA-LF ap-

proach. Therefore, the assumed voxel rep-

resentation by their appropriate 𝛽-patches 

leads to the following issues: The larger 

the patch, the higher the computation cost; 

and the more remote the elements, the 

lesser their influence on the fusion label. 

According to this, we searched for the 

smallest 𝛽 with the largest alignment in 

the dependence of the centered alignment 

on the patch radius. To that end, we used 

the introduced radial relevance 𝑟𝑒𝑙(𝛽) =

𝔼{|𝑎ℎ𝑝|: ‖𝑝‖𝛺 = 𝛽}, where notation 𝔼{·} is 

the averaging operator, ‖ · ‖𝛺 is the consid-

ered norm for the coordinates that we de-

fine as the 𝐿∞-norm, i.e. ‖𝑟‖𝛺 = ‖𝑟‖∞: =
max

𝑑∈[1,3]
|𝑝𝑑|, for evenly distributed voxels. 

Since the proposed tuning of the patch 

radius requires the radial relevance, we 

computed the projection matrix 𝐴𝑟 from a 

subset of 𝑁𝑠 = 104 voxels that were ran-

domly sampled from the BW1 collection. 

Fig. 3 displays the relevance values that 

were calculated by a 10-fold cross-

validation strategy for values 𝛽 = {0, … ,4}. 
The results show that the closer the voxels 

are to the patch center, the larger their 

contribution is to the projection matrix. 

This behavior remains until the relevance 

reaches a steady value at 𝛽 = 3. We con-

sider the latter to be the optimal radius for 

the subsequent analysis. 

An example of the label similarity ma-

trix, non-projected weights (i.e. 𝐴𝑟 = 𝐼), and 

supervised weights (after CKA-based pro-

jection) is provided in Figs. 4a to 4c, re-

spectively. All the values were computed 

for the optimal patch radius in the above 

sample subset. The voxels are displayed 

according to their tissue label. Fig. 4 shows 

that the supervised weights discriminate 

tissues better than the ones obtained from 

the patch vectors. This indicates a more 

accurate label fusion. 

Fig. 5 presents the influence of the 

patch radius on the resulting labeling for a 

given region where the mislabeled pixels 

are marked in red. As it can be seen, 𝛽 =
0 attains results in the lowest accuracy due 

to the lack of information to compute the 

required projection. On the other hand, the 

segmentation accuracy decreased for ex-

cessively large patches (see Fig. 5e). This is 

because CKA converged to an unsuitable 

maximum, the size of the projection matrix 

grew geometrically, and the patch distribu-

tion became more complex on large patch-

es. Therefore, CKA benefits from incorpo-

rating spatial information into the voxel 

representation for particular patch radii. 

Then, we tuned the neighborhood radi-

us by an exhaustive search for 𝛼 and 

reached the best alignment between the 

reference and the intensity kernels. Fig. 6 

presents the results of CKA scores for 𝛼 ≥
3 in a 10-fold cross validation. The results 

prove that there is no statistical conver-

gence for small alpha values due to the 

lack of neighbors. In contrast, for large 

neighborhoods, the linear projection cannot 

encode the label information correctly, 

since the samples are biased towards sev-

eral structure shapes. This result derives 

from the fact that more complex than line-

ar intensity relationships are induced. 

Particularly, 𝛼 = 4 produces a robust 

alignment thanks to the trade-off between 

the number of neighbors and structure 

complexity. Consequently, 𝛼 = 4 and 𝛽 = 3 

are the tuned algorithm parameters. 
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Fig. 4. Similarity matrices for a voxel subset. Voxels are sorted by tissue type. Source: Authors 

 

 
Fig. 5. 𝛽 radius effect in a subject's region. 

Axial (left), sagittal (center) and coronal (right) columns are depicted for the region. 

Mislabelings are plotted in red. Average dice index is displayed for the region. Source: Authors 

 

 

 
Fig. 6. CKA versus the neighborhood radius. Boxplot is computed for 10 folds over the whole image. Source: Authors 
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3.4 Performance segmentation measure 

 

For evaluation purposes, CKA-LF is 

compared with two state-of-the-art meth-

ods: The Bayesian-based segmentation 

method (B-SEG) described in [8] and the 

patch-wise label fusion (Patch-LF) sug-

gested by [37]. The former method does not 

require any parameter tuning. For the 

latter baseline algorithm, we set 𝛼 = 4  and 

𝛽 = 3  to compare both label fusion ap-

proaches in similar conditions. The per-

formed segmentation is assessed in terms 

of the well-known Dice similarity index, 

𝜅𝑐 ∈ [0,1], defined by two label images, 

ℒ𝑛and ℒ𝑚, in the space domain 𝛺 as in (5). 

