

Evaluación de la prefactibilidad de generación de energía eléctrica a partir de residuos sólidos urbanos en tres escenarios poblacionales de Colombia

Santiago Alzate Arias

Instituto Tecnológico Metropolitano
Facultad de ingeniería
Medellín, Colombia
2017

Evaluación de la prefactibilidad de generación de energía eléctrica a partir de residuos sólidos urbanos en tres escenarios poblacionales de Colombia

Santiago Alzate Arias

Tesis de investigación presentada como requisito parcial para optar al título de:

Magister en Gestión Energética Industrial

Director (a):

Ing. Bonie Johana Restrepo Cuestas, MSc Codirector (a):

Ing. Alvaro Jaramillo Duque, PhD

Línea de Investigación:

Eficiencia energética

Grupo de Investigación: Materiales Avanzados y Energía (MATyER)

Instituto Tecnológico Metropolitano
Facultad de Ingeniería
Medellín, Colombia
2017

Agradecimientos

A quienes desde sus ideas, aportes y recomendaciones han contribuido al desenlace de cada uno de los objetivos del presente trabajo: profesores MATyER, compañeros de clases, amigos y familiares.

Resumen

Con esta investigación se evaluó la prefactibilidad técnico-económica de generación de energía eléctrica basada en el uso de residuos sólidos urbanos, con diferentes tecnologías de conversión. Se consideraron como casos de estudio los municipios colombianos Guayatá, Andes y Pasto, pertenecientes a los departamentos de Boyacá, Antioquia y Nariño respectivamente. Estas poblaciones representan centros urbanos típicos en Colombia. Se seleccionaron las tecnologías de incineración y gasificación de residuos, como tecnologías de conversión térmica. La digestión anaerobia y el gas de relleno, fueron seleccionadas como tecnologías de conversión biológica. Según los resultados obtenidos, para un mes típico del 2020 es posible obtener 5'707.800 kWh/mes, y 296.700 kWh/mes desde incineración, gasificación y digestión anaerobia para Pasto y Andes. Energía eléctrica suficiente para cubrir la demanda promedio de 37.551 y 1.952 hogares habitados por 4 personas. Para el municipio de Guayatá se pueden obtener 4.200 kWh/mes a partir de digestión anaerobia. Energía que podría abastecer al menos unos 28 hogares de 4 personas. Desde gas de relleno sanitario es posible obtener para un mes típico de 2031: 618.960 kWh/mes y 48.150 kWh/mes, que podrían abastecer 4.072 y 317 hogares de Pasto y Andes, habitados por igual número de personas. Para el análisis de prefactibilidad, se utilizaron herramientas como flujos de caja, TIR y VPN. Adicionalmente se consideró la ley 1715 que promueve el uso de fuentes no convenciones de energía. El análisis determinó que para Pasto, municipio con mayor población, todas las tecnologías podrían aplicarse. Para Andes, de mediana población, solo son viables las tecnologías de conversión biológica bajo condiciones como ventas de energía a un precio alto y algunos beneficios ofrecidos por la ley 1715. Para Guayatá, de menor población, solo es viable la codigestión anaerobia a pequeña escala.

Palabras clave: escenarios poblacionales, conversión biológica, conversión térmica, poder calorífico inferior, residuos sólidos urbanos, biogás, tasa interna de retorno.

Abstract

This research evaluated the technical-economic pre-feasibility of electric power generation based on the use of urban solid waste, with different conversion technologies. The Colombian municipalities Guayatá, Andes and Pasto, belong to the departments of Boyacá, Antioquia and Nariño, respectively, were considered as case studies. These municipalities represent typical urban centers in Colombia. To convert urban solid waste into energy, thermal and biological conversion technologies were analyzed. Incineration and gasification were selected as thermal conversion technologies. Anaerobic digestion and landfill gas were selected as biological conversion technologies. According to the results obtained, for a typical month of 2020 it is possible to obtain 5'707.800 kWh / month, and 296.700 kWh / month from incineration, gasification and anaerobic digestion for Pasto and Andes. Electric power sufficient to cover the average demand of 37.551 and 1.952 households inhabited by 4 people. For the municipality of Guayatá, 4.200 kWh / month can be obtained from anaerobic digestion. Energy that could supply at least 28 households of 4 people. From landfill gas it is possible to obtain a typical month of 2031: 618.960 kWh / month and 48.150 kWh / month, which could supply 4.072 and 317 households in Pasto and Andes, with the same number of inhabitants. A prefeasibility analysis was performed, using tools such as cash flows, TIR and VPN; additionally it was considered Colombian law 1715, this law promotes the use of unconventional sources of energy. The analyses done for Pasto (municipality with the largest population) showed that it is possible to implement all the conversion technologies. In the case of Andes (median population), only biological conversion technologies are feasible under special conditions, such as high energy prices and some profits offered by law 1715. For Guayatá (smaller population), only small scale anaerobic codigestion is viable.

Keywords: population scenarios, biological conversion, thermal conversion, lower heating value, municipal solid waste, biogas, internal rate of return

Contenido

		Р	ág.
Res	sumen		V
Lis	ta de fig	uras	IX
Lis	ta de tab	ılas	X
Glo	sario de	términos	XIII
1.		cción	
		Descripción de problema	
	1.2	Objetivos	. 22
2.	Marco	teórico	. 23
	2.1	ecnologías de conversión de RSU a energía	. 23
	2.1	.1 Incineración	. 23
	2.1	.2 Pirólisis	. 25
	2.1	.3 Gasificación	. 27
	2.1		
	2.1		
	2.2 F	Poder Calorífico Inferior (PCI)	
	2.3 N	Modelos matemáticos para el cálculo del poder de aprovechamie	nto
		ico (PAE)	
	2.3	.1 Incineración	. 33
	2.3	.2 Digestión anaerobia	. 34
	2.3	.3 Gas de relleno sanitario (Digestión aeróbica)	. 35
	2.4 \	/entajas y desventajas de las diferentes tecnologías	. 36
		Costo unitario de la electricidad	
	2.6 E	Beneficios de la ley 1715	. 39
	2.6		
	2.6		
	2.6		
	2.6	· · · · · · · · · · · · · · · · · · ·	
3.	Metodo	ología	. 41
4.	Dogulto	idos	40
4.		Selección de escenarios poblacionales	
	4.1	· · · · · · · · · · · · · · · · · · ·	
	4.1 4.1		
	4.1 4.1		
		Características de los escenarios poblacionales	
	4.2		
	4.2		
	4.2		
		Selección de las tecnologías de conversión de residuos sólidos a energía	
	4.3	.1 Tecnologías de conversión térmica	.5/

	4.3.2	Tecnologías de conversión biológica	58
4.4	Estin	nación del potencial de aprovechamiento energético	59
	4.4.1	Incineración	59
	4.4.2		
	4.4.3		
	4.4.4	Gas de relleno sanitario (digestión aerobia)	64
4.5	Análi		
	4.5.1	Municipio de Pasto	70
	4.5.2	•	
		•	
_			
4.7	Análi	isis de Prefactibilidad	77
Cor	nclusior	nes y recomendaciones	80
5.1			
5.2	Reco	omendaciones	83
Δnc	vo: Mu	nicinios partenaciantes a los grupos G1 G2 G3	86
Alle	ZAO. IVIU	incipios pertenecientes a los grupos o 1, o 2, o 3	00
Ane	exo: Flu	ijos de caja de los diferentes escenarios (Caso 4)	114
Ane	exo: Mo	delo CAPM ajustado	118
lioar	afía		120
	4.5 4.6 4.7 Cor 5.1 5.2 And And	4.4 Estin 4.4.1 4.4.2 4.4.3 4.4.4 4.5 Anál 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.6 Cost 4.7 Anál Conclusion 5.1 Conc 5.2 Reco Anexo: Mu Anexo: Mu Anexo: Mo	4.4 Estimación del potencial de aprovechamiento energético 4.4.1 Incineración 4.4.2 Gasificación 4.4.3 Digestión anaerobia 4.4.4 Gas de relleno sanitario (digestión aerobia) 4.5 Análisis económico 4.5.1 Municipio de Pasto 4.5.2 Municipio de Andes 4.5.3 Municipio de Guayatá 4.5.4 Periodo de recuperación de la inversión o payback 4.5.5 Gasificación como caso especial para los tres escenarios 4.6 Costo unitario de la electricidad 4.7 Análisis de Prefactibilidad Conclusiones y recomendaciones 5.1 Conclusiones

Lista de figuras

Pág.
Figura 1-1: Distribución de municipios por tipo de sistema de disposición final Autor17
Figura 1-2: Distribución por número de municipios atendidos y por T/día de residuos
dispuestos en sistema regionales Autor
Figura 2-1: Proceso básico y salidas de la gasificación (Consonni and Viganò 2012)28
Figura 2-2: Composición de RSU en países de Latinoamérica (Leckner 2015)32
Figura 3-1: Secuencia metodológica objetivo 1 Autor42
Figura 3-2: Secuencia metodológica objetivo 2 Autor43
Figura 3-3: Secuencia metodológica objetivo 3 Autor47
Figura 4-1: Histograma para las poblaciones del G1 Autor
Figura 4-2: IPU para los municipios pertenecientes al G1 Autor50
Figura 4-3: Histograma para las poblaciones del G2 Autor51
Figura 4-4: IPU para los municipios pertenecientes al G2 Autor51
Figura 4-5: Histograma para las poblaciones del G3 Autor
Figura 4-6: IPU para los municipios pertenecientes al G3 Autor53
Figura 4-7: Población proyectada para el periodo 2015-2020 Autor54
Figura 4-8: Población proyectada para el periodo 2015-2020 Autor55
Figura 4-9: Población proyectada para el periodo 2015-2020 Autor56
Figura 4-10: Producción de energía eléctrica a partir de incineración 2015-2020 Autor60
Figura 4-11: Producción de energía eléctrica a partir de digestión anaerobia 2015-2020
Autor63
Figura 4-12: Producción de metano y energía eléctrica a partir de gas de relleno sanitario
2016-2020 Autor65
Figura 4-13: Flujo de caja para digestión anaerobia en el municipio de Pasto Autor71
Figura 4-14: Tasa interna de retorno obtenida para los 4 casos en Pasto Autor72
Figura 4-15: Tasa interna de retorno obtenida para los 4 casos en Andes Autor73
Figura 4-16: Periodo de recuperación de la inversión para los 4 casos en Pasto Autor74
Figura 4-17: Periodo de recuperación de la inversión para los 4 casos en Andes Autor75
Figura 4-18: Costo unitario para las diferentes tecnologías en municipio de Pasto Autor 76
Figura 4-19: Costo unitario para las diferentes tecnologías en municipio de Andes Autor
77

Lista de tablas

Pág.
Tabla 1-1: Sitios de disposición final utilizados en Colombia Autor 17
Tabla 1-2: Comportamiento de los rellenos sanitarios periodo 2010-2014 Autor
Tabla 2-1: Parámetros de funcionamiento para los tres tipos de pirólisis (Kalyani and
Pandey 2014)26
Tabla 2-2: Composiciones de los gases de pirólisis (Kalyani and Pandey 2014)26
Tabla 2-3: Comparación entre gases de biogás desde relleno sanitario y biodigestor
(Ofori-Boateng, Lee, and Mensah 2013)30
Tabla 2-4: PCI de diferentes tipos de residuos en diferentes países
Tabla 2-5: Ventajas y desventajas de las diferentes tecnologías (Kalyani and Pandey
2014)36
Tabla 3-1: Costos de inversión para las diferentes tecnologías Autor44
Tabla 3-2: Costos de operación y mantenimiento para diferentes tecnologías Autor45
Tabla 4-1: Poder calorífico inferior y fracción másica de residuos en los tres escenarios
Autor57
Tabla 4-2: Producción de residuos PP en los tres escenarios Autor57
Tabla 4-3: Potencia instalada aproximada a partir de gasificación Autor62
Tabla 4-4: Parámetros para la evaluación del modelo de digestión anaerobia Autor 62
Tabla 4-5: Resumen de casos considerados para los flujos de caja Autor67
Tabla 4-6: Parámetros de análisis económico para la incineración Autor69
Tabla 4-7: Parámetros de análisis económico para gas de relleno sanitario Autor69
Tabla 4-8 Parámetros de análisis económico para digestión anaerobia Autor70

Abreviaturas	Término
RSU	Residuos Sólidos Urbanos
PCI	Poder Calorífico Inferior
FORS	Fracción Orgánica de Residuos Sólidos
FNCER	Fuentes No Convencionales de Energía Renovable
PGRS	Plan de Gestión de Residuos Sólidos
DANE	Departamento Nacional de Estadística
EVM	Empresas Varias de Medellín
DIAN	Dirección de Impuestos y Aduanas Nacionales
SSPD	Superintendencia de Servicios Públicos Domiciliarios
DNP	Departamento nacional de planeación
Hab	Habitante
Т	Tonelada
T/día	Toneladas diarias
PP	Producción Percápita
USD/T	Dólares por cada tonelada
USD/MW	Dólares por Megavatio instalado
I(USD)	Inversión en dólares
MUSD	Millones de dólares
MJ	Mega Julios
TJ	Tera Julios
IPU	Índice de Porcentaje Urbano
PAE	Potencial de Aprovechamiento Energético
DA	Digestión Anaerobia
GEI	Gas de Efecto Invernadero

Abreviaturas	Término
CER	Certificado Reducción de Emisiones
TIR	Tasa interna de Retorno
VPN	Valor Presente Neto

Glosario de términos

Biogás: el Biogás es el resultado de la interacción entre microorganismos, principalmente bacterias metanogénicas que crecen o prosperan en la ausencia de oxígeno (O₂), mediante la descomposición o biodegradación de la materia orgánica en un ambiente anaeróbico. Es una mezcla gaseosa formada principalmente de metano, con una proporción que oscila entre un 50% y un 70%, y dióxido de carbono (CO₂), contiene pequeñas proporciones de otros gases como hidrógeno (H₂), nitrógeno (N₂), oxígeno (O₂) y sulfuro de hidrógeno (H₂S). Tiene como promedio un poder calorífico entre 18,8 y 23,4 (MJ/m³). Cuando el Biogás tiene un contenido de metano superior al 45% es inflamable. Otros tipos de componentes del Biogás son los gases azufrados tales como sulfuro de hidrógeno, metilmercaptano, disulfuro de carbono, sulfuro de metilo y sulfuro de dimetilo (Rodriguez Perdigón 2014).

Gas de síntesis: gas de bajo poder calorífico convertible a diferentes tipos de energía. Entre las principales se encuentra la conversión a en energía eléctrica o mecánica. Se compone típicamente de hidrógeno, vapor de agua, metano, dióxido de carbono y monóxido de carbono. No está demás considerar la existencia de óxidos de nitrógeno y azufre (Gutierrez 2009).

Fracción orgánica de residuos sólidos urbanos (FORSU): la fracción orgánica de la mayoría de los RSU, hace referencia a los elementos de características orgánicas que pueden iniciar un proceso de degradación biológica por cuenta de las condiciones naturales de un ambiente: luz solar, aire, agua, microorganismos, entre otros; como lo menciona (Rodriguez Perdigón 2014).

IPU: resultado del cociente entre cantidad de habitantes zona rural y zona urbana en un determinado municipio.

Municipio: en Colombia se define como entidad territorial fundamental de la división política administrativa del estado, con autonomía política, fiscal y administrativa, dentro de los límites que señalen la Constitución y la ley y cuya finalidad es el bienestar general y el mejoramiento de la calidad de vida de la población en su respectivo territorio (Fernandez de Castro del Castillo 2005).

Relleno sanitario: es una estructura de ingeniería para la disposición final de los residuos sólidos en el suelo, los cuales se depositan, esparcen y compactan al menor volumen práctico posible, construyendo capas delgadas, compactándolas al menor volumen posible y cubriéndolas con tierra al término de cada día de trabajo (Rodriguez Perdigón 2014).

Residuos sólidos: son aquellas sustancias u objetos abandonados o descartados en forma permanente por quien los produce, por considerarlos sin utilidad en su provecho, en tanto, pueden definirse como los desechos que son generados en la población urbana provenientes de los procesos de consumo y desarrollo de las actividades humanas y que normalmente son sólidos a temperatura ambiente. Además de los producidos por los usos residenciales, comerciales e institucionales, y por el aseo del espacio público, los RS incluyen los residuos originados en las industrias y establecimientos de salud siempre que no contengan características tóxicas ni peligrosas, en cuyo caso constituyen corrientes de residuos de otro tipo que deben ser manejadas según lo establecido en las normativas específicas (Rodriguez Perdigón 2014).

Tipping fee: es la cantidad de dinero recibida por tonelada de desechos depositada en un relleno sanitario, y divulgada públicamente por las empresas encargadas de la recolección de basuras (CalRecycle 2015).

Tasa interna de retorno: es la rentabilidad que obtendría un inversionista suponiendo que mantiene su inversión hasta el vencimiento del flujo que se va a recibir y que reinvierte dichos flujos a la misma tasa. De esta manera, si un inversionista compra un bono a una tasa dada, este bono paga cupones anuales por cierto número de años y el inversionista reinvierte dichos cupones todos los años a la misma tasa a la que compró el título, entonces la TIR de ese bono será la tasa a la que el inversionista lo compró (Contraloría general de la república 2016).

Valor presente neto: es el método por el cual se utilizan procesos matemáticos para traer todos los flujos de una inversión al momento actual. Esto se hace porque el valor del dinero cambia a través del tiempo y para hacer un análisis que permita la toma de decisiones de inversión, muchas veces se necesita poder comparar flujos en diferentes momentos del tiempo (Contraloría general de la república 2016).

1. Introducción

La rápida urbanización e industrialización de países en vía de desarrollo, incrementa la generación de residuos especialmente en áreas urbanas. Cada año aumenta el total de residuos como consecuencia directa del crecimiento poblacional en el mundo. Solo un pequeño porcentaje de los residuos generados se administran apropiadamente a través de reciclaje, vertederos, rellenos sanitarios, aprovechamientos energéticos entre otros mecanismos (Jaramillo 1999). La administración efectiva de los residuos, se ha constituido en un reto a nivel mundial. En países como Ghana, por ejemplo, no existe una gestión adecuada, los residuos sólidos (RS) son incinerados o dispuestos en vertederos limitados, ubicados en áreas abiertas próximas a las ciudades, trayendo consigo problemas de salud pública (Ofori-Boateng, Lee, and Mensah 2013). La conversión de RS en energía ha demostrado ser ambiental, económica y socialmente sostenible (Jaramillo 1999; Moratorio, Rocco, and Castelli 2012; W. T. Tsai 2007). Existe un gran potencial para la producción de energía a partir de residuos derivados de los hogares o la industria y los cuales actualmente se desaprovechan (Acevedo and Peláez 2010). En algunos países desarrollados de Europa, las políticas de desarrollo sostenible están orientadas a la reducción y reciclaje de residuos, así como a la producción de energía a partir de los mismos (Autret et al. 2007; Khan and Tanveer 2012; Ofori-Boateng, Lee, and Mensah 2013; Zaman and Lehmann 2013). En Colombia, el gobierno nacional, en Mayo de 2014, a través del Ministerio de Minas y Energía, promulgó la ley 1715 en la cual incentiva el desarrollo de las fuentes no convencionales de energía. La misma ley en el artículo 18, considera como fuente no convencional de energía renovable, el contenido energético de los RS no susceptibles de reutilización y reciclaje (IPSE 2014).

La producción percápita en Colombia es aproximadamente 0,5 kg/Hab-día, variando de 1,5 Kg/Hab-día en las grandes ciudades hasta 0,2 Kg/Hab-día, en las poblaciones rurales. El potencial energético, producido por los Residuos Sólidos Urbanos (RSU) de Bogotá D.C, Medellín, Cali, Barranquilla y Bucaramanga, correspondiente al año 2009

16 Introducción

alcanzó los 72,48 TJ/año (19,77 GW) (Sabalza and Villamizar 2009). Esto representa un potencial energético de gran ayuda y que podría aprovecharse para contribuir a disminuir la dependencia con respecto a fuentes convencionales como el carbón, petróleo y gas natural, utilizadas para la producción de calor o electricidad.

En el informe nacional de disposición final de residuos sólidos 2015, elaborado por la Superintendencia de Servicios Públicos Domiciliarios (SSDP) y el Departamento Nacional de Planeación, (DNP) se presenta la situación de la disposición final para los 32 departamentos y 1102 municipios de Colombia durante el año 2014. El documento considera como sistemas de disposición final autorizados los rellenos sanitarios, plantas integrales y celdas de contingencia. Por su parte, los sistemas contabilizados como no autorizados son: celda transitoria, botadero, enterramiento, vertimiento a cuerpos de agua, quema de los residuos sólidos y todo aquel que no cumpla con las definiciones y autorizaciones establecidas y requeridas por la normativa (Decreto 838 de 2005, Decreto 2820 de 2010 y Resolución 1890 de 2011).

Para el año 2014, el país contaba con 1102 municipios que disponen 26.528 toneladas diarias de residuos sólidos en 364 sitios de disposición final desagregados en 7 tipos de sistemas. 3 autorizados y 4 no autorizados por las autoridades ambientales. Lo anterior sin tener en cuenta los 186 municipios que no contaban con información.

En la Figura 1-1, se presenta de manera general, la distribución de municipios por tipo de sistema de disposición final. Se observa que el 81% de los 1102 municipios del país (886) disponen sus residuos en rellenos sanitarios, porcentaje mayor comparado con el año 2013 que fue de 75.2%. Adicionalmente, se observa que persiste la disposición en sitios como botaderos, celdas transitorias y todavía se realizan vertimientos de residuos a cuerpos de agua y quemas (Superintendencia de Servicios Públicos Domiciliarios República de Colombia 2015).

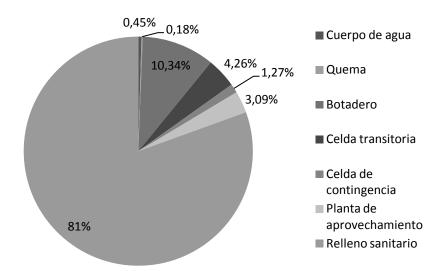
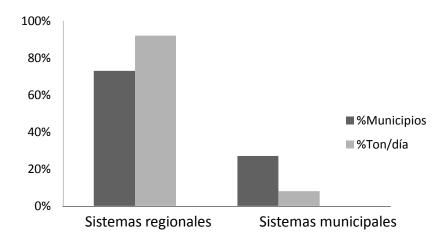


Figura 1-1: Distribución de municipios por tipo de sistema de disposición final Autor

En la **Tabla 1-1** se presenta la distribución de municipios atendidos, sitios utilizados y toneladas diarias recibidas para cada sistema de disposición final. Se discrimina la cantidad de municipios para los cuales los prestadores han suministrado información y para los cuales no se reporta. Nótese que la cantidad de municipios sin información suma un total de 186.


Tabla 1-1: Sitios de disposición final utilizados en Colombia Autor

Tipo de sitio de disposición final	Número de municipios	Número de sitios	Ton/día	% de municipios	% de sitios
Cuerpo de agua	5	5	No se mide	0,5%	1%
Quema	2	2	No se mide	0,2%	1%
Botadero	32	32	213,1	2,9%	9%
Doladelo	82	81	No reporta	7,4%	22%
Celda transitoria	33	30	552,2	3,0%	8%
Celua transitoria	14	14	No reporta	1,3%	4%
Celda de contingencia	12	12	103,8	1,1%	3%
Celua de contingencia	2	2	No reporta	0,2%	1%
Planta de	32	12	126,6	2,9%	3%
aprovechamiento	2	1	No reporta	0,2%	0%
Relleno sanitario	807	132	25.532,30	73,2%	36%
Nelieno Sanitano	79	41	No reporta	7,2%	11%
Total general	1102	364	26.528,00	100,0%	100%

18 Introducción

En la Figura 1-2 se presenta la distribución de sistemas de disposición final regionales en relación con la cantidad de residuos que estos reciben. Se observa como el 73% del total de municipios, 803 de 1102, se sirve de sistemas regionales. De un total de 364 sitios contabilizados 65 sitios son regionales y en estos se dispone el 92% del total de los residuos presentados al servicio público de aseo en el país, 24.342 Ton/día de 26.528 Ton/día. Los 65 sitios regionales se encuentran desagregados de la siguiente manera: 57 rellenos sanitarios, 5 plantas integrales, 2 celdas transitorias y 1 botadero a cielo abierto.

Figura 1-2: Distribución por número de municipios atendidos y por T/día de residuos dispuestos en sistema regionales Autor

En la **Tabla 1-2** se presenta el comportamiento de los rellenos sanitarios regionales en el país para los años 2009 a 2014. Se observa como el número de sitios disminuyó hasta el 2011 con respecto al año 2009 pero a partir del 2012 ha aumentado levemente hasta el año 2014. A pesar de esto, el número de municipios regionalizados ha aumentado año tras año indicando concentración de residuos sólidos y de mercados. Es decir más municipios y más residuos sólidos en menos sitios (Superintendencia de Servicios Públicos Domiciliarios República de Colombia 2015).

Tabla 1-2: Comportamiento de los rellenos sanitarios periodo 2010-2014 Autor

	2009	2010	2011	2012	2013	2014
Número de rellenos sanitarios regionales	92	69	47	60	63	65
Número de municipios atendidos	573	621	641	733	765	803

Según los indicadores reportados por el informe de la SSPD y el DNP, la tendencia en el país es a la utilización masiva de los rellenos sanitarios. La disposición final de residuos sólidos está enfocada a sistemas autorizados y no autorizados, que poco o nada aprovechan la totalidad de su contenido energético. Sin embargo se sabe que este aprovechamiento es posible a través de tecnologías de conversión térmica (incineración, pirólisis, gasificación) y conversión biológica (gas de relleno sanitario y digestión anaerobia). La incineración es una tecnología ampliamente usada en países desarrollados, no solo como estrategia para la gestión de residuos, sino para la producción de electricidad y vapor (Autret et al. 2007; Beylot and Villeneuve 2013; Murphy and McKeogh 2004; W.-T. Tsai and Kuo 2010; Zheng et al. 2014). Algunos estudios se han realizado entorno al análisis y la viabilidad de obtención de energía desde la incineración en países como España, Malasia, Jordania, Malta, Bangladesh, México, Brasil (Abd Kadir et al. 2013; Abu-Hijleh et al. 1998; Bébar et al. 2005; Estrada Wiechers 2015; Gómez et al. 2010; Hossain et al. 2014; Khan and Tanveer 2012; Maier and Oliveira 2014; Münster and Lund 2009; Pirotta, Ferreira, and Bernardo 2013; Poletto Filho 2008). Esta tecnología es fácilmente aplicable ya que admite diferentes tipos de residuos sólidos orgánicos e inorgánicos (Ofori-Boateng, Lee, and Mensah 2013). La tecnología puede ser ubicada dentro o cerca del municipio, con el fin de evitar costos de transporte (Kalyani and Pandey 2014).

Otros estudios han evaluado el potencial energético del biogás obtenido desde relleno sanitario, para la obtención de energía eléctrica (Aguilar-Virgen, Taboada-González, and Ojeda-Benítez 2014; Hao, Yang, and Zhang 2008; Luz et al. 2015; Mambeli Barros, Tiago Filho, and da Silva 2014; Mustafa, Mustafa, and Mutlag 2013). Otros autores han evaluado el potencial de aprovechamiento energético del biogás, obtenido mediante el proceso de digestión anaerobia para generar energía eléctrica o térmica en España, Brasil, China, Tanzania, (Coimbra-Araújo et al. 2014; Jiang et al. 2007; Kothari et al. 2014; Mbuligwe and Kassenga 2004).

Las tecnologías de conversión biológica, ofrecen la posibilidad de aprovechar el biogás producido a partir de la fracción orgánica de los residuos sólidos (Bajić et al. 2015; Gómez et al. 2010; Melikoglu 2013). La digestión anaerobia se puede implementar a pequeña escala y posee beneficios ambientales positivos tales como el control de las emisiones de gases de efecto invernadero. El gas de relleno sanitario o digestión aerobia, representa una opción que podría aprovechar terrenos poco productivos para

20 Introducción

convertirlos en áreas útiles y de allí recolectar el gas para la generación de energía eléctrica (Kalyani and Pandey 2014).

Como herramienta de gestión de residuos y en atención a la demanda de energía eléctrica, podrían implementarse en Colombia las diferentes tecnologías de conversión, valorando las características de cada una de ellas. De acuerdo a lo anterior, se han seleccionado tres escenarios poblacionales en Colombia a partir de tres grupos principales. Se realizó el análisis de la información contenida en sus Planes de Gestión de Residuos Sólidos (PGRS), se analizó la información relativa a la composición física y fracción másica de los Residuos Sólidos (RS). Se planteó una estimación del potencial de energía desde los RS para algunas tecnologías de conversión, elegidas para cada escenario, tales como incineración, digestión anaerobia de la fracción orgánica y recuperación de biogás desde relleno sanitario. Posteriormente se realizó una evaluación de prefactibilidad de generación de energía eléctrica a partir de esas tecnologías. Para esta evaluación fueron considerados costos de inversión, operación y mantenimiento. Adicionalmente se tuvieron en cuenta los beneficios establecidos en la ley 1715. Otros ingresos por ventas de energía, tratamiento de residuos, y ventas de certificados de reducción de emisiones (CERs) de gases de efecto invernadero (GEI) han sido estimados.

1.1 Descripción de problema

La generación de energía eléctrica a partir de los RS, se considera como una estrategia para la gestión eficiente de RS en muchos países del mundo (Área Metropolitana 2006; Rodriguez Perdigón 2014). En Colombia aún no se implementa masivamente esta estrategia, dada la carencia de políticas estatales para incentivar el aprovechamiento de los RS. Actualmente, no existen estudios o investigaciones, en escenarios con diferentes características, enfocadas hacia la producción de electricidad como alternativa a una gestión tradicional (vertederos o rellenos sanitarios), en aras de un desarrollo sostenible. Según el informe nacional de disposición final de residuos sólidos 2015, la tendencia en Colombia es a la disposición final en rellenos sanitarios. Alrededor del 81% del total de municipios utilizan esta estrategia, además de otras en menor porcentaje tales como las plantas de procesamiento de residuos sólidos a pequeña escala, botaderos, celdas transitorias y de contingencia (Superintendencia de

Servicios Públicos Domiciliarios República de Colombia 2015). Si bien el relleno sanitario es una forma aceptable de gestión de residuos, cuenta con una vida útil que depende de la cantidad de residuos y la disponibilidad de espacios. A su vez la cantidad de residuos es función del crecimiento poblacional el cual va en continuo aumento.

En 2005, se calculó que la población urbana de Colombia aumentó a más del 75% de la población total. El DANE estima que, para el 2020, este número aumentará alrededor del 80%. La tasa de urbanización crea muchos de los problemas a los que se enfrentan las ciudades colombianas, incluidos los relacionados con las condiciones ambientales y la provisión de los servicios públicos necesarios, tales como la recolección y eliminación de desechos sólidos. Según proyecciones del gobierno, para el año 2020, el número de ciudades en Colombia con más de un millón de personas aumentará de cuatro a siete, y las poblaciones que cuentan con más de 100.000 personas, pasarán de 37 a 55.

Aunque existen en las ciudades y municipios políticas de gestión de residuos sólidos, de las cuales hacen parte los denominados PGIRS, se sabe que su implementación ha resultado ser pobre hasta la fecha y las estrategias de recuperación de residuos estipuladas en estos planes no han sido ampliamente implementadas para lograr la cultura de cero residuos (Larochelle, Turner, and LaGiglia 2012).

Se propone entonces como alternativa de gestión, la generación de energía eléctrica a partir del contenido energético de los residuos sólidos. Esto podría contribuir a la disminución de la tradicional estrategia del relleno sanitario, la cual ha aumentado en los últimos años, pasando de tener 47 en 2011 a un total de 65 en 2014. Además de lo anterior el país requiere una diversificación en la matriz energética y un aumento en el parque de generación. Esto se vio reflejado en la crisis durante 2016. Año en la cual, el país estuvo al borde del colapso y racionamiento, gracias al fenómeno del niño y el elevado costo que implica la generación a partir de combustibles fósiles de limitada producción y alta demanda como el gas. En lo relacionado a la sustitución del gas combustible, el Ministerio de Minas y Energía, a través de la resolución CREG 135 de 2012, y del documento CREG 040 del 13 de junio de 2016, declaró la viabilidad de utilización del biogás como combustible alternativo para la prestación del servicio domiciliario (Comision de Regulación de Energía y Gas (CREG) 2016). El biogás podría ser aprovechado a partir de la fracción, recolectada en rellenos sanitarios y plantas de

22 Introducción

digestión anaerobia, que no alcanza a ser utilizada (excedente) como combustible para la generación de energía eléctrica. Dado la limitada capacidad nominal de algunos equipos.

En virtud de lo expuesto anteriormente, se evaluará la prefactibilidad de generación de energía eléctrica, mediante las tecnologías de conversión biológica y térmica de residuos sólidos, en centros urbanos típicos caracterizados por la población, la proporción urbano/rural, la producción y tipo de residuos.

1.2 Objetivos

Objetivo general

Evaluar la prefactibilidad técnico-económica de generación de energía eléctrica, a partir del aprovechamiento de los residuos sólidos, en tres escenarios poblaciones en Colombia.

Objetivos específicos

- 1. Desarrollar una metodología para la selección de tres escenarios representativos de estudio, basado en características socioeconómicas y demográficas tales como la cantidad de habitantes, la proporción urbano/rural, la producción y tipo de residuos.
- 2. Seleccionar la tecnología de conversión de residuos sólidos a energía eléctrica, más adecuada, según criterios técnicos, y estimar el potencial de aprovechamiento energético por escenario y tecnología respectiva.
- 3. Realizar un estudio de prefactibilidad (técnico-económico) por caso de estudio.

2. Marco teórico

2.1 Tecnologías de conversión de RSU a energía

Existen dos tipos de procesos comúnmente utilizados para la conversión de residuos sólidos a energía eléctrica. Uno de estos es el de conversión térmica, allí se incluyen: la incineración, pirolisis, gasificación. Teóricamente en estos procesos la energía del residuo puede ser capturada y transformada en calor, electricidad o productos químicos adecuados para otras aplicaciones (Environment and Plastics Industry Council (EPIC) 2004). El otro proceso es el de conversión biológica. En este, los microorganismos descomponen los desechos en forma de sólidos, lodos o gas. La conversión biológica de residuos se puede agrupar en digestión aeróbica y anaerobia. En esta sección se describen las tecnologías de conversión térmica y biológica de RSU más utilizadas y los parámetros más importantes que hacen parte de ellas y considerados en este estudio (Ofori-Boateng, Lee, and Mensah 2013).

2.1.1 Incineración

Una de las técnicas de tratamiento de residuos utilizada más frecuentemente es la incineración. Esto se da gracias a su capacidad para reducir la masa de residuos en un 70% y su volumen en hasta un 90%. El proceso de incineración contribuye a la valorización energética de los residuos mediante la generación de la electricidad a partir de energía térmica. Este proceso puede dividirse en tres etapas principales: la incineración, la recuperación de energía y el control de la contaminación del aire. Los riesgos por contaminación del aire y riesgos de salud, podrían ocurrir como resultado de las emisiones que contienen contaminantes tales como: óxidos de azufre, carbono y nitrógeno. Por esta razón, es extremadamente importante que el incinerador esté equipado con accesorios de control de emisiones (Bajić et al. 2015). En la mayoría de

casos donde esta tecnología se encuentra en operación, existen depuradores o dispositivos que rocían líquidos de humo para reducir la contaminación. Existen además filtros (pantallas para eliminar cenizas, y partículas). Esto con el objetivo de limpiar los gases de combustión (Ofori-Boateng, Lee, and Mensah 2013).

La incineración se realiza en un intervalo de temperatura entre 750°C y 1000°C y los procesos de generación de vapor y electricidad pueden ser combinados (Bajić et al. 2015). Un sistema típico de incineración controlado para la producción de energía eléctrica y calor, consta de una cámara de almacenamiento de residuos, un incinerador/caldera, una turbina de vapor/generador, un sistema de limpieza de los gases de combustión, y un sistema de tratamiento de residuos. El poder calorífico del residuo, es un parámetro importante que contribuye en gran medida a la eficacia de la planta de incineración. El PCI necesario para el RSU, sin la adición de otro combustible es de aproximadamente 7,0 MJ/kg de RSU o 1,94 MWh/T de RSU (Ofori-Boateng, Lee, and Mensah 2013). El tipo y el diseño de los equipos utilizados para quemar los residuos, es decir, la cámara de combustión, están fuertemente influenciadas por el hecho de que los residuos son generalmente sólidos y contienen partículas más grandes.

La mayoría de las cámaras de combustión de residuos utilizados actualmente pertenecen a tres familias principales: parrilla móvil/fija, horno rotatorio y de lecho fluidizado. Los hornos rotatorios tienen la gran ventaja de ser capaces de procesar cualquier tipo de residuos, por lo general pueden soportar temperaturas de incineración más altas que las parrillas móviles. Son particularmente adecuados para el tratamiento de los residuos que requieren altas temperaturas. La capacidad de tratamiento máxima de estas cámaras de combustión, en términos de energía térmica de entrada en base al PCI, es igual a 30 MW por línea. Los lechos fluidizados circulantes han encontrado crecientes aplicaciones dentro de las técnicas de incineración. Sin embargo, uno de los principales inconvenientes de estas tecnologías está relacionado con el requisito de preparación de combustible, sobre todo cuando se trata de los RSU. Por esta razón, algunos tipos de residuos, por ejemplo lodos, con una distribución homogénea de partículas, son los principales candidatos a ser quemado en estos dispositivos. En el caso de lecho fluidizado, la máxima capacidad de tratamiento por línea indicada es igual a 90 MW, en términos de energía térmica de entrada en base al PCI. Los Incineradores de parrilla se

Capítulo 2 25

aplican ampliamente para RSU. Estos se pueden distinguir por la forma en que los residuos se transportan a través de las diferentes zonas en la cámara de combustión (Lombardi, Carnevale, and Corti 2014). Cada uno tiene que cumplir con los requisitos en relación con la alimentación de aire primario, velocidad de transporte, combustión y mezcla de los residuos sólidos (Autret et al. 2007). Las cámaras de combustión de parrilla móvil ofrecen mayor capacidad de tratamiento térmico en cuanto a la entrada de alimentación por línea (hasta 120MW en base al PCI) (Lombardi, Carnevale, and Corti 2014).

El subproducto más importante de la incineración es la ceniza de fondo que consiste en silicio, hierro, calcio, aluminio, sodio y potasio en su estado de óxido. Estos materiales están presentes dentro de un rango de 80 a 87% de las cenizas. Después de considerar las pérdidas del sistema, la eficiencia general de esta tecnología es de aproximadamente 25% sin incluir el consumo en planta (Ouda et al. 2015). Las plantas de incineración, pueden ser clasificadas según su capacidad. Las pequeñas son aquellas con rendimiento inferior a 100.000 T/año, plantas medianas son aquellas en el rango 100.000-250.000 T/año, mientras que las plantas grandes son aquellos que tienen un rendimiento mayor de 250.000 T/año. El continente europeo posee plantas de incineración que suelen producir hasta 546 kWh de electricidad por T de residuos, lo que corresponde a una eficiencia bruta de 18%, basada en un PCI del residuo de 10,44 MJ/T (sólo la producción de electricidad). Teniendo en cuenta el consumo promedio de 150 kWh/T de residuos en la planta, la electricidad exportada es de 396 kWh/T (eficiencia neta del 13%). Aunque la mayoría de las plantas modernas, a 40 bar y 400°C, por lo general producen 640 kWh/T de electricidad, lo que corresponde a una eficiencia eléctrica bruta de 22% (PCI de 10,44 MJ/T). Con un consumo en planta de 120 kWh/T, y exportando alrededor de 520 kWh de electricidad por T de residuos, la eficiencia neta bajaría al 18% (Lombardi, Carnevale, and Corti 2014).

2.1.2 Pirólisis

La pirólisis es un método de tratamiento térmico de residuos llevado a cabo en un ambiente libre de oxígeno. Dependiendo de los parámetros operativos, el proceso de pirólisis se puede clasificar en tres tipos: pirólisis convencional, rápida y relámpago. Los parámetros de funcionamiento de estos tres tipos de pirólisis se muestran en la **Tabla**

2-1. La **Tabla 2-2** muestra la composición de los gases de pirólisis, que son producto de algunos procesos particulares de pirólisis (Lombardi, Carnevale, and Corti 2014).

Tabla 2-1: Parámetros de funcionamiento para los tres tipos de pirólisis (Kalyani and

	Pandey 2014).		
Parámetros	Pirólisis	Pirólisis	Pirólisis
Farametros	convencional	rápida	relámpago
Temperatura (K)	550-900	850-1250	1050-130
Tasa de calor (K/s)	0.1-1	10-200	>1000
Tamaño de partícula mm	5-50	<1	<0.2
Tiempo (s)	300-3600	0.5-10	< 0.5

Tabla 2-2: Composiciones de los gases de pirólisis (Kalyani and Pandey 2014).

Composición	Cantidad (Vol%)
CO	35.5
CO ₂	16.4
CH ₄	11
H_2	37
Valor calorífico (Kcal/Nm³)	3430

Los rendimientos de gas de pirólisis, aceite y carbón dependen principalmente de la temperatura de proceso, velocidad de calentamiento, así como del elemento pirolizado. Generalmente cuanto mayor sea la temperatura, mayor será la fracción gaseosa. Con una menor temperatura y una mayor rapidez de calentamiento, se puede obtener mayor producción de aceite.

Actualmente, la única planta de pirólisis de RSU en funcionamiento en Europa está en Burgau Alemania y ha estado trabajando desde 1986. La planta procesa alrededor de 38.000 T/año de RSU y lodos depurados. Los RSU allí son previamente trillados hasta un tamaño máximo de 300 mm. Se conoce que el poder calorífico de la materia prima ha registrado un incremento en los últimos años hasta aproximadamente 10,2 GJ/T. La pirólisis se lleva a cabo en alrededor de 500°C en un horno rotatorio, que se calienta indirectamente por parte de los gases de combustión (aproximadamente 20%) a partir de la combustión del gas de síntesis. El gas de síntesis, de aproximadamente 636 m³/T, que contiene hidrógeno, monóxido de carbono, dióxido de carbono, metano y otros hidrocarburos, tiene aproximadamente 10-14 GJ/m³ de PCI, y se quema, junto con el gas de relleno sanitario, a la temperatura en exceso de 1250°C (Lombardi, Carnevale, and Corti 2014).

Capítulo 2 27

Sobre la pirólisis no fue posible obtener fuentes de información y referencia de estudios para la evaluación de esta tecnología, en escenarios poblacionales de otros países.

2.1.3 Gasificación

El proceso de gasificación constituye combustión parcial RSU y biomasa para la producción de gas y carbón. Los gases producto, principalmente CO₂ y H₂O, se reducen a CO y H₂ utilizando carbón. El proceso genera una cierta cantidad de metano y otros hidrocarburos superiores, dependiendo del diseño del reactor y los parámetros operacionales. En presencia de un agente gasificador, diversas reacciones heterogéneas convierten la materia prima a gas.

El gas combustible producido consta de CO, CO₂, CH₄, H₂, H₂O, además de otros gases inertes y otros contaminantes tales como pequeñas partículas de carbón, alquitrán y cenizas. Si el proceso de gasificación no ocurre utilizando un agente oxidante, se requiere de una fuente de energía externa. Esto se conoce como gasificación indirecta. El vapor es el agente oxidante más utilizado en gasificación indirecta debido a su fácil producción, y también a su capacidad de aumentar el contenido de hidrógeno del gas combustible producido. Un sistema de gasificación consiste de tres componentes principales: (1) El gasificador, que produce el gas combustible, (2) el sistema de limpieza, que elimina los componentes peligrosos de gas combustible y (3) el sistema de recuperación de energía (Lombardi, Carnevale, and Corti 2014).

La Figura 2-1, ilustra las opciones del proceso básico y las posibles salidas de la gasificación. En este proceso hay combustión parcial de los RS a altas temperaturas y se da en un ambiente controlado, que prácticamente convierte casi todos los RS en gas y carbón. Este ocurre en dos etapas. Durante la primera etapa, los RS son parcialmente quemados para formar gas pobre (que comprende CO₂ y H₂O). Durante la segunda etapa, el CO₂ y H₂O se reducen químicamente para formar principalmente monóxido de carbono (CO) y gas de hidrógeno (H₂). La composición del gas resultante es 18-20% de H₂, 18-21% de CO, un 2-3% de CH₄, 8-10% de CO₂, y el resto es nitrógeno. Las dos etapas se separan en el gasificador. La gasificación requiere temperaturas de aproximadamente 750-800° C y presión atmosférica mayor o igual a 1 atm (Ofori-Boateng, Lee, and Mensah 2013).

En principio la materia prima podría ser cualquier hidrocarburo; pero en la práctica, para un gasificador dado, esta es más bien estrecha inclusive más que para una cámara de combustión. El intervalo admisible de las propiedades de las materias primas, debido a la química y dinámicas de fluido de la gasificación, son muy sensibles a las variaciones de la composición debido a la humedad, contenido de cenizas, tamaño de partículas, densidad, reactividad, etc. A diferencia de las instalaciones de combustión, donde la salida útil es potencia y posiblemente el calor, en una planta de gasificación la salida puede variar en un amplio rango: no sólo energía y calor, sino también productos químicos, combustibles líquidos o hidrógeno. Para ello, sin embargo, el gas de bajo poder calorífico, Gas de síntesis, convertible a diferentes tipos de energía (Gutierrez 2009), debe ser tratado adecuadamente para satisfacer los requisitos estrictos del proceso para la producción de productos químicos, combustibles líquidos o de hidrógeno. Es necesario un tratamiento adecuado de gas de síntesis para satisfacer los requisitos de alta eficiencia, ciclos internos (turbinas de gas, motores de combustión interna), que no soportan gases ácidos, partículas, alquitrán y todas las demás impurezas del gas de síntesis generado por el gasificador (Consonni and Viganò 2012).

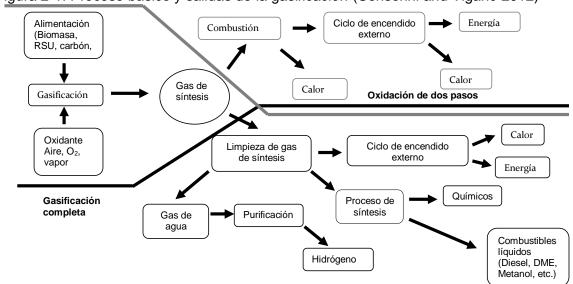


Figura 2-1: Proceso básico y salidas de la gasificación (Consonni and Viganò 2012)

2.1.4 Digestión anaerobia

Para esta tecnología, los residuos orgánicos son utilizados como materia prima para el proceso, que luego es degradado por microorganismos en ausencia de oxígeno. Esto reduce la cantidad de residuos y produce biogás, que puede ser utilizado como

Capítulo 2

combustible para el transporte o para la cogeneración. Los residuos inertes e inorgánicos restantes son gasificados o incinerados. Durante el proceso de Digestión Anaerobia (DA), las temperaturas pueden aumentar hasta 65°C, y comenzar a disminuir después de cierto tiempo. En la Tabla 2-3 se muestra la comparación entre los gases que componen el biogás producido desde relleno sanitario y digestión anaerobia. Dentro de la conversión anaerobia o fermentación de los RSU, más del 90% de la energía disponible en los desechos se retiene dentro del biogás como metano y el resto se convierte en lodos. Este proceso se lleva a cabo en sistemas o reactores cerrados llamados digestores (Ofori-Boateng, Lee, and Mensah 2013). El agua tiene un papel importante en el control de todo el proceso de digestión anaerobia. Es responsable del crecimiento de la población microbiana y también trabaja como agente regulador para el sustrato y los reactivos. El proceso de digestión anaerobia se clasifica de diferentes formas, según el diseño del reactor, y sus parámetros de funcionamiento tales como: el pH, sólidos totales (TS), sólidos volátiles (VS) contenidos y biodegradabilidad de sustrato. De acuerdo al porcentaje de sólidos contenido en la fracción orgánica, los sistemas pueden clasificarse en bajos (menor a 15%), medios (15-20%) y altos (20-40%). Por lo tanto, el sistema de digestión anaerobia húmeda se caracteriza por un total de sólidos menores al 15%. Un sistema anaerobio seco se caracteriza por un total de sólidos superior al 15%.