 

𝜅𝑐 =
2 ∑ 𝛿(𝑙𝑟

𝑛 − 𝑐)𝛿(𝑙𝑟
𝑚 − 𝑐)

𝑟∈𝛺

∑ 𝛿(𝑙𝑟
𝑛 − 𝑐)

𝑟∈𝛺
+ ∑ 𝛿(𝑙𝑟

𝑚 − 𝑐)
𝑟∈𝛺

 (5) 

 

where 𝜅𝑐 = 0 whenever the image re-

gions of a given label do not overlap, and 

𝜅𝑐 = 1 if the tested regions become identi-

cal. Besides, we compute the global agree-

ment between the performed segmenta-

tions by the average Dice index: 𝜅 =
𝔼𝜅𝑐: ∀𝑐 ∈ 𝒞. 

The results for the segmentation accu-

racy (obtained by the examined methods in 

BW1 dataset) are shown in Table 1 as the 

average and standard deviation values of 

𝜅𝑐. For the BW1 dataset, CKA-LF achieves 

the highest index (90.3 ± 5.0%), outper-

forming Patch-LF (85.0 ± 5.8%) and B-SEG 

(83.7 ± 11.9%). It should be noted that both 

testing methods of label fusion, Patch-LF 

and CKA-LF, provide more trustworthy 

results. This is because they achieve high-

er accuracies with lower deviations than 

the Bayesian-based approach. Besides, the 

use of voting schemes to segment the skull 

tissue improves the obtained accuracy in 

20% while reducing the standard devia-

tion. Figs. 7 and 8 are examples of the 

segmentation that was carried out on the 

BW1 dataset within an image region and 

for the whole image, respectively. Qualita-

tive results prove that supervised label 

fusion yields the lowest number of misla-

beling errors. 

Further, the artifact robustness is as-

sessed in the BW2 dataset for 6 noise lev-

els and three levels of the bias field. The 

resulting performance curves (see Fig. 9) 

show that B-SEG suitably deals with low 

noise levels, while Patch-LF performs the 

worst. However, the proposed CKA-LF 

properly copes with both kinds of consid-

ered artifacts: noise and inhomogeneity. 

 

 

 

Table 1. Dice index scores for considered approaches and structures. Source: Authors 

Method GM WM CSF SK SC Ave 

Bayesian 90.3 ± 0.8 93.9 ± 0.8 71.0 ± 5.1 70.4±11.4 92.8 ± 1.6 83.7±11.9 

Patch-LF 88.6 ± 0.8 89.2 ± 0.5 76.5 ± 0.5 81.4 ± 2.4 89.5 ± 0.9 85.0 ± 5.8 

CKA-LF 93.0 ± 0.8 93.4 ± 0.7 83.0 ± 4.2 87.4 ± 2.2 94.8 ± 0.7 90.3 ± 5.0 
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Fig. 7. Segmentation result in an image region for axial (left), sagittal (center) and coronal (right) views.  

Source: Authors 

 

 

 
Fig. 8. Best (top rows) and worst (bottom rows) segmented subject by each considered approach. 

Red regions point out mislabeled voxels. Axial, sagittal, and coronal views of each volume 

are depicted for each case. Source: Authors 
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Fig. 9. Segmentation accuracy for simulated MRI in the BW2 dataset under several artifact conditions.  

Continuous, dashed and dotted lines correspond to 0%, 20%, and 40% of bias field levels, respectively. Source: Authors 

 

Table 2. Average Dice scores on the 20 OASIS subjects for repeatability. Source: Authors 

Method GM WM CSF SK SC Ave 

Bayesian 92.9 ± 1.2 95.1 ± 1.0 84.7 ± 2.8 88.7 ± 2.1 93.3 ± 1.8 90.9 ± 4.2 

Patch-LF 93.1 ± 1.8 95.2 ± 1.4 84.3 ± 4.1 89.3 ± 2.6 93.8 ± 1.7 91.1 ± 4.4 

CKA-LF 93.0 ± 1.7 95.1 ± 1.3 84.3 ± 4.0 89.4 ± 2.4 94.1 ± 0.9 91.2 ± 4.4 

 

 

Finally, we validated the repeatability 

of the algorithms on the OASIS dataset. To 

this end, we measured the Dice index be-

tween the segmented images of the same 

subject. Therefore, a large 𝜅 means that 

the algorithm better replicates the perfor-

mance results. As shown in Table 2, each 

one of the tested approaches (B-SEG, 

Patch-LF, CKA-LF) achieved Dice index 

values over 90%. This implies that the 

algorithms can replicate the segmentation 

regardless of the input subject volume. 

Besides, the difference in the average Dice 

is lower than 1%, and the standard devia-

tions are higher than 1%, yielding a statis-

tically similar performance among ap-

proaches. As a result, the proposed CKA-

LF method increases the segmentation 

quality with the additional benefit of 

reaching values of repeatability that are 

similar to the state-of-the-art. 