La digestión anaerobia de la materia orgánica se produce en cuatro pasos, denominados hidrólisis, acidogénesis, acetogénesis, y metanogénesis. La digestión anaerobia puede considerarse como el trabajo en conjunto de microorganismos tales como, bacterias acetogénicas, acidogénicas y metanógenicas, etc. Estos son responsables de la producción de biogás a partir de materia orgánica la cual se encuentran en los residuos en forma de polímeros tales como: hidratos de carbono (celulosa, hemicelulosas, almidón, etc.), aceites, grasas y proteínas. En general, los microorganismos no son capaces de utilizar estos polímeros debido al gran tamaño de las moléculas, al no poder penetrar la pared celular. Por lo tanto, las bacterias acidogénicas producen enzimas extracelulares tales como celulosa, xilanasa, amilasa, lipasa, enzimas proteolíticas, etc., para hidrolizar los polímeros. Los carbohidratos, proteínas, grasas y aceites se hidrolizan en azúcares monoméricos, aminoácidos y ácidos grasos, respectivamente (Kothari et al. 2014).

2.1.5 Generación vía relleno sanitario (Digestión aeróbica)

El proceso de descomposición de residuos orgánicos en vertederos, es ligeramente sinónimo a la digestión anaerobia en digestores de biogás. Los microorganismos que viven en el material orgánico tales como residuos de alimentos y papel, hacen que estos materiales se descompongan, liberando metano en gran cantidad y CO₂ en pequeñas cantidades. El gas de relleno normalmente comprende 50% de metano y 50% de dióxido de carbono. El biogás emitido por los vertederos es atrapado y quemado para producir electricidad. Normalmente es atrapado desde pozos perforados al interior de los rellenos por medio de tuberías. El gas crudo (o mezcla con gas natural) se introduce en turbinas de combustión o turbinas de ciclo combinado para generar energía eléctrica (Ofori-Boateng, Lee, and Mensah 2013). La materia prima básica para la biometanización puede variar y los estudios muestran que este puede contener residuos de vegetales, suero de leche, residuos agrícolas y de restaurante (Ouda et al. 2015).

Tabla 2-3: Comparación entre gases de biogás desde relleno sanitario y biodigestor (Ofori-Boateng, Lee, and Mensah 2013).

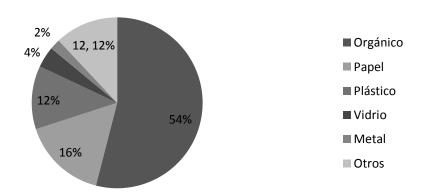
Composición del gas	% Relleno sanitario	% Biodigestor
Metano CH₄	55	45-60
CO_2	45	35-50
CO	-	0.0-0.3
N_2	3.1	1.0-5.0
H_2	-	0.0-3.0
H ₂ S mg/m ³	88	0.1-0.5
O_2	0.8	-

2.2 Poder Calorífico Inferior (PCI)

El poder calorífico de un combustible es la cantidad de energía (kJ o kcal) que produce la combustión de 1 kg del mismo. El PCI es la cantidad de calor neto desprendido por unidad de combustible sin enfriar o condensar los productos de la combustión, con lo que se pierde el calor contenido en el vapor de agua formado en la combustión. El PCI es el valor que se tiene en cuenta al hablar de las cualidades energéticas de un producto. En los procesos industriales no se aprovecha el calor de condensación del vapor, puesto

Capítulo 2 31

que los gases se evacuan a una temperatura superior al punto de rocío. De ahí que en la práctica se use el PCI (Sanchéz Tolosa 2012).


El contenido de energía del residuo, se puede determinar mediante el uso de una caldera a gran escala como un calorímetro, una bomba calorimétrica de laboratorio, o cálculos basados en modelos empíricos. Debido a la dificultad de construir una caldera a gran escala, la mayoría de los datos se obtienen a partir de los resultados de otros métodos. Cuando se compara con las mediciones de una bomba calorimétrica, un modelo empírico puede determinar el contenido de energía de los RSU si los parámetros en el modelo están bien establecidos. El PCI, se define como el contenido de energía liberada por la combustión de los RSU en un incinerador. Este se puede predecir a partir de los modelos basados en el análisis aproximado de la composición física, y el análisis último. Se necesitan análisis de C, H, O, S, CI y el contenido de humedad en RSU para la predicción de PCI; sin embargo, la obtención de tales datos puede ser costosa y consume tiempo. A pesar de esto, se han desarrollado modelos rentables para la predicción del PCI de RSU a partir de ecuaciones empíricas basadas en componentes físicos tales como: residuos de alimentos, papel y cartón, plásticos, textiles, madera, entre otros (Chang et al. 2007).

El objeto de este estudio no contempla un análisis de laboratorio para los residuos mencionados anteriormente, por lo tanto se han tomado valores de referencia reportados en casos de estudios e investigaciones con objetivos similares a los fijados en el presente trabajo y realizadas en países como Arabia Saudita, España, Brasil, Argentina, México, Chile. Para estos países, los valores de PCI, son igualmente referenciados y no son objetivo de la investigación los resultados de análisis o mediciones realizadas directamente. Por otro lado se tiene como referencia o punto de comparación un PCI total de 8,90 MJ/kg para residuos típicos reportado por (Castells 2005). Así como un valor medio ponderado de PCI de 97 plantas de incineración alrededor del mundo igual a 10 MJ/kg (Themelis et al. 2013). Un estudio de caracterización de residuos realizado por Empresas Varias de Medellín (EVM) en el año 2009, determinó un PCI total de los residuos en relleno sanitario igual a 4,09 MJ/Kg (Grupo epm 2016).

Conociendo la composición física de los RS, por escenario, se puede estimar de forma aproximada el PCI total, a partir de la ponderación del PCI por tipo de residuo, según su fracción másica. Los PCI típicos de cada componente de los RS fueron tomados de la

Guía para la aplicación de tecnologías de los residuos a energía en América Latina y el Caribe (Themelis et al. 2013). En esta guía se presentan casos de estudio en Buenos Aires Argentina, Toluca México y Valparaíso Chile, todas las anteriores ciudades de Latinoamérica, lo cual permite aplicar la información en este trabajo porque esta región posee una composición física de RSU similar (Leckner 2015). La Figura 2-2 muestra la composición física de RSU para Latinoamérica.

Figura 2-2: Composición de RSU en países de Latinoamérica (Leckner 2015).

Los valores de PCI por tipo de residuo de este estudio, se han comparado los de otros estudios realizados en Arabia Saudita, Brasil y España. A nivel nacional se han comparado con los valores de PCI obtenidos en la caracterización química realizada por EVM en el año 2009. Estos valores de PCI se muestran en la **Tabla 2-4**. En este trabajo se usaron los datos de los valores de PCI de Buenos Aires, Toluca y Valparaíso para realizar los cálculos en los escenarios seleccionados. Se puede observar de la misma tabla que los valores reportados por EVM son superiores inclusive a los usados en este estudio. Así que la estimación, realizada con valores más bajos a los reportados por EVM, disminuye la incertidumbre en el cálculo de esta cantidad.

Capítulo 2

	PCI	PCI (MJ/kg)	PCI	PCI	PCI
	(MJ/kg)	<i>(MJ/kg)</i> Argentina	(MJ/kg)	(MJ/kg)	(MJ/kg)
Tipo de residuo	Arabia	J	EVM	Brasil	España
	Saudita	Chile			
		México			
Papel y cartón	15,82	15,6	23,23 ¹	16,87	10,05
Residuos mixtos de alimentos	5,58	4,6	6,97	5,49	2,72
Plástico mixto	32,56	32.4	37,17	26,36	35,22
Textiles	18,84	18.4	18,58	14,55	14,35
Madera	15.12	15.4	18,58	10,54	13,58
Fuente	(Ouda et al. 2015).	(Themelis et al. 2013)	(Grupo epm 2016)	(Ministerio de Minas y Energía de Brasil	et al.

Tabla 2-4: PCI de diferentes tipos de residuos en diferentes países.

2.3 Modelos matemáticos para el cálculo del poder de aprovechamiento energético (PAE)

2.3.1 Incineración

En la ecuación (2.1) se muestran las expresiones para el cálculo de la energía eléctrica que puede obtenerse mediante incineración:

$$PER_{i} = \eta (M \cdot PCI_{RSU})/1000$$
 (2.1)

Donde:

PER_i = Potencial de energía recuperada en MWh/día

¹ Promedio de papel y cartón, EVM presenta estos dos componentes desagregados

M= Masa total de residuo sólido seco en T/día, PCI es el poder calorífico inferior de diferentes residuos en kWh/Kg.

 η = Eficiencia de proceso y se toma de un 18 %(Ouda et al. 2015; Vicente L et al. 2014).

2.3.2 Digestión anaerobia

La digestión anaerobia es el proceso preferido para la fracción de RSU orgánicos, allí se permite la actividad de microbios en presencia de humedad. La expresión utilizada para calcular el potencial de producción de electricidad para el total de la fracción orgánica de RSU es la que se da en (2.2):

$$PER_{D.A.} = \sum_{i=1}^{n} P.R_{AC}. f.M_{FORSU}. Q.\eta$$
 (2.2)

Donde:

P= Población residente en determinado lugar

R_{AC}= Generación anual per cápita de residuos en (T/hab-día)

f= Fracción de materia orgánica en el residuo sólido (%).

 M_{FORS} = Generación de metano por tonelada de Fracción Orgánica de Residuos Sólidos (FORS) (Nm 3 /T).

Q= Poder Calorífico Inferior del biogás debido al metano (MI/m³)

 $\eta=$ Eficiencia de proceso y se toma de un 26 % para motor reciprocante de combustión interna (Gómez et al. 2010).

Aunque la digestión anaerobia se lleva a cabo bajo condiciones de operación controladas, se reportan diferentes valores asociados a la cantidad de metano generado a partir de la FORSU. Para este estudio se tomó igual a 71 Nm³/T, asumiendo un porcentaje de 55,5% de contenido de metano dentro del biogás (Murphy and McCarthy 2005). La literatura reporta valores de rendimiento del biogás que van desde los 67,5 hasta los 122 Nm³/T de fracción orgánica de residuos (Gómez et al. 2010). Se conoce del proyecto Chicón en Chigorodó Antioquia, en donde a partir de la digestión anaerobia se estiman producir 2 millones de m³ de biogás a partir de 15.000 T/año de residuos sólidos

Capítulo 2 35

orgánicos (GICON 2016). De lo anterior de se puede obtener una relación de 133 m³/T de biogás y 73,82 m³/T de metano considerando un 55,5 % de contenido de este último gas. A nivel internacional se tiene referencia de una planta de digestión anaerobia en Canadá, con rendimientos de 120 m³/T y 66,6 m³/T de biogás y metano respectivamente (New York City Economic Development Corporation 2010). En Japón se cuenta con una planta instalada de digestión anaerobia con rendimiento igual a 107 m³/T de biogás y 59,39 m³/T de metano (Moriarty 2013). Si bien el rendimiento del metano puede variar de acuerdo a la población, este valor de 71,04 m³/T podría generalizarse. En Colombia se cuenta con una distribución de residuos aproximadamente similar (Larochelle, Turner, and LaGiglia 2012)

2.3.3 Gas de relleno sanitario (Digestión aeróbica)

La expresión para calcular las emisiones de metano desde los rellenos sanitarios está dada por (2.3) (Aguilar-Virgen, Taboada-González, and Ojeda-Benítez 2014; Mambeli Barros, Tiago Filho, and da Silva 2014; Mustafa, Mustafa, and Mutlag 2013; Ordoñez Ordoñez 2011).

$$Q_{CH4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} kL_{O}\left(\frac{M_{i}}{10}\right) e^{-kt_{ij}}$$
(2.3)

Donde:

Q_{CH4}= Generación anual de metano en el año calculado (m³/año)

 M_i = Índice de disposición de residuos (T/año)

 L_0 = Potencial de generación de metano (m³/T)

k= Constante del índice de generación de metano (1/año)

n= (año calculado) - (año inicial de aceptación de los residuos)

i= 1 incremento del año

j= 0.1 incremento del año

t_{ij}= Edad de la j sección de residuos aceptados en el año i.

La obtención de Q_{CH4} es importante ya que la potencia eléctrica generada por el biogás, depende de esta variable tal como se describe en (2.4):

$$PER_{G.R.} = PCI_{biogás}. Q_{CH4}. \gamma. \eta$$
 (2.4)

Donde:

PCI biogás = Valor del PCI biogás obtenido a partir de los RSU debido al metano en kWh/m³

 γ = Eficiencia del sistema de recuperación de biogás y se toma del 80% para este estudio.

 η = Eficiencia eléctrica de la tecnología utilizada para la generación de electricidad y toma un valor de 33% (Bove and Lunghi 2006; Cadena, Pérez, and Mora 2012)

2.4 Ventajas y desventajas de las diferentes tecnologías

A continuación en la **Tabla 2-5** se resumen las ventajas y desventajas de las diferentes opciones tecnológicas.

Tabla 2-5: Ventajas y desventajas de las diferentes tecnologías (Kalyani and Pandey 2014)

Tecnología	Ventajas	Desventajas
Digestión anaerobia	Recuperación de energía con una alto grado de producción	Inadecuado para los desechos que contienen menos materia orgánica
	No requiere potencia de tamizado	Requiere la separación de residuos para mejorar la eficiencia de digestión
	Sistema cerrado permite atrapar el gas producido para su uso	
	Controla las emisiones de GEI	
	Libre de mal olor, roedores, contaminación visible y de resistencia social	
	Diseño compacto: necesita menos superficie de tierra	
	Beneficios ambientales positivos	
	Se puede hacer en pequeña	

Capítulo 2 37

Tecnología	Ventajas	Desventajas
	escala	,
Recuperación de gas de relleno	Opción de bajo costo	La escorrentía superficial durante las lluvias provoca la contaminación
	El gas producido puede ser utilizado para la generación de energía o la aplicación térmica directa	El suelo y las aguas subterráneas pueden quedar contaminado por lixiviado
	No requieren personal calificado	Los rendimientos son sólo el 30% - 40% del total del gas generado
	Los recursos naturales se devuelven al suelo y se reciclan	Se requiere grandes superficies
	Puede convertir las tierras pantanosas en áreas útiles	Costos de transporte significativos
		El costo de pre-tratamiento para actualizar el gas a la calidad de la tubería y el tratamiento de lixiviados puede ser significativo
		Explosión espontánea debido a la acumulación de gas metano
Incineración	Más conveniente para residuos de alto poder calorífico	Menos adecuado para residuos acuosos, de alto contenido de humedad, bajo valor calórico y desechos clorados
	Se pueden configurar unidades con alto rendimiento y de alimentación continua	Concentración tóxica de metales en cenizas, emisiones de partículas, SO x, NO x,
	Energía térmica para la generación de energía o calentamiento directo	Alto capital y costos de operación y mantenimiento
	Relativamente silenciosa y sin olor	Requieren personal calificado
	Se requieren pocas tierras	La eficiencia global de las pequeñas centrales eléctricas es baja
	Puede ser ubicado dentro de los límites de la ciudad, lo que reduce los costos de transporte	
	Higiénico	

Tecnología	Ventajas	Desventajas	
Pirólisis / gasificación	Producción de combustible gas / aceite, que puede ser utilizado para diversos fines	Recuperación neta de energía puede ser difícil en residuos con humedad excesiva	
	Control de la contaminación superior en comparación con la incineración	Alta viscosidad del aceite de pirólisis puede ser problema para su quema y transporte	

2.5 Costo unitario de la electricidad

El costo unitario de la electricidad generada se puede evaluar a partir de la ecuación (2.5). Este costo es un indicador que permite comparar costos de producción de electricidad para las diferentes tecnologías (Bidart, Fröhling, and Schultmann 2013; Gómez et al. 2010):

$$C\pi_{c} = a I_{C} + O_{C} - R_{C}^{bp}$$
 (2.5)

Donde:

C= Costo específico de la energía generada anualmente de acuerdo a la tecnología instalada (USD/MWh)

 $\pi_c =$ Energía generada anualmente (MWh/año)

a = Coeficiente de anualización para la inversión inicial

I_C= Costo de capital de instalación (USD)

O_C= Costo de operación y mantenimiento (USD)

 $R_C^{bp} =$ Ingreso obtenido a partir de los subproductos (USD)

El coeficiente de anualización está dado por:

Capítulo 2

$$a = \frac{r}{1 - \frac{1}{(1+r)^N}} \tag{2.6}$$

Donde *r* es la tasa de descuento efectiva en porcentaje y N tiempo de vida de la inversión (Gómez et al. 2010).

2.6 Beneficios de la ley 1715

La ley 1715 sancionada por el gobierno nacional de Colombia en mayo del 2014, tiene como finalidad establecer los instrumentos de promoción para el aprovechamiento de Fuentes No Convencionales de Energía (FNCE), y fomentar la inversión, investigación y desarrollo de tecnologías limpias para producción de energía, eficiencia energética y respuesta a la demanda. La misma ley en los artículos 11, 12, 13 y 14 plantea unos beneficios o incentivos tributarios, los cuales se mencionan a continuación:

2.6.1 Impuesto sobre la renta (Artículo 11)

El beneficio consiste en el derecho a reducir anualmente de su renta, por los 5 años siguientes al año gravable en que hayan realizado la inversión, el cincuenta por ciento (50%) del valor total de la inversión realizada, condicionado a:

- Que el valor a deducir no supere el 50% de la renta líquida del contribuyente determinada antes de restar el valor de la inversión
- Que el beneficio ambiental de la inversión haya sido certificado por el Ministerio de Ambiente y Desarrollo Sostenible

2.6.2 Exclusión de IVA (Artículo 12)

Los equipos, elementos, maquinaria y servicios nacionales o importados que se destinen a la pre-inversión e inversión, para la producción y utilización de energía partir de las fuentes no convencionales, así como para la medición y evaluación de los potenciales recursos estarán excluidos de IVA.

El beneficio está condicionado a dos circunstancias:

- Que la UPME expida una lista de qué equipos y servicios se utilizan para el propósito mencionado.
- Que el Ministerio de Ambiente y Desarrollo Sostenible certifique los equipos y servicios excluidos del IVA.

2.6.3 Exención de aranceles (Artículo 13)

Este beneficio aplica para los titulares de nuevas inversiones en nuevos proyectos de FNCE, respecto de la importación de:

- Maguinaria
- Equipos
- Materiales
- Insumos

Se exige destinación exclusiva a labores de preinversión e inversión en proyectos de FNCER, y ausencia de producción nacional, es decir que su único medio de adquisición esté sujeto a la importación.

2.6.4 Depreciación acelerada de activos (Artículo 14)

La actividad de generación a partir de FNCE goza del régimen de depreciación acelerada, de la siguiente manera:

La depreciación acelerada será aplicable a las maquinaras, equipos y obras civiles necesarias para la preinversión, inversión y operación de la generación con FNCE, que sean adquiridos y/o construidos, exclusivamente para ese fin, a partir de la vigencia de la presente ley. Para estos efectos, la tasa anual de depreciación será no mayor de veinte por ciento (20%) como tasa global anual. La tasa podrá ser variada anualmente por el titular del proyecto, previa comunicación a la DIAN, sin exceder los límites señalados en el artículo 14 excepto en los casos en que la ley autorice porcentajes globales mayores. (Baker & McKenzie International 2014; IPSE 2014).

3. Metodología

El desarrollo de los objetivos ha requerido el planteamiento de tres etapas. La primera ha sido elaborada para la selección de los tres escenarios poblacionales bajo los cuales se realizó la investigación. La segunda indica el procedimiento para la selección de las tecnologías de conversión que aplican en cada escenario, así como la estimación del potencial energético, que puede obtenerse, desde cada una. La tercera consistió en la metodología para la evaluación de prefactibilidad. Esta última permitió tomar decisiones con respecto a la conveniencia de implementar alguna de las tecnología en los diferentes escenarios.

Para la selección de los escenarios poblacionales se establecieron tres grupos, tal como lo plantea la ley colombiana de ordenamiento territorial 388 de 1997, y los cuales están conformados por: Grupo 1 (G1) municipios con población menor a 30.000 habitantes, Grupo 2, (G2) municipios con población entre 30.000 y 100.000 habitantes, y Grupo 3, (G3) poblaciones con número de habitantes superior a 100.000. El número de habitantes por cada grupo, se tomó a partir de las proyecciones realizadas por el DANE, entidad encargada del procesamiento de la información, obtenida en el censo poblacional realizado en el año 2005 en todo el territorio nacional (Posada Hernandez 2010). Para cada grupo poblacional se evaluó la razón entre la población rural y la urbana. Esta razón se denomina Índice de Porcentaje Urbano (IPU). Para el G1 se clasificaron aquellos municipios con IPU superior a uno, indicando población predominantemente rural. Para el G2, se seleccionaron aquellos municipios con IPU superior a 0,9 e inferior a 1,1, es decir aquellos donde existe aproximadamente la misma proporción entre población urbana y rural. Para el G3, se centró la búsqueda en los municipios con un IPU inferior a uno, es decir aquellos donde existe predominio de la población urbana. La discriminación por grupos, aumenta la posibilidad de diversificar la cantidad y clase de residuos sólidos. En consecuencia, la posibilidad de involucrar varias tecnologías de conversión en cada escenario, para la posterior elección de la definitiva para cada uno. De los municipios clasificados por grupo, se procedió a la búsqueda de los respectivos Planes de Gestión

de Residuos Sólidos (PGRS). Fueron descartados los municipios que cuentan con información insuficiente, relativa a la composición física, fracción másica, cantidad y características de los RS. De igual forma aquellos que a la fecha no han desarrollado o no se tiene fácil acceso a su respectivo PGRS. Finalmente fue elegido, de cada grupo, como escenario aquel municipio con información completa y disponible de forma pública. La Figura 3-1 muestra la metodología general para el desarrollo de este objetivo.

IPU Proyección G1 >1 Ley 388 de 1997 población 2015 G2 0,9-1,1 G1 < 30.000 G3 <1 G2 30.000-100.000 G3>100.000 ¿ Plan de Gestión de Escenario Residuos Sólidos PGRS? definitivo ¿Información? No Si

Figura 3-1: Secuencia metodológica objetivo 1 Autor

Una vez establecidos los tres escenarios definitivos, de sus respectivos PGRS, se realizó el análisis de la información relacionada con la cantidad de residuos sólidos generada, composición física y producción per cápita. Lo anterior ha de permitir la selección de las tecnologías de conversión de Residuos sólidos Urbanos (RSU), a energía eléctrica. Existe en cada escenario, una cantidad de habitantes, producción per cápita en (kg-Hab / día) y una variedad de RSU de tipo orgánico e inorgánico. De lo anterior, valorando las principales ventajas y desventajas de cada una de las tecnologías, indicadas en la **Tabla 2-5**, fue posible recomendar las tecnologías adecuadas desde el punto de vista técnico.

El poder de aprovechamiento energético se calculó de acuerdo a los modelos matemáticos que se han indicado en el numeral 2.3. Estos están basados en la eficiencia de la tecnología, la masa, y el PCI, del RS (Corredor Becerra 2008; Ouda et al. 2015). La masa depende de la producción per cápita y esta última del número de habitantes de los diferentes escenarios poblacionales. El modelo empleado por Ouda para la incineración dado en la ecuación (2.1), depende del PCI del total los RS sólidos generados, orgánicos e inorgánicos. Los autores (Gómez, Zubizarreta, Rodrigues, Dopazo, & Fueyo, 2010) utilizan para la digestión anaerobia la ecuación (2.2) que depende del PCI del metano,

Capítulo 3 43

principal componente del biogás derivado de la fermentación de los residuos de origen orgánico. Para gas de relleno sanitario o digestión aerobia, (Mustafa, Mustafa, and Mutlag 2013) emplean la ecuación (2.3) de degradación. Para el caso de esta última ecuación y dada su complejidad, se utilizó la aplicación LandGEM para obtener la generación anual de metano. LandGEM se basa en una ecuación de degradación de primer orden para la cuantificación de las emisiones de la descomposición de los residuos en relleno sanitario.

Una vez conocido este valor de generación anual de metano, se empleó la ecuación (2.4) de (Cadena, Pérez, and Mora 2012), para estimar la cantidad de energía eléctrica. Ecuación que depende también del PCI del biogás debido al metano. En este trabajo se seleccionaron las ecuaciones y modelos previamente listados para cada uno de los escenarios estudiados. Los anteriores modelos se han descrito detalladamente en las sección del 2.3 de marco teórico. La información y estudios de referencia para la gasificación de residuos sólidos urbanos en escenarios poblacionales es escaza y no se tiene una expresión matemática para la estimación directa del poder de aprovechamiento energético. Sin embargo con base a la investigación realizada por (Luz et al. 2015) en Brasil, fue posible determinar cuanta cantidad de energía eléctrica es posible obtener desde RSU aplicando este modelo a los escenarios estudiados en este trabajo. En la Figura 3-2, se resume la secuencia metodológica para el desarrollo del segundo objetivo.

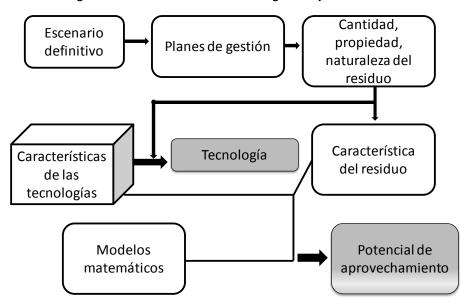


Figura 3-2: Secuencia metodológica objetivo 2 Autor

Para el desarrollo del objetivo 3, se realizó la evaluación de prefactibilidad valorando los costos de inversión. Estos se dividen principalmente en costos de inversión y costos de operación y de mantenimiento (O&M). Estos pueden observarse en la **Tabla 3-1** y en la **Tabla 3-2** para las diferentes tecnologías. El costo aproximado se tomó en base a referencias de la literatura para otros países. La digestión anaerobia, se encuentra en fase de implementación a escala piloto a nivel nacional (GICON 2016). Para conocer el costo preciso de inversión de las diferentes tecnologías, es necesario proporcionar al proveedor un estudio detallado de la caracterización físico - química de los residuos, además de otra información exacta tal como: ubicación del lote, precios fijos de compra de energía, previamente pactados con algún agente comercializador, operador de la planta e inversionista. Se debe tener en cuenta que este tipo de tecnologías gozan del beneficio de exención del IVA y aranceles según lo estipulado en los artículos 12 y 13 de la ley 1715. Aproximación con idea optimista suponiendo acceso a buenos incentivos.

En la columna observación de la **Tabla 3-1** y de la **Tabla 3-2**, se detallan los costos de inversión que debe incluir cada tecnología. Para gas de relleno se requiere de inversión en servicios de ingeniería así como estimación del costo inicial y mantenimiento de los sistemas de recolección de biogás, y equipos para la generación de electricidad mediante motor de combustión interna. Los beneficios de la evaluación de prefactibilidad fueron representados por la venta de electricidad, ingresos por tratamiento de tonelada recibida de residuos sólidos municipales y certificados de reducción de emisiones (CERs), obtenidos por las reducciones de las emisiones de gases de efecto invernadero (GEI). Los ingresos por CERs no fueron considerados para incineración ya que desde este tecnología se libera cierta cantidad de CO₂ en el proceso (Tan et al. 2015). También han sido valorados los beneficios otorgados por la ley colombiana 1715, para la comercialización de electricidad desde Fuentes no Convencionales de Energía Renovable (FNCER) tales como: Impuesto sobre la renta, exclusión del IVA, exención de aranceles y depreciación acelerada de activos (Baker & McKenzie International 2014).

Tabla 3-1: Costos de inversión para las diferentes tecnologías Autor

Tecnología	Observación	Costo Inversión
	-Calderas de lecho fluidizado	65.200 USD/T_día
	-Sistema térmico 55%	(X. gang Zhao et al. 2016)

Capítulo 3 45

Tecnología	Observación	Costo Inversión
	-Sistema de suministro de combustible 10%	
Incineración	-Sistema de manejo cenizas 3%	
	-Suministro y sistema de tratamiento de	
	agua 3%	
	-Sistema de limpieza de gases de	
	combustión 15%	
	-Sistema eléctrico 4%	
	-Sistema de control automático 6%	
	-Otros 4%	
		1'200.000 USD/MW
	-Motor de combustión interna	MW: potencia a instalarse
		(Bove and Lunghi 2006)
Gas de relleno sanitario	Cistamo de colocaión de biomás	3'220.000 USD
Gas de relieno sanitano	-Sistema de colección de biogás	(Z, F, and L 2012)
	-Ingeniería, registro y otros servicios	300.000 USD
	profesionales	(Vicente L et al. 2014)
		I(USD) = 101522
		+ 3500 X
		I: Inversión en dólares
Digastián anasrabia	-Total inversión	X: valor en KW a instalarse
Digestión anaerobia	- I otal inversion	(Farming futures 2016;
		IDAE 2007; Local United
		2016; Walla and
		Schneeberger 2008)
Digestión anaerobia	Planta eléctrica PP38P mas	20.442,39 USD
(Planta híbrida a	Biodigestor de cúpula o campana fija	(Palacio Suárez 2007)
Pequeña escala)	Galón ACPM	2,65 USD (Palacio Suárez 2007)

Tabla 3-2: Costos de operación y mantenimiento para diferentes tecnologías Autor

Tecnología	Observación	Costos O&M
Incineración	-Combustible auxiliar 31%	
	-Productos químicos 7%	4% de la inversión
	-Consumo de energía 3%	.,
	-Consumo de agua 5%	(Gómez et al. 2010)
	-Costes laborales 14%	

Tecnología	Observación	Costos O&M
	-Mantenimiento 37%	
	-Protección laboral 3%	
		17 USD/MWh
	Motor de combustión interna (MCI)	(Vicente L et al.
		2014)
		100.000 USD /Año
Gas de relleno	Operación	(Vicente L et al.
sanitario		2014)
Sanitano		3% de la inversión
		en sistema de
	Mantenimiento pozos de biogás	colección
		(Vicente L et al.
		2014)
Digestión	Operación y mantenimiento anual	16 % de la inversión
anaerobia	(Aplica también a pequeña escala)	(Gómez et al. 2010)

Los costos para gasificación se han tomado de acuerdo al estudio de (Luz et al. 2015), dado que es escaza la información sobre costos de tecnologías para la gasificación de residuos sólidos urbanos a gran escala o en escenarios poblacionales. Según la producción diaria de residuos sólidos para los escenarios seleccionados en este estudio, se obtuvo un costo por concepto de equipos e instalación. Se ha indicado la generación diaria de residuos en 2020, último año de proyección de población DANE, dado que en este año existe mayor producción de residuos.

Para evaluar financieramente el proyecto fue necesario el cálculo de algunos indicadores financieros como el Valor Presente Neto (VPN), Tasa Interna de Retorno (TIR) y periodo de recuperación de la inversión (payback). Para lo anterior se utilizó un valor para la tasa de descuento del 10%. La determinación de esta tasa, se hizo de acuerdo al modelo CAPM, (Sánchez 2010) y se explica en detalle en el anexo C. Se definió el periodo de análisis del proyecto igual a 25 años para cada caso. Para los años posteriores a 2020, se tomó una aproximación lineal de la tendencia del último año. Esta es en promedio igual al 0,7 % para diferentes poblaciones del país. Es posible determinar de 2020 en adelante el número de habitantes a través de un método matemático demográfico que depende de variables tales como nacimientos, defunciones y migraciones ocurridas

Capítulo 3 47

durante el periodo intercensal (DANE Departamento Administrativo Nacional de Estadisticas 2009). Dado que no se cuenta con dicha información se ha proyectado considerando el porcentaje de 0,7%.

Una vez realizado el estudio de prefactibilidad y conocido el valor de la TIR, decisivo para aceptar o rechazar las opciones tecnológicas, se tomó la decisión de seguir o abandonar el proyecto en cada uno de los escenarios pertenecientes a los grupos G1, G2 y G3. En la

Figura 3-3 se detalla la secuencia metodológica para el desarrollo del tercer objetivo.

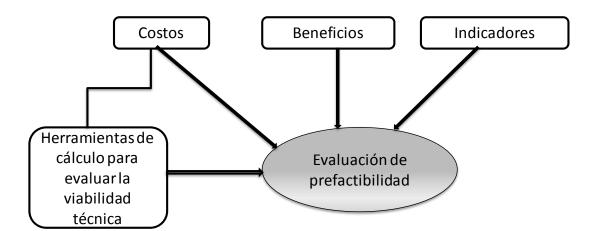


Figura 3-3: Secuencia metodológica objetivo 3 Autor

4. Resultados

4.1 Selección de escenarios poblacionales

Los resultados obtenidos mediante la metodología empleada muestran la selección de un escenario por cada uno de los 3 grupos G1, G2 y G3. El 78% del total de municipios del país, cuenta con una población menor a 30.000 habitantes pertenecientes a G1. El 16,4% del total, se encuentra dentro del G2, el restante 5,6% de municipios, posee una población mayor a 100.000 habitantes.

4.1.1 Escenario 1

El Grupo 1 (G1), está conformado por 870 municipios menores a 30.000 habitantes. En la Figura 4-1 se muestra el histograma de municipios pertenecientes a G1. De este se puede observar que la mayoría de los municipios poseen entre 5.000 y 10.000 habitantes, y por lo tanto allí se concentra la mayor parte de la población. Alrededor del 52% de los municipios se caracteriza por poseer un número de habitantes menor a los 10.000. En el anexo A se listan los municipios pertenecientes a G1 y se resaltan las poblaciones con IPU mayor a 1. El número de poblaciones con número de habitantes superior a 10.000 decrece o sea hace menos frecuente a medida que estas se aproximan a los 30.000 tal como se observa en la misma figura. Las pequeñas poblaciones son más frecuentes y en ellas existe una producción per cápita de residuos sólidos importante. En la Figura 4-2 se muestran los IPU para los municipios pertenecientes al G1. El predominio de la población rural se puede observar mediante valores de IPU superiores a 1.

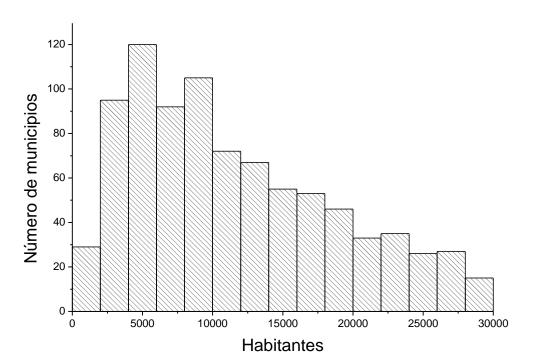


Figura 4-1: Histograma para las poblaciones del G1 Autor

Un total de 470 municipios son menores a 10.000 habitantes, y 357 además de lo anterior, poseen un IPU superior a 1. De estos 357 municipios, se encontró que Guayatá, Pinchote y Villa Caro, reportan información suficiente acerca de las características de los RS producidos. Esta se encuentra dentro de su Plan de Gestión de Residuos Sólidos, por lo tanto fueron seleccionados preliminarmente para realizar el análisis. La revisión detallada de la información disponible, en estos tres últimos, indicó que el PGRS de Guayatá con un IPU de 2,94 es el más completo y por lo tanto fue seleccionado como escenario definitivo. Además de la composición física y fracción másica, muestra el valor de la producción per cápita de RS, en las zonas urbana y rural.

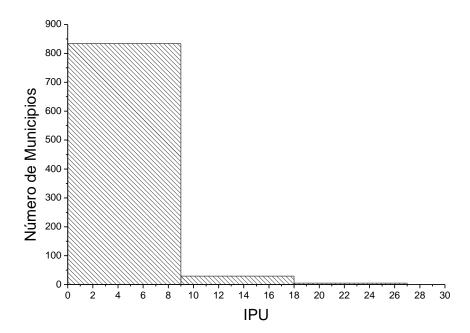


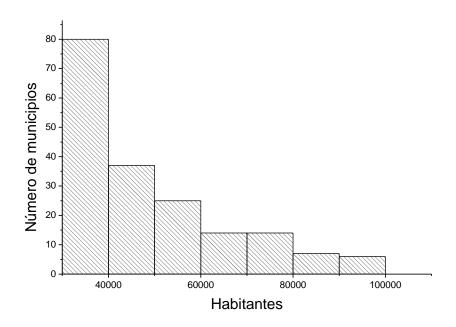
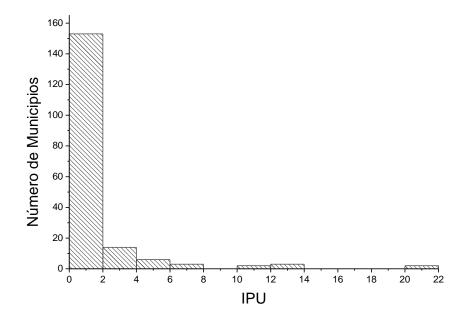
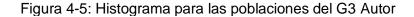
Figura 4-2: IPU para los municipios pertenecientes al G1 Autor

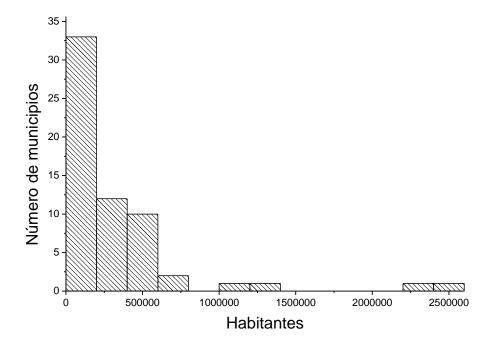
4.1.2 Escenario 2

El grupo G2 está conformado por 183 municipios de los cuales 15 poseen un IPU entre 0,9 y 1,1. En la Figura 4-3 se muestra la cantidad con relación al número de habitantes de cada municipio perteneciente al Grupo 2. La mayor cantidad de estos se concentra entre 30.000 y 50.000 habitantes (117 municipios). Se observa un decrecimiento en la frecuencia a partir de 50.000 habitantes y a medida que se acercan a 100.000.

De los 15 municipios con IPU entre 0,9 y 1,1, únicamente se encontró información oficial suficiente sobre la composición física, fracción másica y producción per cápita de los RS generados en el municipio de Andes con un IPU de 1,02, perteneciente a la región suroeste del departamento de Antioquia, caracterizada por la explotación minera del carbón. El listado inicial de los 183 municipios puede observarse en el anexo A. Allí se muestran las poblaciones en 30.000 y 100.000 habitantes y se resaltan aquellas con IPU entre 0,9 y 1,1. En la Figura 4-4 se muestran los IPU para los municipios pertenecientes al G2.

Figura 4-3: Histograma para las poblaciones del G2 Autor


Figura 4-4: IPU para los municipios pertenecientes al G2 Autor

4.1.3 Escenario 3

El grupo G3 lo conforman 62 municipios. De este grupo 58, poseen un IPU inferior a 1. El histograma para este conjunto, se muestra en la Figura 4-5. De este último se observa que la mayoría de las poblaciones se encuentran en el rango comprendido entre 100.000 y un millón de habitantes. Bogotá, Barranquillla, Cali, Cartagena y Medellín poseen un número de habitantes superior a un millón. Se obtuvo información suficiente sobre la composición física, fracción másica y producción per cápita de los RS generados en Pasto y Pereira. Finalmente se ha elegido Pasto con IPU de 0,2 por poseer PGRS completo. El resto de los municipios con IPU menor que 1, posee información sobre sus PGRS escaza o no se encuentra publicada oficialmente. En el anexo A se listan los municipios pertenecientes a G3 y se resaltan las poblaciones con IPU inferior a 1. En la Figura 4-6 se muestran los IPU para los municipios pertenecientes al G3.

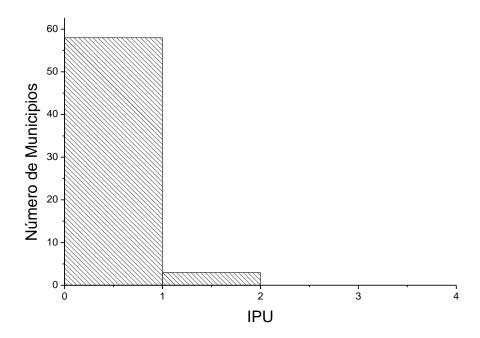


Figura 4-6: IPU para los municipios pertenecientes al G3 Autor

4.2 Características de los escenarios poblacionales

4.2.1 Municipio de Guayatá

Es un municipio colombiano situado en el extremo sur oriental de departamento de Boyacá a 04°56' de latitud norte, 73°30' longitud oeste del meridiano de Grenwich y 0°35' de longitud con relación al meridiano de Bogotá. Para 2015 se contaba con 5.126 habitantes. Sirve de límite entre Boyacá y Cundinamarca, pertenece al Valle de Tenza, provincia de Oriente. Limita por el Norte con Guateque (5,7 km), por el Oriente con Somondoco (12,7 km) y Chivor (2,6 km), por el Occidente con Manta, por el Sur con Gachetá y Ubalá (Cundinamarca 31,5 km) (Municipio de Guayatá 2008).

La composición y PCI de los residuos generados allí, se puede observar en la **Tabla 4-1**. La fracción aprovechable, así como la generación percápita (PP) de residuos reportada en su plan de gestión de residuos sólidos se puede apreciar en la **Tabla 4-2**. La proyección de la población para el periodo 2015-2020 se puede observar en la Figura 4-7. Se ha considerado este periodo de tiempo ya que solo se dispone de proyecciones de población hasta el 2020. Se prevé para el municipio de Guayatá un ligero descenso

tanto en la población urbana como rural durante el mismo periodo de tiempo. Estas proyecciones se han derivado del censo poblacional realizado en el año 2005.

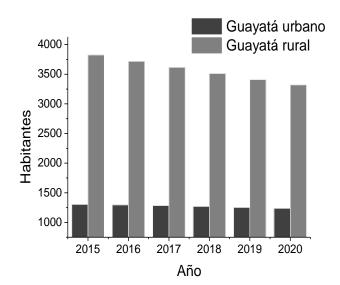


Figura 4-7: Población proyectada para el periodo 2015-2020 Autor

4.2.2 Municipio de Andes

Es un municipio colombiano perteneciente al departamento de Antioquia. Su cabecera está localizada a los 05°39' de latitud norte y 75°52' de longitud oeste con un perímetro urbano de 148 hectáreas. Para 2015 se contaba con un total de 45.814 habitantes. Limita por el norte con los municipios de Betania, Hispania y Pueblo Rico, por el este con Jericó y Jardín, por el sur con el departamento de Risaralda, municipio de Mistrató y por el oeste con el departamento de Chocó, municipio de Bagadó (Alcaldía de Andes 2016).

La composición y PCI de los residuos generados allí, se puede observar en la **Tabla 4-1**. La fracción aprovechable, así como la generación PP de residuos reportada en su plan de gestión de residuos sólidos se puede apreciar en la **Tabla 4-2**. Para este municipio no se dispone de indicador de producción PP para la zona rural. Se conoce de los planes de gestión de residuos de Guayatá, Sabaneta y Medellín, que estos valores son de 0,3, 0,28, y 0,27 kg/Hab-día, respectivamente. Dado que es un valor semejante, para municipios con diferente cantidad de habitantes, el valor se ha tomado igual al promedio de los reportados, es decir 0,28.

La proyección para el periodo 2015-2020 se puede observar en la Figura 4-8. El crecimiento de la población para la zona urbana es de casi 1.700 habitantes y para la

zona rural es de aproximadamente unos 220 habitantes, durante el mismo periodo. Lo anterior es un indicador positivo ya que aumenta la expectativa de producción de residuos sólidos y por lo tanto la producción de energía eléctrica.

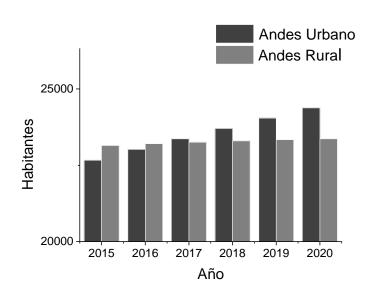
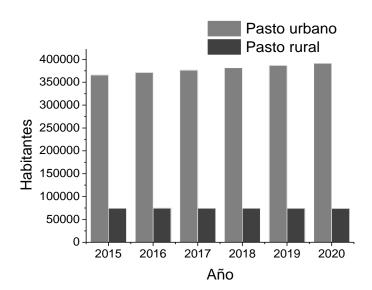


Figura 4-8: Población proyectada para el periodo 2015-2020 Autor

4.2.3 Municipio de Pasto


Pasto es un municipio colombiano, capital del departamento de Nariño. La cabecera municipal tiene el nombre de San Juan de Pasto. Está situado en el suroccidente de Colombia, a los 01°12′ de latitud norte y 77°16′ de longitud oeste en medio de la Cordillera de los Andes, en el macizo montañoso denominado nudo de los Pastos, Valle de Atriz, al pie del Volcán Galeras y muy cercano a la línea del Ecuador. Para 2015 se contaba con un total de 440.040 habitantes. El área urbana está dividida en 12 comunas. La zona rural está compuesta por 17 corregimientos: Buesaquillo, Cabrera, Catambuco, El Encano, El Socorro, Genoy, Gualmatán, Jamondino, Jongovito, La Caldera, La Laguna, Mapachico, Mocondino, Morasurco, Obonuco, San Fernando y Santa Bárbara (Alcaldía de Pasto 2016).

La composición y PCI de los residuos generados allí, se puede observar en la **Tabla 4-1**. La fracción aprovechable, así como la generación PP de residuos reportada en su plan de gestión de residuos sólidos se puede apreciar en la **Tabla 4-2**. Para este municipio no se dispone de indicador de producción PP para la zona rural. Se conoce de los planes de

gestión de residuos de Guayatá, Sabaneta y Medellín, que estos valores son de 0,3, 0,28, y 0,27 kg/Hab-día, respectivamente. Dado que es un valor semejante, para municipios con diferente cantidad de habitantes, el valor se ha tomado igual al promedio de los reportados, es decir 0,28.

La proyección para el periodo 2015-2020 se muestra en la Figura 4-9. Este municipio presenta un crecimiento poblacional de alrededor de 26.000 habitantes en zona urbana, durante el mismo periodo. En zona rural no se presenta crecimiento significativo y la tendencia es a mantenerse constante el número de habitantes. Estas proyecciones se han derivado del censo poblacional realizado en el año 2005.

Figura 4-9: Población proyectada para el periodo 2015-2020 Autor

Tabla 4-1: Poder calorífico inferior y fracción másica de residuos en los tres escenarios Autor

	Autoi			
Composición	PCI de referencia [MJ/kg]	Guayatá fracción másica[%] (Mpio de Guayatá 2015)	Andes fracción másica [%] (Arroyave Tobón 2005)	Pasto fracción másica[%] (Guerrero 2006)
Papel y cartón	15,6	12,4	7,94	8,31
Residuos mixtos de alimentos	4,6	51,4	60,71	70
Plástico mixto	32,4	12,7	2,16	8,57
Textiles	18,4	0,7		1,41
Madera	15,4	1,2		0,73
Total PCI [MJ/kg]		8,73	4,73	7,66

Tabla 4-2: Producción de residuos PP en los tres escenarios Autor

Producción percápita	Guayatá	Andes	Pasto
Urbana [kg/Hab-día]	0,479	0,483	0,55
Rural[kg/Hab-día]	0,3	0,28	0,28
Total masa aprovechable [%]	78,4	70,81	89,02

4.3 Selección de las tecnologías de conversión de residuos sólidos a energía

La selección de las tecnologías ha sido dividida en dos secciones: tecnologías de conversión térmica y biológica, dado que son procesos técnicamente diferentes.