 

 

4. DISCUSSION 

 

The new method of patch-based label 

fusion is proposed to improve automatic 

labeling of brain structures while dealing 

with low boundary contrast. CKA-LF bene-

fits from the information provided by the 

label distribution of the atlases to locally 

learn the shapes. From the previously 

described validation, the following aspects 

are relevant in developing the CKA-LF 

method: 

First, the voting function attempts to 

measure the pairwise similarity between 

the linearly extracted feature vectors. The 

feature extraction is carried out under a 

supervised learning scheme that places 

similarly labeled voxels closer. The cen-

tered kernel alignment criterion is intro-

duced to quantify the similarity between 

features and labels. Thus, maximizing the 

CKA criterion and linearly projecting 

patches (see Fig. 4) result in a voting func-

tion that increases the class discrimina-

tion. 

Second, patch and neighborhood radii 

strongly influence the estimation of the 

mapping function. Specifically, the former 

parameter determines the projection do-

main and the intensity variability inside 

each patch. The latter parameter estab-

lishes the number of available samples for 

estimating the projection matrix and the 

patch distribution within the neighbor-

hood. This enables to cope with small reg-
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istration issues. Therefore, the lack of 

patch information in the computed projec-

tion decreases the achievable accuracy of 

label fusion, when 𝛽 → 0, as seen in Fig. 

5a. The performance also worsens for the 

very large patches (see Fig. 5e) due to the 

geometrically growing size of the resulting 

projection matrix and the complex distri-

bution of the patch vectors. The radial 

relevance (that measures the influence of 

the radii on the projection) is introduced to 

tune 𝛽. As seen in Fig. 3, the relevance 

monotonically decreases as the distance 

grows. This means that the closer the 

voxels are to the patch center, the more 

they contribute to build the features. In 

the case of the 𝛼-neighborhoods, small 

radii provide more robustness to low-

frequency artifacts due to the lack of 

patches; thus poorly estimating 𝑨𝑟 (Fig. 6). 

By contrast, large 𝛼 values produce more 

patches and increase the shape variability. 

Therefore, the projection matrix calcula-

tion is puzzled. Consequently, we balance 

the number of samples and the modeling 

complexity by maximizing the CKA regard-

ing 𝛼. 

We compare the proposed CKA-LF with 

the baseline Bayesian-based segmentation 

and with the Patch-wise label fusion meth-

ods in terms of their performed accuracy, 

robustness of artifacts, and algorithm re-

peatability. Regarding the estimated 𝜅 

index, the proposed CKA-LF outperforms 

the other approaches in comparison (Table 

1) and it has the additional benefit of lower 

accuracy deviations. Particularly, the cere-

brospinal fluid and the skull tissues pose a 

major challenge for segmentation because 

of the few labeled samples. For these struc-

tures, CKA-LF highlights the contrast 

between both neighboring structures by 

incorporated projection. For the gray and 

white matter, CKA-LF learns their intri-

cate shapes from the patch features and 

yields an accuracy boost of 5% compared to 

baselines. Regarding the qualitative re-

sults, Figs. 7 and 8, mostly locate mislabel-

ings on the structure boundaries due to the 

lack of contrast between tissues. In terms 

of robustness, the validation in the BW2 

dataset proves that enhancing the correla-

tion between patches allows to better deal 

with noise and bias. It also increases the 

overall segmentation performance. 

Lastly, all three compared approaches 

appropriately reproduce the outcome seg-

mentation of the same subject in every 

dataset image (Table 2). Thus, the differ-

ence between the estimated 𝜅 and 𝜅 index-

es is less than 1% with 1-4% of deviation. 

Although the reached 𝜅 index is statistical-

ly equivalent for all the algorithms, the 

repeatability scores for cerebrospinal fluid 

and skull are lower than 90%. This result 

may be explained since both tissue bound-

aries change from scan to scan as a conse-

quence of the limited image resolution and 

the reduced thickness of the examined 

tissue structures. 

 

 

5. CONCLUSIONS 

 

This research proposes a new multi-

atlas weighted label fusion approach for 

brain image segmentation. This method 

makes the most of a more elaborated fus-

ing procedure by incorporating the 

knowledge of the voxel neighborhood, as 

well as the patch structure of the consid-

ered tissues. For this purpose, all image 

patches are projected onto a discriminating 

space that maximizes the similarity be-

tween the labels and the feature vectors by 

using the introduced centered kernel 

alignment criterion. Besides, the adopted 

neighborhood-wise analysis enables to 

account more useful information on tissue 

structure localities, in order to avoid the 

influence of small registration issues on 

the input image. Therefore, the proposed 

CKA-LF effectively learns local structure 

shapes and reduces the artifact influence. 

Furthermore, we obtained a better accura-

cy under high artifact levels when com-

pared to state-of-the-art methods for brain 

tissue segmentation (Bayesian-based seg-
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mentation and patch-wise label fusion). It 

is worth noting that CKA-LF performs all 

of the above with adequate repeatability 

scores. As future research, we propose the 

use of supervised local feature extraction 

for unified schemes involving registration, 

template selection, dictionary learning 

[38], and further studies on segmentation. 

Additionally, the extension of this paper 

could be focused on the segmentation of 

other structures, such as basal ganglia, 

and other imaging modalities, such as 

computed tomography. 
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