4.3.1 Tecnologías de conversión térmica

Dentro de estas tecnologías se incluyen: la incineración, y gasificación. Para el escenario 1, municipio de Guayatá, de 5.126 habitantes, existe baja producción total de residuos (1,74 T/día) lo que dificulta la adquisición de este tipo de tecnologías. Por otro lado los costos de operación y mantenimiento son altos y la eficiencia global de una pequeña central eléctrica bajo dichos procesos es baja (Kalyani and Pandey 2014). Para Andes y Pasto con 45.184 y 440.040 habitantes respectivamente, ambas tecnologías son aplicables. Estos municipios producen actualmente 17,62 y 225 T/día de residuos. Según estudio de (Luz et al. 2015) la gasificación se puede implementar a partir de 3,0 T/día. Se conoce además del estudio de (X. gang Zhao et al. 2016) que a partir de 100 T/día es

posible implementar la incineración. Las dos tecnologías requieren alimentación continua de RS y pueden ser ubicadas dentro de los respectivos municipios, con el fin de evitar costos de transporte.

Del análisis anterior se puede concluir que este tipo de tecnologías para las poblaciones estudiadas del G2 y G3 pueden aplicar, mientras que para Guayatá grupo G1 pueden existir problemas de transferencia y escalabilidad de tecnología. La capacidad de producción diaria de residuos en dicha población es muy inferior a la reportada en otros procesos a nivel mundial (Abd Kadir et al. 2013; Abu-Hijleh et al. 1998; Estrada Wiechers 2015; Khan and Tanveer 2012; Poletto Filho 2008; X. gang Zhao et al. 2016)

4.3.2 Tecnologías de conversión biológica

La digestión anaerobia y el gas de relleno sanitario (digestión aerobia) pueden ser aplicables a los tres escenarios puesto que en cada uno más de la mitad del total de residuos producidos son de origen orgánico. Además de lo anterior, para el caso de la digestión anaerobia, se conoce de tecnologías que pueden ser implementadas para generar energía eléctrica a pequeña escala (30 kW). Esta tecnología, posee beneficios ambientales positivos tales como el control de las emisiones de gases de efecto invernadero. Para el escenario 1, Guayatá, eminentemente rural, podría recuperarse mayor energía si además se valoran otro tipo de residuos derivado de las actividades agropecuarias por ejemplo estiércol de aves, porcino, vacuno, etc.

El gas de relleno sanitario o digestión aerobia, representa una opción de bajo costo que podría aprovechar terrenos poco productivos para convertirlos en áreas útiles y de allí recolectar el gas para la generación de energía eléctrica. Según el estudio de (Vicente L et al. 2014), esta tecnología puede ser aplicada a poblaciones a partir de los 100.000 habitantes. Aunque no existen casos específicos de referencia para poblaciones menores a este valor, se espera que el crecimiento poblacional, aumente la generación de residuos en el municipio de Andes y por esta razón se ha seleccionado como posible tecnología de conversión para este municipio.

Del análisis anterior se puede concluir que la digestión anaerobia, para las tres poblaciones de estudio, es viable técnicamente porque puede ser implementada a pequeña y gran escala. Lo que posibilita su fácil adquisición para la producción de

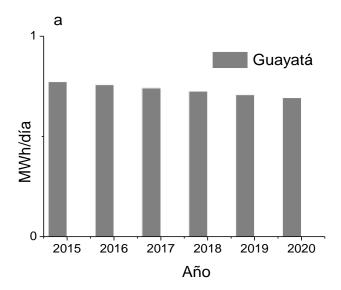
energía eléctrica. Para el escenario 1, municipio de Guayatá, de 5.126 habitantes, no es viable técnicamente el gas de relleno sanitario o digestión aerobia debido a la baja producción de residuos (1,74 T/día).

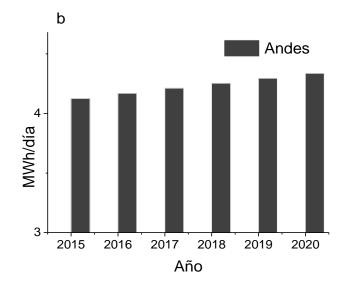
Las tecnologías antes mencionadas existen comercialmente y se fabrican e importan bajo pedido especial. Es decir no se encuentran valores estándares fijos de capacidad. Para la selección de la capacidad y para conocer las condiciones comerciales, el proveedor debe conocer detalles de la caracterización física química del residuo sólido, la cantidad y otros detalles derivados de un estudio de factibilidad

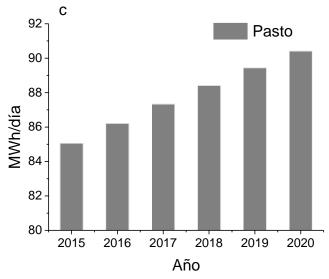
La empresa Hitachi Zosen Inova con sede en Zúrich, Suiza, es un líder mundial en soluciones de transformación de residuos en energía y material. Posee más de 500 proyectos de referencia en todo el mundo que emplean la transformación térmica de residuos en energía a través de sistemas de hasta 1000 T/día, hechos a medida, con calderas de recuperación de energía (de 2 a 5 pasos) y parámetros de vapor adaptados. Esta empresa también ofrece soluciones para la transformación de residuos de origen orgánico en biogás, a través de la digestión anaerobia seca con sistema Kompogas

La empresa GICON de origen alemán es fabricante y exportador de tecnologías de digestión anaerobia. Actualmente se conoce de un proyecto piloto en el municipio de Chigorodó Antioquia denominado Chicón. Este tiene como objetivo producir 500kW eléctricos a partir de 15.000 T/año de residuos orgánicos. Para este proyecto se tiene un rendimiento de 133 m³ de biogás por tonelada de residuos (m³/T) (GICON 2016; Hitachi Zosen Inova 2016).

4.4 Estimación del potencial de aprovechamiento energético


4.4.1 Incineración


Para estimar el Potencial de Aprovechamiento Energético (PAE) desde la incineración, se ha calculado el PCI de los RS generados en los tres escenarios, estos valores se muestran en la **Tabla 4-1** de la sección 4.2. Se ha considerado el valor de PCI reportado por (Themelis et al. 2013) para cada tipo de residuo. Este valor de PCI de los RS ha sido empleado para estudios en otras ciudades de Latinoamérica tal como se mencionó en la


sección 2.2 del marco teórico. La mayor parte de los residuos proviene de orgánicos biodegradables, seguido de los plásticos o papel y cartón.

La Figura 4-10 muestra la producción diaria de energía eléctrica a partir de la incineración, aplicando el modelo descrito en la sección 2.3.1. La población que tiene un potencial de aprovechamiento energético mayor es el municipio de Pasto con 90,41 MWh/día, seguida de Andes con 4,34 MWh/día y Guayatá con 0,69 MWh/día en 2020. Para este último municipio, se ha calculado el potencial para mostrar su baja producción de energía desde la misma tecnología. La producción de energía es directamente proporcional al número de habitantes y aumenta o disminuye de acuerdo con el crecimiento o decrecimiento poblacional proyectado.

Figura 4-10: Producción de energía eléctrica a partir de incineración 2015-2020 Autor

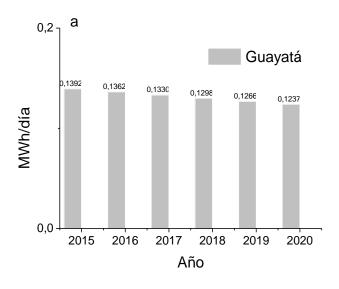
4.4.2 Gasificación

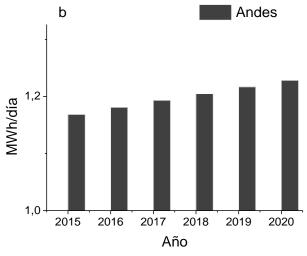
Para el cálculo del potencial de aprovechamiento energético desde la gasificación, se ha tomado como referencia el estudio Análisis técnico-económico de la gasificación de residuos sólidos urbanos para la generación de energía eléctrica en Brasil (Luz et al. 2015) realizado en diferentes escenarios poblacionales con determinado número de habitantes. La producción per cápita en las poblaciones de Brasil y del presente estudio es diferente. A pesar de lo anterior, la fracción másica de residuos sólidos para Brasil sin algún tipo de pretratamiento es muy semejante a la de los escenarios objetivos del presente estudio. Para las poblaciones de Guayatá, Andes y Pasto en 2020, se tiene proyectada una producción de residuos por día equivalente a 1,59, 18,33 y 236 T/día

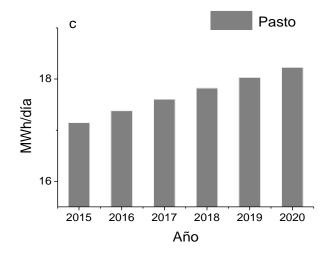
respectivamente. A partir del estudio, se determinó que no hay una capacidad sustancial para una producción de residuos menor a los 3,0 T/día. De acuerdo a la producción diaria de residuos en Andes y Pasto, es posible obtener alrededor de 180 KW y 3400 kW de potencia respectivamente. En la **Tabla 4-3** se resumen la potencia, energía desde gasificación para Andes y Pasto.

Tabla 4-3: Potencia	instalada	aproximada a	partir de	gasificación	Autor

	Potencia	Energía	Cantidad de
	instalada	eléctrica	residuos
Escenario	(Gasificación)	(Gasificación) MWh/día	
	kW		T/día
Andes	180	4,32	12,98
Pasto	3400	81,6	236

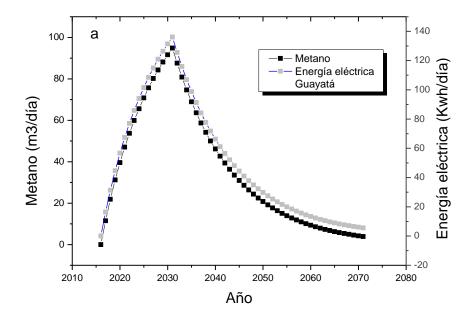

4.4.3 Digestión anaerobia

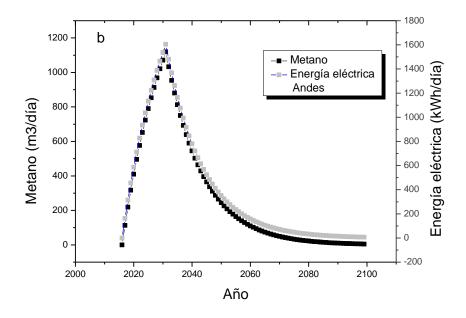

En la **Tabla 4-4** se indican los valores considerados para cada escenario, estos se requieren para evaluar el la ecuación (2.2) para la estimación del potencial de aprovechamiento energético. En la Figura 4-11 se detalla la energía eléctrica generada desde el proceso de digestión anaerobia para el periodo 2015-2020. Se ha considerado este periodo de tiempo ya que solo se dispone de proyecciones de población hasta el 2020. Se observa para las poblaciones de Andes y Pasto que la producción de energía aumenta anualmente llegando a generar hasta 1,23 y 18,25 MWh/día para el 2020 respectivamente. La producción para el municipio de Guayatá es baja y oscila entre 0,12 y 0,14 MWh/día para el periodo de tiempo establecido 2015-2020. El PCI del biogás para evaluar los modelos matemáticos a partir de las tecnologías de conversión biológica, fue de 5,9748 kWh/m³ (21,51 MJ/m³) según el estudio de (Cadena, Pérez, and Mora 2012).

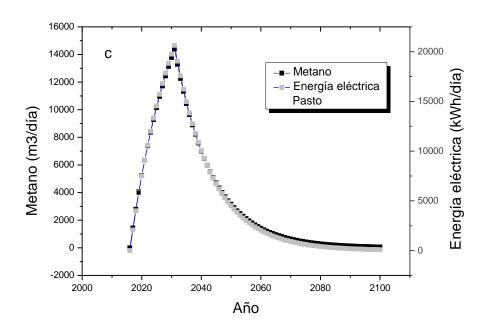

Tabla 4-4: Parámetros para la evaluación del modelo de digestión anaerobia Autor

Parámetro	Unidad	Guayatá	Andes	Pasto	Observación
f		0,51	0,61	0,70	Tabla 4-1
M_{FORS}	m³/T	71,04	71,04	71,04	(Murphy and McCarthy 2005)
η		0,26	0,26	0,26	
Q	KWh/m ³	5,9748	5,9748	5,9748	

Figura 4-11: Producción de energía eléctrica a partir de digestión anaerobia 2015-2020 Autor


4.4.4 Gas de relleno sanitario (digestión aerobia)


Para determinar la producción promedio diaria de metano QCH4, en el caso de gas de relleno sanitario, se ha utilizado la aplicación LandGEM. Los parámetros ambientales k y Lo se han tomado como referencia de los estudios de Ordoñez en Colombia (Ordoñez Ordoñez 2011) y Scarlat en África (Scarlat et al. 2015). Estos reportan un valor de k=0,08 y Lo= 84 respectivamente. Ambos parámetros correspondientes a una precipitación anual mayor a 1.000 mm/año (Panesso, Cadena, and Ordoñez 2012). En Colombia el promedio de precipitaciones anuales es del orden de 3.240 mm (Bancomundial 2016).


Con la producción PP de residuos y el total de habitantes, se ha calculado el total de residuos sólidos generados desde 2016 hasta 2030 en cada escenario, es decir vida útil del relleno de 14 años. La producción promedio diaria de metano, así como de energía eléctrica, calculada a partir de la misma ecuación, para esta tecnología, se muestran en la Figura 4-12. Allí se observa para los tres escenarios un valor máximo de producción de metano y energía eléctrica para el 2031 año después de la clausura del relleno sanitario en 2030. Desde el año de apertura y hasta 2031 se observa aumento continuo, tanto de la producción de metano, como energía eléctrica. A partir del mismo año, la generación de metano y energía eléctrica, diaria promedio, decrecen de manera proporcional hasta llegar a un valor de cero en el año 2100 para los municipios de Andes, Pasto y año 2070 para Guayatá. Para ningún escenario, la producción de energía eléctrica es constante siendo esta su principal desventaja técnica.

El valor máximo de energía eléctrica que puede obtenerse para 2031 es de 136 kWh/día, 1.605 kWh/día y 20.632 kWh/día para Guayatá, Andes y Pasto, respectivamente. Esta producción depende de manera directa de la cantidad de metano que puede recuperarse desde los residuos depositados en el relleno sanitario. Desde esta tecnología se obtiene menos generación de energía con respecto a la digestión anaerobia para el periodo 2015-2020. Esta última aunque depende también de la masa orgánica de los residuos, se desarrolla bajo condiciones controladas de temperatura y ausencia de oxígeno. Se ha considerado el periodo de tiempo 2015-2020 ya que solo se dispone de proyecciones de población según DANE hasta el año 2020.

Figura 4-12: Producción de metano y energía eléctrica a partir de gas de relleno sanitario 2016-2020 Autor

4.5 Análisis económico

Una vez obtenida la producción de energía para cada escenario, según cada tecnología, se realizó la evaluación del flujo de caja. Se han considerado 4 casos. Lo anterior con el objetivo de incluir las beneficios que ofrece la ley 1715 de 2014 y mostrar su impacto en la Tasa Interna de Retorno TIR. El caso 1 se tomó como base y representa las

condiciones típicas de una inversión. Este no incluye los beneficios de la ley, pero si préstamo a 10 años por un valor igual al 50% de la inversión y 8% de interés anual. Para este caso fueron incluidos los costos por abono al capital e intereses sobre el préstamo. El interés anual se ha fijado de acuerdo a un reciente comunicado (octubre de 2016), en el cual la junta directiva del banco de la Republica, decide mantener una tasa de interés de intervención del 7,75%. La misma junta informa que la inflación anual al consumidor y el promedio de las medidas de inflación básica disminuyeron y se situaron en 6,48% y 6,03%, respectivamente. (Banco de la República 2016). El caso 2 no incluye préstamo, ni beneficios otorgados por la ley. El caso 3 no incluye préstamo, pero sí depreciación acelerada a 5 años. El caso 4 se trata del mismo caso 3, más deducción en el primer año de hasta el 50% del valor de la inversión. En la **Tabla 4-5** se muestra el resumen de los 4 casos mencionados anteriormente.

Tabla 4-5: Resumen de casos considerados para los flujos de caja Autor

Caso	préstamo	Depreciación acelerada	Deducciones
1	Sí	No	No
2	No	No	No
3	No	Sí	No
4	No	Sí	Sí

El valor por la venta de electricidad, se ha fijado en 50 USD/MWh (UPME 2016). La comercialización de la energía se realizará mediante contratos regulados de compra y venta de la electricidad. Un organismo comercializador comprará la energía o podrá gestionar contratos bilaterales entre generadores y proveedores. El estudio: Análisis tecno económico de la gasificación de los residuos sólidos urbanos para la generación de electricidad en Brasil, propone ingresos a través de la venta de energía eléctrica mediante contratos (Luz et al. 2015). Con este tipo de contratos lo que se estima es un precio fijo de venta, lo cual sería una buena aproximación, para realizar el análisis económico. En bolsa es posible encontrar mejor rendimiento económico, sin embargo sería complejo evaluar cuanto se puede obtener para un estudio de prefactibilidad.

Algunos países del continente europeo poseen una estructura de incentivos para fomentar o fortalecer la participación de generación de electricidad por fuentes de energía renovable apoyada en planes gubernamentales y un marco normativo responsable y protector de la industria, tanto en beneficios económicos como en riesgos financieros. Estos incentivos se dan bajo el esquema denominado Feed-in tariff, cuyo objetivo es ofrecer una compensación basada en los costos para los productores de energía renovable, proporcionando contratos a largo plazo para los mismos productores, por lo general basados en el costo de generación de cada tecnología (Ramli and Twaha 2015).

Los ingresos por tratamiento de tonelada recibida de residuos sólidos municipales o tipping fee se han fijado en 10 USD/T (Emvarias-grupo EPM 2016), valor promedio cobrado por las empresas prestadoras de servicio de aseo, por disposición final de residuos. Los ingresos por certificados de reducción de emisiones (CERs), obtenidos por las reducciones de las emisiones de gases de efecto invernadero (GEI), se han asumido iguales a 0.51 USD/TCO₂ (Commodity Exchange Bratislavava 2016). Las Toneladas de CO₂ equivalente se han calculado de acuerdo al volumen anual de biogás, calculado a través de la aplicación LandGEM, para gas de relleno sanitario en cada escenario. Según el estudio de (Murphy and McKeogh 2004) un m³ es equivalente a 9.19 kgCO₂, teniendo en cuenta que el metano es un gas 21 veces más nocivo que el dióxido de carbono. Para digestión anaerobia no se tiene referencia de kgCO₂ por unidad de volumen, por lo tanto se toma la misma referencia del caso anterior, es decir 9.19 kgCO₂ por m³ de biogás. Este valor es el correspondiente al biogás liberado directamente a la atmósfera sin tener en cuenta la combustión del mismo. De ahí la diferencia con la combustión del biogás la cual libera a la atmosfera 1,96 Kg CO₂/m³. Para esta tecnología en este estudio se tiene que una tonelada de residuos produce 71 m³ de biogás (Murphy and McCarthy 2005) tal como se ha explicado en el numeral 2.3.2. Algunos parámetros de cálculo por tecnología, considerados en el análisis económico se resumen en la Tabla 4-6, Tabla 4-7 y Tabla

Tabla 4-6: Parámetros de análisis económico para la incineración Autor

Parámetros	Valores	Referencias
Capacidad	300 T/día	
Préstamo	50%	
Tasa de interés anual	8% (10 años)	(X. gang Zhao et al. 2016)
Factor de planta	0.80	(Estrada Wiechers 2015)
Poder calorífico	4,73 y 7,66 MJ/kg $^{\mathrm{2}}$	
Coincineración	250 kg carbón/T _{RS}	(Y. Zhao et al. 2012)
Eficiencia eléctrica	18%	(Vicente L et al. 2014)
Periodo de concesión	25 años	(X. gang Zhao et al. 2016)

Tabla 4-7: Parámetros de análisis económico para gas de relleno sanitario Autor

Parámetros	Valores	Referencias
Capacidad del relleno	300 - 500 T/día	
Hectáreas	20	
Préstamo	50%	
Tasa de interés anual	8% (10 años)	
Emisiones de CO ₂ desde relleno	9.19 kg CO ₂ /m ³ biogás	(Murphy and McKeogh 2004)
Factor de planta	0.80	
Poder calorífico Biogás	21,51 MJ/kg	(Z, F, and L 2012)
Eficiencia eléctrica	33%	(Bove and Lunghi 2006)
Eficiencia recuperación de metano	80%	(Z, F, and L 2012)

_

² Poder calorífico inferior residuos de Andes y Pasto

Parámetros	Valores	Referencias	
Periodo de concesión	25 años		

Tabla 4-8 Parámetros de análisis económico para digestión anaerobia Autor

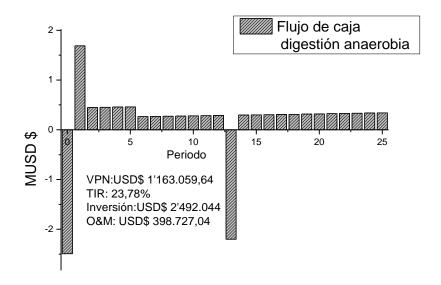
Parámetros	Valores	Referencias
Capacidad	300 T/día	
Préstamo	50%	
Tasa de interés anual	8% (10 años)	
Emisiones de CO ₂ desde relleno	9.19 kg CO _{2/} m ³ _{biogás}	(Murphy and McKeogh 2004)
Factor de planta	0.80	
Poder calorífico biogás	21,51 MJ/kg	(Z, F, and L 2012)
Eficiencia eléctrica	0.26%	(Bove and Lunghi 2006)
Galón de ACPM/ kWh	0.025	(Palacio Suárez 2007)
Periodo de concesión	20-25 años	

4.5.1 Municipio de Pasto

Incineración

La implementación de esta tecnología en el municipio de Pasto, requiere una inversión inicial de 19,5 MUSD, obteniéndose una TIR máxima de 14,43%. En el anexo B se muestra este valor de TIR así como el flujo de caja realizado bajo los supuestos del caso 4.

Gas de relleno sanitario


Para esta tecnología, se obtuvo una TIR máxima del 21,04%. Esta se muestra en el anexo B junto con el flujo de caja bajo los supuestos del caso 4. Se obtuvieron valores negativos de flujos de caja en los años 6, 11, y 21, esto es porque los equipo de generación eléctrica, tienen una vida útil de 10 años y es necesario su reemplazo o ampliación de capacidad. Según la Figura 4-12, la producción de biogás no es constante

y crece hasta y un valor máximo, después del cual se extingue hasta desaparecer completamente.

Digestión anaerobia

Para la digestión anaerobia, se obtuvo una TIR máxima de 23,78%, tal como se indica en el flujo de caja mostrado en la Figura 4-13. Los equipos para digestión anaerobia tienen vida útil de 13 años, esta es la razón por la cual se observa en el año 13 un flujo de caja, negativo. Los valores máximos de TIR fueron obtenidos para el caso 4, tal como se observa en la Figura 4-14. Esto significa que la deducción de la renta por un valor de hasta 50% del valor de inversión, incrementa el valor de la TIR hasta un valor superior al obtenido para los demás casos.

Figura 4-13: Flujo de caja para digestión anaerobia en el municipio de Pasto Autor

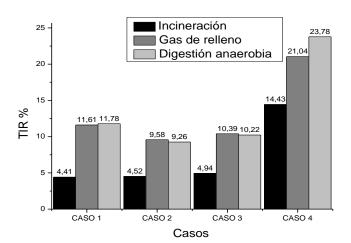
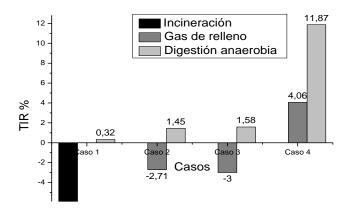


Figura 4-14: Tasa interna de retorno obtenida para los 4 casos en Pasto Autor

4.5.2 Municipio de Andes

Incineración

Para esta tecnología se obtuvo una TIR -5,90% como se muestra en la Figura 4-15. Producir energía a partir de esta tecnología es viable si el precio de venta de electricidad se incrementa y ofrece a un precio igual a 10 veces el valor de 50 USD/MWh considerado en este estudio. Para los casos diferentes al caso 1 (caso base), no fue posible obtener un valor razonable para la TIR.


Gas de relleno sanitario y digestión anaerobia

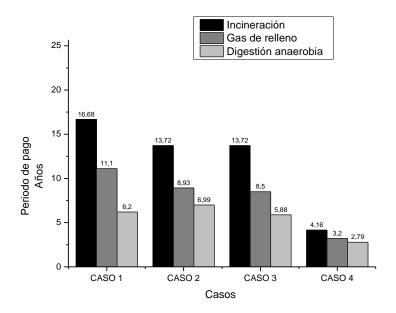
Para gas de relleno sanitario y digestión anaerobia se obtuvieron valores máximos de TIR iguales a 4,06 Y 11,87 % respectivamente. Para ambas tecnologías en todos los cuatros casos, la venta de electricidad se ha fijado en 100 USD/MWh para gas de relleno y 108 USD/MWh para digestión anaerobia. Para valores por debajo de los anteriores no es posible obtener cierre del flujo de caja. Las plantas G3306 de 72 kW de Caterpillar, que producen electricidad desde gas desde relleno sanitario a pequeña escala, están exentas del pago del IVA, según información del proveedor Gecolsa en Colombia. Los valores máximos de TIR, para estas dos tecnologías, fueron obtenidos bajo los supuestos del caso 4, lo cual significa que la deducción de la renta por un valor de hasta 50% del valor de inversión, incrementa significativamente el valor de la TIR así como el

Capítulo 4 73

valor presente neto (VPN). En el anexo B se muestran los flujos de caja para el caso 4 junto con su respectivo valor de TIR.

Figura 4-15: Tasa interna de retorno obtenida para los 4 casos en Andes Autor

4.5.3 Municipio de Guayatá


Por último para Guayatá no fue posible obtener el cierre de flujo de caja para incineración y gas de relleno. Las tecnologías no se encuentran comercialmente a escalas de producción de electricidad tan bajas, es decir para 100 y 6 kW respectivamente. Es posible obtener electricidad desde co-digestión anaerobia combinando biogás, producido desde biodigestor, con algún tipo de combustible como el ACPM, para alimentar un grupo electrógeno de 30 KVA nominales (Palacio Suárez 2007). La carga del biodigestor sería una mezcla de residuos orgánicos y biomasa agropecuaria como por ejemplo estiércol de aves, porcino, vacuno, etc, este procedimiento se conoce como codigestión anaerobia (IDAE 2007). En el anexo B se muestran la TIR y el flujo de caja que arrojaría un proyecto de tal magnitud de acuerdo a los costos indicados en la Tabla 3-1 del capítulo de metodología. Los beneficios estarían dados por el ahorro de los kWh/año comprados al operador de red EBSA y equivalente a 150 USD/MWh, según el costo unitario para estrato 3 fijado por la Empresa de Energía de Boyacá (EBSA 2016). Para gasificación de residuos a pequeña escala existe la tecnología Energos que admite mínimo 10.000 T/año de residuos según estudio de (Ellyin and Themelis 2012). Actualmente existen 8 plantas en operación en todo el mundo y es una tecnología probada, sin embargo tiene un costo de 13 MUSD según el mismo estudio y el módulo mínimo estándar ofrecido tiene una

capacidad demasiado alta. La producción anual de residuos para Andes y Guayatá se tiene estimada en 580 y 6.700 toneladas anuales respectivamente.

4.5.4 Periodo de recuperación de la inversión o payback

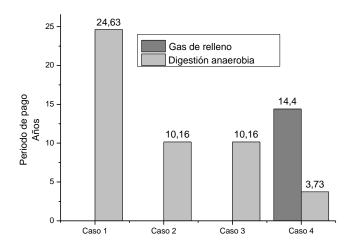
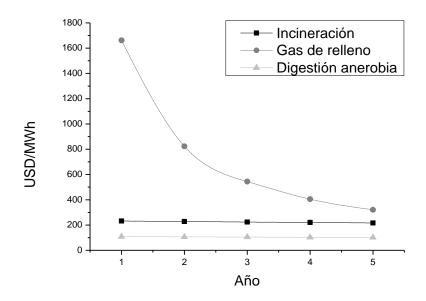

La evaluación payback para los municipios de Pasto y Andes se muestra en la Figura 4-15 y en la Figura 4-16. De estas se puede observar que el valor del periodo de pago simple es inversamente proporcional a la TIR. Para el municipio de Pasto (caso 4) se obtuvieron periodos de pago inferiores a los 5 años para todas las tecnologías, debido al beneficio correspondiente a una deducción de hasta el 50% del valor de la inversión. Para el municipio de Andes solo se obtuvo un payback inferior a 5 años, en el caso 4, y para digestión anaerobia. Para los demás casos y todas las tecnologías, incluyendo gas de relleno en caso 4, se obtuvo un payback aproximadamente igual o superior a los 10 años.

Figura 4-16: Periodo de recuperación de la inversión para los 4 casos en Pasto Autor

Capítulo 4 75

Figura 4-17: Periodo de recuperación de la inversión para los 4 casos en Andes Autor

4.5.5 Gasificación como caso especial para los tres escenarios


Para este caso, los volúmenes de residuos sobrepasan los casos típicos a pequeña escala analizados en la literatura. Por lo tanto se ha tomado como referencia el trabajo realizado por (Luz et al. 2015). De este se tiene para escenarios con producción diaria de residuos equivalente a las de Andes y Pasto, valores de TIR cercanos a -9,3% y 11,25 % respectivamente. Este estudio se realizó considerando una tasa de descuento del 10,58%. Los ingresos han sido por ventas de energía eléctrica, material reciclable, tratamiento de basuras y créditos de carbono. A pesar de las diferencias el valor de la TIR para esta tecnología de conversión termoquímica, es aproximado al obtenido en este estudio para incineración en caso 4, es decir -5,9% para Andes y 14,43% para Pasto. Demostrando la poca viabilidad de este tipo de proyectos en Andes, población menor a 100.000 habitantes.

4.6 Costo unitario de la electricidad

En la Figura 4-18 y en la Figura 4-19, se observa el costo unitario de la electricidad generada por escenario y calculado de acuerdo a las ecuaciones (2.5) y (2.6) expuestas en el marco teórico. Este solo se ha calculado para el caso 4, el cual ha arrojado un mayor valor de TIR (Figura 4-14 y en la Figura 4-15). Se puede apreciar en la Figura 4-18

y de la Figura 4-19 que este costo es menor para digestión anaerobia, seguido de incineración y gas de relleno. Para este último, la producción de energía aumenta hasta cierto valor a partir del cual empieza a descender (Figura 4-12), por esta razón el comportamiento del costo unitario para los primeros 5 años. Los costos de inversión para digestión anaerobia son muchos menores comparados con incineración. Sin embargo desde esta tecnología puede obtenerse menos energía eléctrica. Para el escenario 2, Andes, se ha fijado un costo de inversión alto para incineración equivalente al del escenario 3, Pasto, ya que no fue posible encontrar costos de incineración para procesar baja producción de residuos (18-20 T/día). Para Guayatá no se presentan resultados, dado que no son viables las tecnologías de conversión térmica y gas de relleno. Por lo tanto no podrían compararse entre tecnologías su costo unitario.

Figura 4-18: Costo unitario para las diferentes tecnologías en municipio de Pasto Autor

Capítulo 4 77

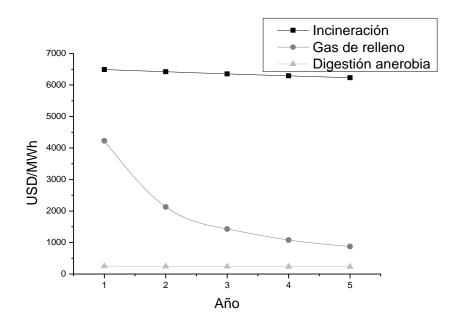


Figura 4-19: Costo unitario para las diferentes tecnologías en municipio de Andes Autor

4.7 Análisis de Prefactibilidad

Municipio de Pasto

Para este municipio de 440.040 habitantes, y producción diaria de 225 T/día, las tecnologías de conversión térmica podrían aplicarse. Los ingresos por venta de electricidad, y tratamiento de residuos son superiores al costo de inversión. La adquisición de la tecnología podría ser viable, se resolvería el problema de acumulación cada vez mayor debido al crecimiento de la población, y podría contribuir al cubrimiento de la demanda de energía. Un mayor retorno de la inversión estaría dirigido a empresas con trayectoria y gran capacidad financiera, las cuales podrían aprovechar el beneficio otorgado por la ley 1715 en cuanto a la deducción de hasta por el 50% del valor de la inversión realizada.

Las tecnologías de conversión biológica pueden también aplicarse en este escenario ya que se han obtenido TIR positivas bajo todas las modalidades (casos), demostrando su viabilidad para poblacionales cercanas a los 440.040 habitantes.

Municipio de Andes

Para esta población, con un total de 45.184 habitantes, con una producción diaria de residuos igual a 17,62 T/día respectivamente, las tecnologías de conversión térmica no

son viables. Se observaron valores de TIR por debajo de cero y es escaza o difícil la adquisición de este tipo de tecnologías para tan baja producción diaria de residuos.

Las tecnologías de conversión biológica son viables bajo las consideraciones del caso 4. A partir de este caso, se logra una TIR máxima (4,06% y 11,87 %), asumiendo un precio por la venta de energía eléctrica de 100 y 108 USD/MWh para gas de relleno y digestión anaerobia respectivamente. Los casos 2 y 3 han arrojado un valor de TIR negativo para gas de relleno sanitario, y valores de TIR ligeramente por encima de cero para la digestión anaerobia.

Municipio de Guayatá

De acuerdo a los resultados obtenidos, las tecnologías de conversión térmica no son viables para esta población de 5.126 habitantes con una producción diaria de residuos igual a 1,74 T/día respectivamente. La adquisición de este tipo de tecnologías para tan baja producción diaria de residuos es escaza o difícil.

La digestión anaerobia es viable bajo ciertas condiciones. Por ejemplo para una producción diaria de 1,74 T/día, es viable la codigestión anaerobia. A partir de esta se estima una producción diaria de 30 kW la cual podría suplir la demanda de a lo sumo 6 hogares en zona rural. Para este solo se evaluó el caso 4, dado que se trata de un caso de codigestión anaerobia con biomasa y la estimación de la energía que puede obtenerse a partir de este proceso, se realizó en base a la capacidad nominal de una planta disponible comercialmente, y no en base a modelos matemáticos de referencia. El flujo de caja para este caso se puede observar en el anexo B. Por otro lado, con relación a las tecnologías de conversión biológica, se tiene que el aprovechamiento del biogás desde relleno sanitario no es viable allí dado que los costos de inversión superan el valor de los ingresos.

Finalmente todas las tecnologías son viables para Pasto, la mayor de las poblaciones. El valor del retorno de la inversión dependerá del incentivo otorgado por la 1715. Se recomienda por lo tanto continuar con un proyecto de factibilidad para este escenario. Para el municipio de Andes son viables las tecnologías de conversión biológica pero bajo los incentivos de la 1715. Para Guayatá es viable la tecnología de conversión biológica, bajo un caso hipotético de codigestión anaerobia, baja producción de energía y obteniendo ingresos equivalentes al ahorro por no compra de energía al operador de red.

Capítulo 4 79

Es recomendable continuar con los proyectos de tecnologías de conversión biológica para Andes y codigestión anaerobia para zona rural en Guayatá.

5. Conclusiones y recomendaciones

5.1 Conclusiones

En este trabajo se consideraron los residuos sólidos urbanos como fuente potencial de energía renovable, en tres casos de estudio en Colombia. Se realizó la evaluación de la contribución del potencial energético de los RS, desde cuatro tecnologías de conversión. La prefactibilidad de cada tecnología por escenario, fue evaluada considerando las características generales de una inversión y los beneficios de la Ley 1715.

Se propuso una metodología para la selección de tres municipios basada en las características demográficas. Cabe destacar que 870 municipios en Colombia, poseen un número de habitantes menor a 30.000. En la mayoría de estos, predomina la población rural. A medida que el tamaño poblacional de los municipios aumenta, se hacen menos frecuentes y adicionalmente predomina la población urbana. A partir de los 100.000 habitantes, se tienen 62 municipios entre los cuales se destacan Bogotá, Barranquillla, Cali, Cartagena y Medellín con más de un millón de habitantes.

Se seleccionaron tres escenarios de acuerdo al IPU, al número de habitantes y a la información disponible en el Plan de Gestión de Residuos de cada municipio. Después de revisar la información fueron seleccionados: Guayatá, Andes y Pasto. Con IPU de 2,94, 1,02 y 0,2 respectivamente. Dado que estos escenarios poseen una información completa acerca de la caracterización física y producción percápita de los residuos sólidos. El IPU es diferente ya que cada escenario seleccionado cuenta con una distribución de población urbana y rural diferente. Para Guayata se tiene una población predominantemente rural. Para Andes, se tiene un número de habitantes aproximadamente igual tanto en zona urbana como rural. Pasto cuenta con una población predominantemente urbana. Lo anterior como parte de la metodología empleada para seleccionar los diferentes escenarios, y tener posibilidad de aplicar en cada uno, varias de las tecnologías existentes.

A partir de la proyección de crecimiento poblacional del DANE, se puede observar que los municipios de Pasto y Andes poseen un crecimiento anual de población. Lo cual aumenta la expectativa de producción de RS a largo plazo. Para el caso de Guayatá, se observa un decrecimiento en el tamaño de la población en el tiempo.

Las tecnologías de conversión para cada escenario se han seleccionado principalmente en función de la cantidad de residuos (T/día), ventajas, desventajas, y viabilidad de adquisición comercial de cada tecnología.

Según la literatura y otros estudios, aunque la incineración admite casi todos los tipos de residuos, la necesidad de tratamiento de los contaminantes del aire, el agua y la ceniza dentro de la instalación puede ser factores limitantes así como su adquisición para el procesamiento de baja cantidad de residuos. Esta se ha seleccionado para los municipios de Pasto y Andes. Para el caso de la gasificación se tiene referencia de viabilidad técnica para la producción a pequeña escala y se ha seleccionado esta tecnología para Andes y Pasto.

La digestión anaerobia es una tecnología que aplica para los tres municipios, dado que su adquisición es viable, posee ventajas y aprovecha alto volumen de residuos de alimentos (más del 50% del total RS) los cuales pueden ser utilizados como un material de alimentación.

El gas de relleno sanitario se ha elegido para los municipios de Pasto y Andes. Esta tecnología se ha seleccionado en función de las ventajas, viabilidad de adquisición y cantidad de residuos. Aunque Andes, produce baja cantidad de residuos y posee una población de 45.184, se espera que el crecimiento poblacional aumente la expectativa de generación de residuos. Por otro lado la fracción aprovechable de residuos sólidos, podría ser mayor si se considera la posibilidad de convertir el municipio de Andes en centro de acopio, y permitir allí la recepción de residuos desde municipios cercanos ubicados en la misma región del suroeste antioqueño.

A partir de la evaluación técnica de las tecnologías en cada escenario, se realizó una evaluación económica. Los resultados muestran buenos ingresos económicos para incineración, digestión anaerobia y gas de relleno en el municipio de Pasto, escenario con mayor número de habitantes.

Un análisis de sensibilidad se realizó mediante la variación en los parámetros del modelo tales como el préstamo de capital por parte del inversionista y la inclusión de los beneficios otorgados por la ley colombiana 1715. Para la incineración, los ingresos por tonelada de residuo recibida y por la venta de electricidad tienen gran impacto en los resultados, así como el elevado costo de inversión. Los beneficios de la ley 1715 también influyen sobre el valor de la tasa interna de retorno. Para gas de relleno el ingreso por tonelada de residuo recibida tiene gran influencia sobre la tasa interna de retorno. Igualmente para la digestión anaerobia en cuanto al tratamiento de los residuos de origen orgánico. Para estas dos últimas tecnologías aplicadas en el municipio de Andes, el ingreso por ventas de electricidad y CER no son suficientes ni decisivos en el rendimiento de la inversión. Se requiere vender la electricidad a un precio mayor y aprovechar beneficios de la ley 1715.

Se evaluó la importancia económica de la venta de los CER y los resultados confirmaron que los precios actuales bajos de los CER no representan ingresos significativos para las tecnologías de conversión biológica. Sin embargo, este mecanismo de desarrollo limpio deja en claro su gran importancia para la viabilidad del proyecto desde el punto de vista ambiental.

La incineración representa una buena opción desde el punto de vista económico y puede ser eficiente en cuanto a la recuperación de energía. Además la falta de espacio para nuevos vertederos en las ciudades, obligará a reconsiderar el uso de esta opción de aprovechamiento. Existen costos externos que no están incluidos en el precio de esta tecnología, pero que la sociedad en su conjunto debe soportar. Por ejemplo, el mayor daño a la salud humana es causado por las emisiones de partículas como O₃, CO, SOx, NOx hidrocarburos y dioxinas.

Desde el punto de vista ambiental, la mejor alternativa puede ser la digestión anaerobia. Sin embargo a partir esta tecnología se produce menos energía y la estimación exacta de los costos de inversión puede ser complicada. La influencia de la separación de residuos en la fuente, es fundamental para el éxito en la implementación de esta tecnología. En Colombia se carece de políticas serias de separación. Sin embargo se conoce del plan de gestión del municipio de Andes que esta se realiza y ha resultado ser exitosa.

El beneficio de la ley 1715 correspondiente a la deducción de la renta por un valor de hasta 50% del total de la inversión (caso 4), incrementa el valor porcentual de la TIR hasta un valor muy superior al obtenido para los demás casos. Sin embargo esta ley que promueve la creación de proyectos de energía renovable, es excluyente para pequeños o medianos inversionistas, ya que los incentivos tributarios solo podrían ser aprovechados a su máximo por empresas que en su declaración de renta demuestren grandes utilidades.

Teniendo en cuenta que 27, 18 y 5 poblaciones, poseen aproximadamente el mismo número de habitantes que Guayatá, Andes y Pasto. Se podría replicar el mismo modelo de estudio realizado y determinar que el potencial de energía eléctrica desde incineración, digestión anaerobia y gas de relleno es de aproximadamente 548,8, 117,17 y 47,31 MWh/día respectivamente para 2020.

Si se considera el total de residuos diarios generados en el país (26.528 T/día), un 15% de material reciclado, PCI promedio de los residuos de 7,66MJ/Kg, y un 18% de eficiencia de la planta, podrían obtenerse 8,64 GWh/día a partir de incineración. Para digestión anaerobia con los mismos parámetros considerados en el estudio y 54% de fracción orgánica del total de residuos del país, podrían obtenerse 1,58 GWh/día. Para gas de relleno, con el mínimo de metano reportado por la literatura, es decir 25 m³/t y un 15% de reciclaje podrían recuperarse alrededor de 0,97 GWh/ día de energía eléctrica. Lo anterior para un total de 11,19 GWh/día ó 0,47 GW de potencia desde las tres tecnologías, lo que representaría un 4,37 % de la demanda actual nacional de potencia (10,74 GW escalón medio).

5.2 Recomendaciones

El presente trabajo no incluyó un estudio de impacto ambiental ya que este se encuentra fuera del alcance del desarrollo de los objetivos. Investigaciones y trabajos futuros en torno a este aspecto, podrían considerar un análisis en relación al impacto ambiental cuantificando la cantidad de gases de efecto invernadero que podrían reducirse anualmente, gracias a tecnologías como la digestión anaerobia. Futuros estudios también podrían incluir la cantidad de material ferroso que puede recuperarse en los sitios de acopio de residuos, emisiones de carbono, SO_X y NO_X producidas por las plantas

incineradoras. Estas últimas (SO_X y NO_X), dependiendo de la distancia de la planta de tratamiento de residuos a la población más cercana, podrían representar peligro para la salud de la comunidad circundante.

A nivel municipal, la principal herramienta de planificación para asegurar servicios locales eficaces de gestión de residuos sólidos, es el Plan de Gestión Integral de Manejo de Residuos Sólidos (PGIRS) desarrollado por cada municipio. Estos planes fueron requeridos como resultado del Decreto 1713 que estipuló que el contenido del PGIRS debe incluir, entre otras cosas, la definición de programas enfocados en la fuente de separación, almacenamiento, tratamiento, recolección, transporte, reutilización y disposición final. Teniendo en cuenta algunos componentes de los PGIRS y con miras a mejorar el rendimiento en la valorización energética de los residuos, podrían adoptarse las siguientes recomendaciones:

Programa de Separación en la fuente: de acuerdo a la Norma Técnica Colombiana (NTC) GTC 24 ³, los municipios tratarán de desarrollar un programa de separación en la fuente para ciertos componentes de residuos sólidos. Actualmente, los centros comerciales y algunos generadores de residuos sólidos en las zonas comerciales ya han implementado la separación de varios tipos de residuos. Los planes de gestión también tienen como objetivo incorporar otros grandes generadores de residuos en una amplia iniciativa de separación en la fuente.

Rutas selectivas para la recolección de material reciclable: se propone el uso de las 4 zonas de recolección de residuos sólidos para diseñar rutas de recogida selectiva de materiales separados. Las rutas dependerán del valor calorífico y la naturaleza del material desechado, basado en las siguientes clasificaciones de desechos: orgánicos, materiales reciclables, material no reciclable y residuos peligrosos. Al mismo tiempo, deberá realizarse la incorporación de recicladores informales al proceso formal de reciclaje para evitar la competencia por los materiales recuperables.

³ Residuos sólidos. Guía para la separación en la fuente.

Materiales orgánicos: considera programas de recolección y procesamiento para utilizar material orgánico generado en mercados, restaurantes, centros comerciales, supermercados, parques y otras fuentes. Lo anterior con el objetivo de aumentar la tasa de captura orgánica y reutilización. Las medidas necesarias para lograr este objetivo, incluyen un estudio de factibilidad para plantas de digestión anaerobia productoras de biogás a mediana y pequeña escala. La iniciativa deberá incluir y utilizar el 100% de los residuos "verdes" generados en parques, mercados e industrias.

Parque tecnológico ambiental: los municipios tratarán de desarrollar un parque tecnológico ambiental para el desarrollo de una unidad ambiental y técnica para la recuperación y tratamiento de residuos sólidos. El sector industrial contribuirá al diseño y funcionamiento de esta instalación. Los rellenos sanitarios clausurados regionales o municipales, podrían ser el sitio propuesto para este tipo de parques.

Adicional a lo presentado en este trabajo, es importante realizar un análisis detallado, entorno a las anteriores recomendaciones. Se sugiere para una evaluación posterior de factibilidad, en los escenarios en los cuales existe posibilidad de implementar alguna de las tecnologías, realizar estudios de caracterización química de los residuos para determinar su composición y el valor PCI.

Por último dado el amplio potencial de recurso minero, que posee Colombia, se puede considerar un estudio de coincineración de residuos sólidos, a partir de combustible fósiles como el carbón.

A. Anexo: Municipios pertenecientes a los grupos G1, G2, G3

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Antioquia	Abejorral	19290	6681	12609	1,89
Antioquia	Abriaquí	2128	751	1377	1,83
Antioquia	Alejandría	3466	1812	1654	0,91
Antioquia	Amagá	29555	16757	12798	0,76
Antioquia	Amalfi	22088	12236	9852	0,81
Antioquia	Angelópolis	8946	5299	3647	0,69
Antioquia	Angostura	11354	1822	9532	5,23
Antioquia	Anorí	17086	6763	10323	1,53
Antioquia	Santafé de Antioquia	24549	15621	8928	0,57
Antioquia	Anza	7568	1260	6308	5,01
Antioquia	Argelia	8699	2550	6149	2,41
Antioquia	Armenia	4210	1579	2631	1,67
Antioquia	Belmira	6760	1928	4832	2,51
Antioquia	Betania	9286	3855	5431	1,41
Antioquia	Betulia	17542	5817	11725	2,02
Antioquia	Ciudad Bolívar	27084	16200	10884	0,67
Antioquia	Briceño	8702	2546	6156	2,42
Antioquia	Buriticá	6601	1551	5050	3,26
Antioquia	Caicedo	8205	1629	6576	4,04
Antioquia	Campamento	9091	2875	6216	2,16
Antioquia	Cañasgordas	16763	6615	10148	1,53
Antioquia	Caracolí	4595	3073	1522	0,5
Antioquia	Caramanta	5362	2967	2395	0,81
Antioquia	Carolina	3629	2931	698	0,24
Antioquia	Cisneros	9058	7583	1475	0,19
Antioquia	Cocorná	14972	3965	11007	2,78
Antioquia	Concepción	3463	1426	2037	1,43
Antioquia	Concordia	20653	8596	12057	1,4
Antioquia	Dabeiba	23378	8921	14457	1,62

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Antioquia	Don Matías	22243	14635	7608	0,52
Antioquia	Ebéjico	12515	2221	10294	4,63
Antioquia	Entrerrios	9950	5166	4784	0,93
Antioquia	Fredonia	21561	8580	12981	1,51
Antioquia	Giraldo	4029	1304	2725	2,09
Antioquia	Gómez Plata	12810	5928	6882	1,16
Antioquia	Granada	9859	3656	6203	1,7
Antioquia	Guadalupe	6300	2103	4197	2
Antioquia	Guatapé	5279	4155	1124	0,27
Antioquia	Heliconia	5906	3037	2869	0,94
Antioquia	Hispania	4869	3226	1643	0,51
Antioquia	Ituango	20996	5834	15162	2,6
Antioquia	Jardín	13748	7201	6547	0,91
Antioquia	Jericó	12103	8460	3643	0,43
Antioquia	La Pintada	6558	5757	801	0,14
Antioquia	La Unión	19119	10726	8393	0,78
Antioquia	Liborina	9535	1761	7774	4,41
Antioquia	Maceo	6855	2857	3998	1,4
Antioquia	Montebello	6197	2011	4186	2,08
Antioquia	Mutatá	20612	5526	15086	2,73
Antioquia	Nariño	17291	2506	14785	5,9
Antioquia	Nechí	26591	14132	12459	0,88
Antioquia	Olaya	3237	266	2971	11,2
Antioquia	Peque	10925	2043	8882	4,35
Antioquia	Pueblorrico	7030	3611	3419	0,95
Antioquia	Puerto Nare	18654	7996	10658	1,33
Antioquia	Puerto Triunfo	20062	6178	13884	2,25
Antioquia	Remedios	29199	10657	18542	1,74
Antioquia	Sabanalarga	8191	2910	5281	1,81
Antioquia	Salgar	17608	8819	8789	1
Antioquia	San Andrés de Cuerquía	6226	2521	3705	1,47
Antioquia	San Carlos	16064	6031	10033	1,66
Antioquia	San Francisco	5318	2446	2872	1,17
Antioquia	San Jerónimo	12635	4083	8552	2,09
Antioquia	San José de La Montaña	3336	2195	1141	0,52
Antioquia	San Juan de Urabá	25168	8054	17114	2,12
Antioquia	San Luis	10939	4694	6245	1,33
Antioquia	San Pedro	26592	14063	12529	0,89
Antioquia	San Rafael	12980	6262	6718	1,07
Antioquia	San Roque	16789	6298	10491	1,67
Antioquia	San Vicente	17197	7383	9814	1,33
Antioquia	Santa Bárbara	22076	10324	11752	1,14

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Antioquia	Santo Domingo	10416	1984	8432	4,25
Antioquia	El Santuario	27120	22999	4121	0,18
Antioquia	Sopetrán	14696	6931	7765	1,12
Antioquia	Támesis	14732	6493	8239	1,27
Antioquia	Tarso	7776	3837	3939	1,03
Antioquia	Titiribí	14393	8078	6315	0,78
Antioquia	Toledo	6374	1025	5349	5,22
Antioquia	Uramita	8238	2592	5646	2,18
Antioquia	Valdivia	22179	6552	15627	2,39
Antioquia	Valparaíso	6174	3377	2797	0,83
Antioquia	Vegachí	9448	5682	3766	0,66
Antioquia	Venecia	13253	6831	6422	0,94
Antioquia	Vigía del Fuerte	5586	2099	3487	1,66
Antioquia	Yalí	8318	3190	5128	1,61
Antioquia	Yolombó	23958	7216	16742	2,32
Antioquia	Yondó	18613	9391	9222	0,98
Atlántico	Campo de La Cruz	16035	14060	1975	0,14
Atlántico	Candelaria	12479	9575	2904	0,3
Atlántico	Juan de Acosta	16811	11358	5453	0,48
Atlántico	Luruaco	26889	13441	13448	1
Atlántico	Manatí	15723	14200	1523	0,11
Atlántico	Palmar de Varela	25341	24696	645	0,03
Atlántico	Piojó	5140	2456	2684	1,09
Atlántico	Polonuevo	15280	12542	2738	0,22
Atlántico	Ponedera	22244	11266	10978	0,97
Atlántico	Puerto Colombia	27107	22439	4668	0,21
Atlántico	Repelón	26095	17718	8377	0,47
Atlántico	Santa Lucía	11584	11008	576	0,05
Atlántico	Santo Tomás	25325	24439	886	0,04
Atlántico	Suan	8752	8436	316	0,04
Atlántico	Tubará	11027	6523	4504	0,69
Atlántico	Usiacurí	9392	8384	1008	0,12
Bolívar	Achí	23051	4106	18945	4,61
Bolívar	Altos del Rosario	13669	8073	5596	0,69
Bolívar	Arenal	18876	5173	13703	2,65
Bolívar	Arroyohondo	9907	6635	3272	0,49
Bolívar	Barranco de Loba	17768	6159	11609	1,88
Bolívar	Calamar	23308	13158	10150	0,77
Bolívar	Cantagallo	9239	4368	4871	1,12
Bolívar	Cicuco	11118	7523	3595	0,48
Bolívar	Córdoba	12435	3107	9328	3
Bolívar	Clemencia	12540	10490	2050	0,2

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Bolívar	El Guamo	7757	4359	3398	0,78
Bolívar	El Peñón	9484	3888	5596	1,44
Bolívar	Hatillo de Loba	11971	3459	8512	2,46
Bolívar	Mahates	25786	9847	15939	1,62
Bolívar	Margarita	9876	1743	8133	4,67
Bolívar	Montecristo	21229	11019	10210	0,93
Bolívar	Morales	21182	5842	15340	2,63
Bolívar	Norosí (1)	5204	2070	3134	1,51
Bolívar	Pinillos	24923	2683	22240	8,29
Bolívar	Regidor	10489	4421	6068	1,37
Bolívar	Río Viejo (1)(3)	18076	9360	8716	0,93
Bolívar	San Cristóbal	6669	5580	1089	0,2
Bolívar	San Estanislao	16257	11961	4296	0,36
Bolívar	San Fernando	13753	2935	10818	3,69
Bolívar	San Jacinto	21536	20772	764	0,04
Bolívar	San Jacinto del Cauca	13426	3773	9653	2,56
Bolívar	San Martín de Loba	17295	7392	9903	1,34
Bolívar	Santa Catalina	13169	4748	8421	1,77
Bolívar	Santa Rosa	22592	14553	8039	0,55
Bolívar	Simití	20271	9853	10418	1,06
Bolívar	Soplaviento	8441	8250	191	0,02
Bolívar	Talaigua Nuevo	11350	5351	5999	1,12
Bolívar	Tiquisio	22041	6042	15999	2,65
Bolívar	Turbaná	14883	13786	1097	0,08
Bolívar	Villanueva	19691	18233	1458	0,08
Bolívar	Zambrano	11611	10578	1033	0,1
Boyacá	Almeida	1754	274	1480	5,4
Boyacá	Aquitania	15241	6329	8912	1,41
Boyacá	Arcabuco	5240	1961	3279	1,67
Boyacá	Belén	7400	3812	3588	0,94
Boyacá	Berbeo	1932	529	1403	2,65
Boyacá	Betéitiva	2069	389	1680	4,32
Boyacá	Boavita	7079	2929	4150	1,42
Boyacá	Boyacá	4472	403	4069	10,1
Boyacá	Briceño	2584	544	2040	3,75
Boyacá	Buenavista	5789	833	4956	5,95
Boyacá	Busbanzá	1156	442	714	1,62
Boyacá	Caldas	3638	248	3390	13,7
Boyacá	Campohermoso	3847	964	2883	2,99
Boyacá	Cerinza	3762	1547	2215	1,43
Boyacá	Chinavita	3528	1219	2309	1,89
Boyacá	Chiscas	4291	909	3382	3,72

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Boyacá	Chita	9542	2023	7519	3,72
Boyacá	Chitaraque	5687	1131	4556	4,03
Boyacá	Chivatá	6199	2557	3642	1,42
Boyacá	Ciénega	4754	1332	3422	2,57
Boyacá	Cómbita	14632	1107	13525	12,2
Boyacá	Coper	3663	763	2900	3,8
Boyacá	Corrales	2273	1555	718	0,46
Boyacá	Covarachía	2861	516	2345	4,54
Boyacá	Cubará	6725	1998	4727	2,37
Boyacá	Cucaita	4687	1905	2782	1,46
Boyacá	Cuítiva	1906	218	1688	7,74
Boyacá	Chíquiza	5484	94	5390	57,3
Boyacá	Chivor	1795	486	1309	2,69
Boyacá	El Cocuy	5241	2765	2476	0,9
Boyacá	El Espino	4195	1303	2892	2,22
Boyacá	Firavitoba	5907	2127	3780	1,78
Boyacá	Floresta	4523	1798	2725	1,52
Boyacá	Gachantivá	2654	364	2290	6,29
Boyacá	Gameza	4856	1566	3290	2,1
Boyacá	Garagoa	16944	13654	3290	0,24
Boyacá	Guacamayas	1693	499	1194	2,39
Boyacá	Guateque	9603	7176	2427	0,34
Boyacá	Guayatá	5126	1302	3824	2,94
Boyacá	Güicán	6909	1712	5197	3,04
Boyacá	Iza	2349	1026	1323	1,29
Boyacá	Jenesano	7640	1980	5660	2,86
Boyacá	Jericó	4010	639	3371	5,28
Boyacá	Labranzagrande	5099	1159	3940	3,4
Boyacá	La Capilla	2550	972	1578	1,62
Boyacá	La Victoria	1674	857	817	0,95
Boyacá	La Uvita	2523	1018	1505	1,48
Boyacá	Villa de Leyva	16478	9926	6552	0,66
Boyacá	Macanal	4821	1108	3713	3,35
Boyacá	Maripí	7480	970	6510	6,71
Boyacá	Miraflores	9777	5640	4137	0,73
Boyacá	Mongua	4717	1628	3089	1,9
Boyacá	Monguí	4986	2809	2177	0,78
Boyacá	Moniquirá	21402	10544	10858	1,03
Boyacá	Motavita	8067	881	7186	8,16
Boyacá	Muzo	9040	5350	3690	0,69
Boyacá	Nobsa	16271	6389	9882	1,55
Boyacá	Nuevo Colón	6559	1300	5259	4,05

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Boyacá	Oicatá	2834	301	2533	8,42
Boyacá	Otanche	10660	4173	6487	1,55
Boyacá	Pachavita	2508	395	2113	5,35
Boyacá	Páez	2913	1169	1744	1,49
Boyacá	Pajarito	1719	725	994	1,37
Boyacá	Panqueba	1487	605	882	1,46
Boyacá	Pauna	10778	2625	8153	3,11
Boyacá	Paya	2550	580	1970	3,4
Boyacá	Paz de Río	4680	2920	1760	0,6
Boyacá	Pesca	8032	2004	6028	3,01
Boyacá	Pisba	1344	391	953	2,44
Boyacá	Quípama	7874	1601	6273	3,92
Boyacá	Ramiriquí	10015	5023	4992	0,99
Boyacá	Ráquira	13588	3425	10163	2,97
Boyacá	Rondón	2822	544	2278	4,19
Boyacá	Saboyá	12372	789	11583	14,7
Boyacá	Sáchica	3791	1875	1916	1,02
Boyacá	Samacá	19907	5908	13999	2,37
Boyacá	San Eduardo	1862	828	1034	1,25
Boyacá	San José de Pare	5221	1071	4150	3,87
Boyacá	San Luis de Gaceno	5120	1803	3317	1,84
Boyacá	San Mateo	3682	1478	2204	1,49
Boyacá	San Miguel de Sema	4556	488	4068	8,34
Boyacá	San Pablo de Borbur	10524	1306	9218	7,06
Boyacá	Santana	7692	2348	5344	2,28
Boyacá	Santa María	3980	2298	1682	0,73
Boyacá	Santa Rosa de Viterbo	13403	7154	6249	0,87
Boyacá	Santa Sofía	2704	721	1983	2,75
Boyacá	Sativanorte	2339	528	1811	3,43
Boyacá	Sativasur	1110	267	843	3,16
Boyacá	Siachoque	8964	1574	7390	4,7
Boyacá	Soatá	7255	5262	1993	0,38
Boyacá	Socotá	8128	1049	7079	6,75
Boyacá	Socha	7140	3836	3304	0,86
Boyacá	Somondoco	3632	795	2837	3,57
Boyacá	Sora	3025	499	2526	5,06
Boyacá	Sotaquirá	7709	716	6993	9,77
Boyacá	Soracá	5353	751	4602	6,13
Boyacá	Susacón	3095	966	2129	2,2
Boyacá	Sutamarchán	5916	1352	4564	3,38
Boyacá	Sutatenza	4086	769	3317	4,31
Boyacá	Tasco	6361	1905	4456	2,34

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Boyacá	Tenza	4112	1229	2883	2,35
Boyacá	Tibaná	9186	1601	7585	4,74
Boyacá	Tibasosa	14063	4766	9297	1,95
Boyacá	Tinjacá	3035	455	2580	5,67
Boyacá	Tipacoque	3206	867	2339	2,7
Boyacá	Toca	10157	3629	6528	1,8
Boyacá	Togüí	4966	760	4206	5,53
Boyacá	Tópaga	3694	1406	2288	1,63
Boyacá	Tota	5386	563	4823	8,57
Boyacá	Tununguá	1840	379	1461	3,85
Boyacá	Turmequé	6182	2565	3617	1,41
Boyacá	Tuta	9673	2665	7008	2,63
Boyacá	Tutazá	1890	195	1695	8,69
Boyacá	Umbita	10314	1830	8484	4,64
Boyacá	Ventaquemada	15442	2399	13043	5,44
Boyacá	Viracachá	3222	374	2848	7,61
Boyacá	Zetaquira	4557	1059	3498	3,3
Caldas	Aguadas	22081	11509	10572	0,92
Caldas	Aranzazu	11422	6596	4826	0,73
Caldas	Belalcázar	10863	5046	5817	1,15
Caldas	Filadelfia	11034	4165	6869	1,65
Caldas	La Merced	5508	2223	3285	1,48
Caldas	Manzanares	23274	9882	13392	1,36
Caldas	Marmato	9096	1079	8017	7,43
Caldas	Marquetalia	14992	6415	8577	1,34
Caldas	Marulanda	3406	1271	2135	1,68
Caldas	Norcasia	6374	4297	2077	0,48
Caldas	Pácora	11952	5652	6300	1,11
Caldas	Palestina	17760	6746	11014	1,63
Caldas	Pensilvania	26361	8405	17956	2,14
Caldas	Risaralda	9583	4587	4996	1,09
Caldas	Salamina	16635	10011	6624	0,66
Caldas	Samaná	25777	5132	20645	4,02
Caldas	San José	7588	1830	5758	3,15
Caldas	Supía	26728	12955	13773	1,06
Caldas	Victoria	8415	3652	4763	1,3
Caldas	Viterbo	12469	10296	2173	0,21
Caquetá	Albania	6430	2465	3965	1,61
Caquetá	Belén de Los Andaquies	11541	6514	5027	0,77
Caquetá	Curillo	11683	6205	5478	0,88
Caquetá	El Doncello	22137	14410	7727	0,54
Caquetá	El Paujil	20224	10578	9646	0,91

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Caquetá	La Montañita	23620	4910	18710	3,81
Caquetá	Milán	11745	1836	9909	5,4
Caquetá	Morelia	3813	1894	1919	1,01
Caquetá	San José del Fragua	14921	6135	8786	1,43
Caquetá	Solano	23663	1944	21719	11,2
Caquetá	Solita	9140	4052	5088	1,26
Caquetá	Valparaíso	11629	3836	7793	2,03
Cauca	Almaguer	21243	1608	19635	12,2
Cauca	Argelia	26715	3937	22778	5,79
Cauca	Balboa	25589	7484	18105	2,42
Cauca	Caloto(1)(3)	17642	4583	13059	2,85
Cauca	Florencia	6132	1390	4742	3,41
Cauca	Guachené (1)	19815	5067	14748	2,91
Cauca	Guapi	29722	18111	11611	0,64
Cauca	Jambaló	17590	1208	16382	13,6
Cauca	La Sierra	10643	1501	9142	6,09
Cauca	López	20316	5681	14635	2,58
Cauca	Mercaderes	18061	5096	12965	2,54
Cauca	Morales	25963	1564	24399	15,6
Cauca	Padilla	7882	4111	3771	0,92
Cauca	Piamonte	7347	626	6721	10,7
Cauca	Puracé	15261	1706	13555	7,95
Cauca	Rosas	13302	1709	11593	6,78
Cauca	San Sebastián	13924	1260	12664	10,1
Cauca	Santa Rosa	10480	1900	8580	4,52
Cauca	Sotara	16968	354	16614	46,9
Cauca	Suárez	18656	3240	15416	4,76
Cauca	Sucre	8886	1468	7418	5,05
Cauca	Timbiquí	21617	4224	17393	4,12
Cauca	Toribio	29187	1759	27428	15,6
Cauca	Totoró	20123	1882	18241	9,69
Cauca	Villa Rica	16189	12627	3562	0,28
Cesar	Astrea	19195	9935	9260	0,93
Cesar	Becerril	13453	10341	3112	0,3
Cesar	Chiriguaná	19650	14581	5069	0,35
Cesar	Curumaní	24367	19119	5248	0,27
Cesar	El Copey	26473	20504	5969	0,29
Cesar	El Paso	22832	3975	18857	4,74
Cesar	Gamarra	16644	9377	7267	0,77
Cesar	González	6990	1316	5674	4,31
Cesar	La Gloria	12938	6248	6690	1,07
Cesar	La Jagua de Ibirico	22282	19010	3272	0,17

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Cesar	Manaure	14514	9341	5173	0,55
Cesar	Pailitas	17166	13287	3879	0,29
Cesar	Pelaya	17910	12038	5872	0,49
Cesar	Pueblo Bello	22275	5436	16839	3,1
Cesar	Río de Oro	14041	6133	7908	1,29
Cesar	La Paz	22815	14872	7943	0,53
Cesar	San Alberto	24652	18278	6374	0,35
Cesar	San Diego	13376	7494	5882	0,78
Cesar	San Martín	18548	9012	9536	1,06
Cesar	Tamalameque	13862	5585	8277	1,48
Córdoba	Buenavista	21628	8296	13332	1,61
Córdoba	Canalete	21548	4183	17365	4,15
Córdoba	Chimá	15018	3160	11858	3,75
Córdoba	Cotorra	15447	4002	11445	2,86
Córdoba	La Apartada	15204	13005	2199	0,17
Córdoba	Los Córdobas	23760	4612	19148	4,15
Córdoba	Momil	14864	9495	5369	0,57
Córdoba	Moñitos	27433	6815	20618	3,03
Córdoba	Puerto Escondido	29141	4863	24278	4,99
Córdoba	Purísima	15073	6418	8655	1,35
Córdoba	San Carlos	27104	5679	21425	3,77
Córdoba	San José de Uré(1)	10993	5509	5484	1
Cundinamarca	Agua de Dios	10995	8468	2527	0,3
Cundinamarca	Albán	5956	1612	4344	2,69
Cundinamarca	Anapoima	13312	5709	7603	1,33
Cundinamarca	Anolaima	12311	3699	8612	2,33
Cundinamarca	Arbeláez	12292	5261	7031	1,34
Cundinamarca	Beltrán	2197	433	1764	4,07
Cundinamarca	Bituima	2520	444	2076	4,68
Cundinamarca	Bojacá	11555	9256	2299	0,25
Cundinamarca	Cabrera	4499	1049	3450	3,29
Cundinamarca	Cachipay	9833	3153	6680	2,12
Cundinamarca	Caparrapí	16691	2721	13970	5,13
Cundinamarca	Caqueza	17048	7297	9751	1,34
Cundinamarca	Carmen de Carupa	9109	2374	6735	2,84
Cundinamarca	Chaguaní	3981	749	3232	4,32
Cundinamarca	Chipaque	8400	2530	5870	2,32
Cundinamarca	Choachí	10729	3615	7114	1,97
Cundinamarca	Chocontá	25257	12867	12390	0,96
Cundinamarca	Cogua	22361	6950	15411	2,22
Cundinamarca	Cota	24916	14354	10562	0,74
Cundinamarca	Cucunubá	7479	1383	6096	4,41

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Cundinamarca	El Colegio	21832	8336	13496	1,62
Cundinamarca	El Peñón	4805	445	4360	9,8
Cundinamarca	El Rosal	17254	12347	4907	0,4
Cundinamarca	Fomeque	12214	4734	7480	1,58
Cundinamarca	Fosca	7524	1916	5608	2,93
Cundinamarca	Fúquene	5617	263	5354	20,4
Cundinamarca	Gachala	5715	2025	3690	1,82
Cundinamarca	Gachetá	11086	3689	7397	2,01
Cundinamarca	Granada	8685	2039	6646	3,26
Cundinamarca	Guachetá	11385	3756	7629	2,03
Cundinamarca	Guasca	14759	5203	9556	1,84
Cundinamarca	Guataquí	2630	1368	1262	0,92
Cundinamarca	Guatavita	6898	1960	4938	2,52
Cundinamarca	Guayabal de Siquima	3638	866	2772	3,2
Cundinamarca	Guayabetal	4931	1491	3440	2,31
Cundinamarca	Gutiérrez	4097	1116	2981	2,67
Cundinamarca	Jerusalén	2679	586	2093	3,57
Cundinamarca	Junín	8610	998	7612	7,63
Cundinamarca	La Calera	27527	11849	15678	1,32
Cundinamarca	La Palma	10727	4072	6655	1,63
Cundinamarca	La Peña	7029	995	6034	6,06
Cundinamarca	La Vega	14230	5270	8960	1,7
Cundinamarca	Lenguazaque	10268	2282	7986	3,5
Cundinamarca	Macheta	6316	1498	4818	3,22
Cundinamarca	Manta	4719	1285	3434	2,67
Cundinamarca	Medina	10108	3879	6229	1,61
Cundinamarca	Nariño	2203	1449	754	0,52
Cundinamarca	Nemocón	13488	5684	7804	1,37
Cundinamarca	Nilo	18384	4693	13691	2,92
Cundinamarca	Nimaima	6679	2875	3804	1,32
Cundinamarca	Nocaima	8004	1858	6146	3,31
Cundinamarca	Venecia	4060	1093	2967	2,71
Cundinamarca	Pacho	27179	15376	11803	0,77
Cundinamarca	Paime	4502	468	4034	8,62
Cundinamarca	Pandi	5658	1066	4592	4,31
Cundinamarca	Paratebueno	7726	2387	5339	2,24
Cundinamarca	Pasca	12175	2841	9334	3,29
Cundinamarca	Puerto Salgar	18688	14070	4618	0,33
Cundinamarca	Pulí	2999	662	2337	3,53
Cundinamarca	Quebradanegra	4738	386	4352	11,3
Cundinamarca	Quetame	7141	1609	5532	3,44
Cundinamarca	Quipile	8164	676	7488	11,1

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Cundinamarca	Apulo	7812	3151	4661	1,48
Cundinamarca	Ricaurte	9441	4394	5047	1,15
	San Antonio del				
Cundinamarca	Tequendama	13084	1018	12066	11,9
Cundinamarca	San Bernardo	10670	4123	6547	1,59
Cundinamarca	San Cayetano	5344	735	4609	6,27
Cundinamarca	San Francisco	9586	3385	6201	1,83
Cundinamarca	San Juan de Río Seco	9670	2919	6751	2,31
Cundinamarca	Sasaima	10688	2429	8259	3,4
Cundinamarca	Sesquilé	13936	3468	10468	3,02
Cundinamarca	Silvania	21984	6270	15714	2,51
Cundinamarca	Simijaca	13077	7293	5784	0,79
Cundinamarca	Sopó	26769	17151	9618	0,56
Cundinamarca	Subachoque	16117	6061	10056	1,66
Cundinamarca	Suesca	17318	8567	8751	1,02
Cundinamarca	Supatá	5022	1502	3520	2,34
Cundinamarca	Susa	12302	6315	5987	0,95
Cundinamarca	Sutatausa	5564	1743	3821	2,19
Cundinamarca	Tabio	27033	13145	13888	1,06
Cundinamarca	Tausa	8801	1058	7743	7,32
Cundinamarca	Tena	8941	835	8106	9,71
Cundinamarca	Tenjo	19849	9421	10428	1,11
Cundinamarca	Tibacuy	4828	523	4305	8,23
Cundinamarca	Tibirita	2950	492	2458	5
Cundinamarca	Tocaima	18387	10915	7472	0,68
Cundinamarca	Topaipí	4529	811	3718	4,58
Cundinamarca	Ubalá	10718	1280	9438	7,37
Cundinamarca	Ubaque	6166	879	5287	6,01
Cundinamarca	Une	9196	4566	4630	1,01
Cundinamarca	Útica	5008	2730	2278	0,83
Cundinamarca	Vergara	7677	1527	6150	4,03
Cundinamarca	Vianí	4191	1330	2861	2,15
Cundinamarca	Villagómez	2171	619	1552	2,51
Cundinamarca	Villapinzón	19742	6526	13216	2,03
Cundinamarca	Villeta	25164	16178	8986	0,56
Cundinamarca	Viotá	13351	4342	9009	2,07
Cundinamarca	Yacopí	16951	3958	12993	3,28
Cundinamarca	Zipacón	5570	2081	3489	1,68
Chocó	Acandí	9584	5249	4335	0,83
Chocó	Atrato	9927	3498	6429	1,84
Chocó	Bagadó	8064	2340	5724	2,45
Chocó	Bahía Solano	9327	4863	4464	0,92

Departamento Municipio Total cabecer	a Rural	IPU
Chocó Bajo Baudó 17402 318	0 14222	4,47
Chocó Bojaya 10099 511	4 4985	0,97
Chocó El Cantón del San Pablo 7970 348	6 4484	1,29
Chocó Carmen del Darien 5462 132	1 4141	3,13
Chocó Cértegui 10068 629	3 3775	0,6
Chocó Condoto 14660 1032	4 4336	0,42
Chocó El Carmen de Atrato 14049 679	7 7252	1,07
Chocó El Litoral del San Juan 15251 134	1 13910	10,4
Chocó Istmina 25351 2011	2 5239	0,26
Chocó Juradó 3319 162	0 1699	1,05
Chocó Lloró 11197 340	6 7791	2,29
Chocó Medio Atrato 29487 109	3 28394	26
Chocó Medio Baudó 13560 62	1 12939	20,8
Chocó Medio San Juan 16317 580	5 10512	1,81
Chocó Nóvita 7957 319	2 4765	1,49
Chocó Nuquí 8576 375	3 4823	1,29
Chocó Río Iro 9695 159	2 8103	5,09
Chocó Río Quito 8961 258	4 6377	2,47
Chocó Riosucio(2) 28832 845	8 20374	2,41
Chocó San José del Palmar 4822 113	2 3690	3,26
Chocó Sipí 4048 34	8 3700	10,6
Chocó Tadó 18906 1226	6 6640	0,54
Chocó Unguía 15126 471	4 10412	2,21
Chocó Unión Panamericana 9592 421	5 5377	1,28
Huila Agrado 9064 530	8 3756	0,71
Huila Aipe 26219 1653	0 9689	0,59
Huila Algeciras 24499 1550	5 8994	0,58
Huila Altamira 4293 290	1 1392	0,48
Huila Baraya 9610 505	8 4552	0,9
Huila Colombia 12413 252	9 9884	3,91
Huila Elías 3930 124	7 2683	2,15
Huila Guadalupe 21271 513	0 16141	3,15
Huila Hobo 6927 533	7 1590	0,3
Huila Iquira 12730 237	7 10353	4,36
Huila Isnos 27147 586	2 21285	3,63
Huila La Argentina 14021 484	4 9177	1,89
Huila Nátaga 6342 218	9 4153	1,9
Huila Oporapa 13514 387	7 9637	2,49
Huila Paicol 5565 242	7 3138	1,29
Huila Palestina 11560 208	0 9480	4,56
Huila Pital 13684 506	5 8619	1,7
Huila Rivera 18797 1068	1 8116	0,76

GRUPO G1 municipios menores a 30.000 habitantes						
Departamento	Municipio	Total	cabecera	Rural	IPU	
Huila	Saladoblanco	11462	2776	8686	3,13	
Huila	Santa María	11346	3207	8139	2,54	
Huila	Suaza	18965	4345	14620	3,36	
Huila	Tarqui	17601	5036	12565	2,5	
Huila	Tesalia	9248	5392	3856	0,72	
Huila	Tello	14193	6627	7566	1,14	
Huila	Teruel	8749	4380	4369	1	
Huila	Timaná	20315	7321	12994	1,77	
Huila	Villavieja	7314	2459	4855	1,97	
Huila	Yaguará	8952	7587	1365	0,18	
La Guajira	Albania	26606	13315	13291	1	
La Guajira	Distracción	15790	5310	10480	1,97	
La Guajira	El Molino	8728	6017	2711	0,45	
La Guajira	Hatonuevo	24916	13989	10927	0,78	
La Guajira	La Jagua del Pilar	3213	2276	937	0,41	
La Guajira	Urumita	17910	10413	7497	0,72	
La Guajira	Villanueva	27657	19428	8229	0,42	
Magdalena	Algarrobo	12576	8376	4200	0,5	
Magdalena	Cerro San Antonio	7845	4363	3482	0,8	
Magdalena	Chivolo	15960	10801	5159	0,48	
Magdalena	Concordia	9388	4214	5174	1,23	
Magdalena	El Piñon	16752	6162	10590	1,72	
Magdalena	El Retén	20981	16270	4711	0,29	
Magdalena	Guamal	27253	7852	19401	2,47	
Magdalena	Nueva Granada	19783	8175	11608	1,42	
Magdalena	Pedraza	8066	2472	5594	2,26	
Magdalena	Pijiño del Carmen	15759	7874	7885	1	
Magdalena	Remolino	8150	5561	2589	0,47	
Magdalena	Sabanas de San Angel	16865	4165	12700	3,05	
Magdalena	Salamina San Sebastián de	7089	4441	2648	0,6	
Magdalena	Buenavista	17483	5768	11715	2,03	
Magdalena	San Zenón	9107	1850	7257	3,92	
Magdalena	Santa Ana	25938	13034	12904	0,99	
Magdalena	Santa Bárbara de Pinto	12610	7342	5268	0,72	
Magdalena	Tenerife	12243	6156	6087	0,99	
Magdalena	Zapayán	8801	3620	5181	1,43	
Meta	Barranca de Upía	3926	2858	1068	0,37	
Meta	Cabuyaro	4018	1749	2269	1,3	
Meta	Castilla la Nueva	9612	4851	4761	0,98	
Meta	Cubarral	5946	3890	2056	0,53	
Meta	Cumaral	18020	12230	5790	0,47	

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Meta	El Calvario	2240	803	1437	1,79
Meta	El Castillo	6362	2061	4301	2,09
Meta	El Dorado	3429	1471	1958	1,33
Meta	Fuente de Oro	13263	7336	5927	0,81
Meta	Guamal	9366	6812	2554	0,37
Meta	Mapiripán	17229	1370	15859	11,6
Meta	Mesetas	11287	3661	7626	2,08
Meta	Uribe	16155	3851	12304	3,2
Meta	Lejanías	9403	4400	5003	1,14
Meta	Puerto Concordia	20897	10358	10539	1,02
Meta	Puerto Gaitán	18556	7705	10851	1,41
Meta	Puerto Lleras	9817	2975	6842	2,3
Meta	Puerto Rico	18626	5182	13444	2,59
Meta	Restrepo	10599	7407	3192	0,43
Meta	San Carlos de Guaroa	9581	4626	4955	1,07
Meta	San Juan de Arama	8837	3898	4939	1,27
Meta	San Juanito	2165	807	1358	1,68
Meta	San Martín	24670	21960	2710	0,12
Meta	Vistahermosa	25461	8975	16486	1,84
Nariño	Albán	22131	8065	14066	1,74
Nariño	Aldana	6085	1424	4661	3,27
Nariño	Ancuyá	7083	1601	5482	3,42
Nariño	Arboleda	7550	1116	6434	5,77
Nariño	Belén	7518	2968	4550	1,53
Nariño	Buesaco	25063	6099	18964	3,11
Nariño	Colón	10127	1588	8539	5,38
Nariño	Consaca	9386	1811	7575	4,18
Nariño	Contadero	6954	2331	4623	1,98
Nariño	Córdoba	14006	2331	11675	5,01
Nariño	Cuaspud	8592	2344	6248	2,67
Nariño	Cumbitara	15239	1793	13446	7,5
Nariño	Chachagüí	13784	7144	6640	0,93
Nariño	El Peñol	6500	1037	5463	5,27
Nariño	El Rosario	10201	3390	6811	2,01
Nariño	El Tablón de Gómez	12757	905	11852	13,1
Nariño	El Tambo	12271	5310	6961	1,31
Nariño	Funes	6498	2117	4381	2,07
Nariño	Guachucal	15652	3012	12640	4,2
Nariño	Guaitarilla	12011	4206	7805	1,86
Nariño	Gualmatán	5767	2232	3535	1,58
Nariño	lles	8701	1940	6761	3,49
Nariño	Imués	6236	587	5649	9,62

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Nariño	La Cruz	18220	6609	11611	1,76
Nariño	La Florida	9555	1817	7738	4,26
Nariño	La Llanada	5813	1840	3973	2,16
Nariño	La Tola	12584	9344	3240	0,35
Nariño	La Unión	26078	10690	15388	1,44
Nariño	Leiva	13849	4388	9461	2,16
Nariño	Linares	10042	2402	7640	3,18
Nariño	Los Andes	19414	7662	11752	1,53
Nariño	Magüi	22437	4610	17827	3,87
Nariño	Mallama	7755	1231	6524	5,3
Nariño	Mosquera	16270	5738	10532	1,84
Nariño	Nariño	4870	3690	1180	0,32
Nariño	Ospina	8713	2437	6276	2,58
Nariño	Francisco Pizarro	15039	7541	7498	0,99
Nariño	Policarpa	16834	2973	13861	4,66
Nariño	Potosí	12137	2148	9989	4,65
Nariño	Providencia	13256	5411	7845	1,45
Nariño	Puerres	8384	3040	5344	1,76
Nariño	Pupiales	19388	5971	13417	2,25
Nariño	Ricaurte	18666	2504	16162	6,45
Nariño	Roberto Payán	22613	1221	21392	17,5
Nariño	Sandoná	25685	11893	13792	1,16
Nariño	San Bernardo	19201	4163	15038	3,61
Nariño	San Lorenzo	19849	2772	17077	6,16
Nariño	San Pablo	17492	4029	13463	3,34
Nariño	San Pedro de Cartago	7539	698	6841	9,8
Nariño	Santa Bárbara	14752	2934	11818	4,03
Nariño	Santacruz	28171	6611	21560	3,26
Nariño	Sapuyes	6355	1425	4930	3,46
Nariño	Taminango	20537	4980	15557	3,12
Nariño	Tangua	9629	2328	7301	3,14
Nariño	Yacuanquer	10968	2815	8153	2,9
Nte de Santander	Arboledas	8984	2490	6494	2,61
Nte de Santander	Bochalema	6973	2509	4464	1,78
Nte de Santander	Bucarasica	4570	592	3978	6,72
Nte de Santander	Cácota	1925	563	1362	2,42
Nte de Santander	Cachirá	10970	1700	9270	5,45
Nte de Santander	Chinácota	16348	11086	5262	0,47
Nte de Santander	Chitagá	10373	3650	6723	1,84
Nte de Santander	Convención	13569	5173	8396	1,62
Nte de Santander	Cucutilla	7686	1224	6462	5,28
Nte de Santander	Durania	3768	1802	1966	1,09

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Nte de Santander	El Carmen	14005	2346	11659	4,97
Nte de Santander	El Tarra	10957	4452	6505	1,46
Nte de Santander	El Zulia	22843	13671	9172	0,67
Nte de Santander	Gramalote	5567	2748	2819	1,03
Nte de Santander	Hacarí	10657	1220	9437	7,74
Nte de Santander	Herrán	4045	1034	3011	2,91
Nte de Santander	Labateca	5867	1427	4440	3,11
Nte de Santander	La Esperanza	12012	1712	10300	6,02
Nte de Santander	La Playa	8546	641	7905	12,3
Nte de Santander	Lourdes	3365	1221	2144	1,76
Nte de Santander	Mutiscua	3759	536	3223	6,01
Nte de Santander	Pamplonita	4932	900	4032	4,48
Nte de Santander	Puerto Santander	10249	9514	735	0,08
Nte de Santander	Ragonvalia	6891	2897	3994	1,38
Nte de Santander	Salazar	8964	3747	5217	1,39
Nte de Santander	San Calixto	13514	2153	11361	5,28
Nte de Santander	San Cayetano	5424	2092	3332	1,59
Nte de Santander	Santiago	2823	1358	1465	1,08
Nte de Santander	Sardinata	22632	9188	13444	1,46
Nte de Santander	Silos	4445	986	3459	3,51
Nte de Santander	Teorama	21524	2702	18822	6,97
Nte de Santander	Toledo	17283	4470	12813	2,87
Nte de Santander	Villa Caro	5192	1961	3231	1,65
Quindio	Buenavista	2834	1191	1643	1,38
Quindio	Circasia	29886	22471	7415	0,33
Quindio	Córdoba	5305	2995	2310	0,77
Quindio	Filandia	13414	7151	6263	0,88
Quindio	Génova	7916	3984	3932	0,99
Quindio	Pijao	6139	3689	2450	0,66
Quindio	Salento	7111	3791	3320	0,88
Risaralda	Apía	18976	8236	10740	1,3
Risaralda	Balboa	6331	1846	4485	2,43
Risaralda	Belén de Umbría	27721	13126	14595	1,11
Risaralda	Guática	15306	3969	11337	2,86
Risaralda	La Celia	8598	3430	5168	1,51
Risaralda	Marsella	23299	13348	9951	0,75
Risaralda	Mistrató	16177	4252	11925	2,8
Risaralda	Pueblo Rico	13283	3338	9945	2,98
Risaralda	Santuario	15715	7258	8457	1,17
Santander	Aguada	1855	225	1630	7,24
Santander	Albania	5096	602	4494	7,47
Santander	Aratoca	8312	2435	5877	2,41

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Santander	Barbosa	28635	23070	5565	0,24
Santander	Barichara	7215	2617	4598	1,76
Santander	Betulia	5110	1114	3996	3,59
Santander	Bolívar	12351	1319	11032	8,36
Santander	Cabrera	2267	634	1633	2,58
Santander	California	1984	1062	922	0,87
Santander	Capitanejo	5593	3120	2473	0,79
Santander	Carcasí	5039	652	4387	6,73
Santander	Cepitá	1865	526	1339	2,55
Santander	Cerrito	5708	2586	3122	1,21
Santander	Charalá	10540	5831	4709	0,81
Santander	Charta	2670	592	2078	3,51
Santander	Chima	3087	862	2225	2,58
Santander	Chipatá	5088	688	4400	6,4
Santander	Concepción	5292	2555	2737	1,07
Santander	Confines	2705	402	2303	5,73
Santander	Contratación	3491	2698	793	0,29
Santander	Coromoro	7558	1033	6525	6,32
Santander	Curití	11899	3586	8313	2,32
Santander	El Carmen de Chucurí	20099	5830	14269	2,45
Santander	El Guacamayo	2005	424	1581	3,73
Santander	El Peñón	5140	893	4247	4,76
Santander	El Playón	11776	5618	6158	1,1
Santander	Encino	2497	461	2036	4,42
Santander	Enciso	3323	640	2683	4,19
Santander	Florián	6301	1480	4821	3,26
Santander	Galán	2311	614	1697	2,76
Santander	Gambita	5044	390	4654	11,9
Santander	Guaca	6395	2193	4202	1,92
Santander	Guadalupe	4756	1543	3213	2,08
Santander	Guapotá	2139	532	1607	3,02
Santander	Guavatá	3679	730	2949	4,04
Santander	Güepsa	3849	1904	1945	1,02
Santander	Hato	2345	823	1522	1,85
Santander	Jesús María	3137	854	2283	2,67
Santander	Jordán	1103	56	1047	18,7
Santander	La Belleza	8587	1910	6677	3,5
Santander	Landázuri	15374	3672	11702	3,19
Santander	La Paz	5152	832	4320	5,19
Santander	Los Santos	12185	1899	10286	5,42
Santander	Macaravita	2378	290	2088	7,2
Santander	Málaga	18382	15371	3011	0,2

GR	GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU	
Santander	Matanza	5297	1099	4198	3,82	
Santander	Mogotes	10880	3831	7049	1,84	
Santander	Molagavita	5193	773	4420	5,72	
Santander	Ocamonte	4775	671	4104	6,12	
Santander	Oiba	11738	5547	6191	1,12	
Santander	Onzaga	5054	1229	3825	3,11	
Santander	Palmar	3330	987	2343	2,37	
Santander	Palmas del Socorro	2241	683	1558	2,28	
Santander	Páramo	4112	1388	2724	1,96	
Santander	Pinchote	5201	1521	3680	2,42	
Santander	Puente Nacional	12476	5611	6865	1,22	
Santander	Puerto Parra	7548	3661	3887	1,06	
Santander	Rionegro	27114	6759	20355	3,01	
Santander	Sabana de Torres	18652	12236	6416	0,52	
Santander	San Andrés	8540	2621	5919	2,26	
Santander	San Benito	3986	464	3522	7,59	
Santander	San Joaquín	2488	667	1821	2,73	
Santander	San José de Miranda	4346	887	3459	3,9	
Santander	San Miguel	2379	389	1990	5,12	
Santander	Santa Bárbara	2137	404	1733	4,29	
Santander	Santa Helena del Opón	4304	610	3694	6,06	
Santander	Simacota	7789	2480	5309	2,14	
Santander	Suaita	10277	1848	8429	4,56	
Santander	Sucre	8397	404	7993	19,8	
Santander	Suratá	3295	688	2607	3,79	
Santander	Tona	7085	558	6527	11,7	
Santander	Valle de San José	4670	1942	2728	1,4	
Santander	Vélez	19057	10231	8826	0,86	
Santander	Vetas	2435	1319	1116	0,85	
Santander	Villanueva	5858	3608	2250	0,62	
Santander	Zapatoca	8929	5673	3256	0,57	
Sucre	Buenavista	9552	8095	1457	0,18	
Sucre	Caimito	12077	3347	8730	2,61	
Sucre	Coloso	5838	3024	2814	0,93	
Sucre	Coveñas	13530	3812	9718	2,55	
Sucre	Chalán	4354	2721	1633	0,6	
Sucre	El Roble	10550	4375	6175	1,41	
Sucre	Galeras	20188	12364	7824	0,63	
Sucre	Guaranda	17422	6576	10846	1,65	
Sucre	La Unión	11170	6016	5154	0,86	
Sucre	Los Palmitos	19257	9014	10243	1,14	
Sucre	Morroa	14429	6612	7817	1,18	

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Sucre	Ovejas	21091	11947	9144	0,77
Sucre	Palmito	13682	5345	8337	1,56
Sucre	San Benito Abad	25442	5314	20128	3,79
Sucre	San Juan de Betulia	12544	6508	6036	0,93
Sucre	San Pedro	16038	11139	4899	0,44
Sucre	Sucre	22386	7781	14605	1,88
Sucre	Tolú Viejo	18897	5445	13452	2,47
Tolima	Alpujarra	4992	1863	3129	1,68
Tolima	Alvarado	8834	3379	5455	1,61
Tolima	Ambalema	6837	5231	1606	0,31
Tolima	Anzoátegui	18434	2109	16325	7,74
Tolima	Armero	11960	8441	3519	0,42
Tolima	Ataco	22513	5189	17324	3,34
Tolima	Cajamarca	19656	9968	9688	0,97
Tolima	Carmen de Apicalá	8793	6849	1944	0,28
Tolima	Casabianca	6684	1464	5220	3,57
Tolima	Coello	9740	1866	7874	4,22
Tolima	Coyaima	28304	4783	23521	4,92
Tolima	Cunday	9719	2270	7449	3,28
Tolima	Dolores	8108	3266	4842	1,48
Tolima	Falan	9218	1651	7567	4,58
Tolima	Flandes	29106	25056	4050	0,16
Tolima	Herveo	8100	2063	6037	2,93
Tolima	Honda	24781	24023	758	0,03
Tolima	Icononzo	10982	3430	7552	2,2
Tolima	Lérida	17584	14309	3275	0,23
Tolima	Murillo	5029	1493	3536	2,37
Tolima	Natagaima	22574	15071	7503	0,5
Tolima	Palocabildo	9197	2843	6354	2,23
Tolima	Piedras	5619	1764	3855	2,19
Tolima	Planadas	29935	7621	22314	2,93
Tolima	Prado	7791	3274	4517	1,38
Tolima	Purificación	29284	17702	11582	0,65
Tolima	Rioblanco	24553	4673	19880	4,25
Tolima	Roncesvalles	6331	1489	4842	3,25
Tolima	Rovira	20641	9913	10728	1,08
Tolima	Saldaña	14447	8621	5826	0,68
Tolima	San Antonio	14400	4230	10170	2,4
Tolima	San Luis	19164	3705	15459	4,17
Tolima	Santa Isabel	6382	2283	4099	1,8
Tolima	Suárez	4555	2161	2394	1,11
Tolima	Valle de San Juan	6355	2900	3455	1,19

GRUPO G1 municipios menores a 30.000 habitantes					
Departamento	Municipio	Total	cabecera	Rural	IPU
Tolima	Venadillo	19586	14294	5292	0,37
Tolima	Villahermosa	10696	3682	7014	1,9
Tolima	Villarrica	5449	2197	3252	1,48
Valle del Cauca	Alcalá	21352	11440	9912	0,87
Valle del Cauca	Andalucía	17811	14658	3153	0,22
Valle del Cauca	Ansermanuevo	19557	13192	6365	0,48
Valle del Cauca	Argelia	6440	3110	3330	1,07
Valle del Cauca	Bolívar	13474	3437	10037	2,92
Valle del Cauca	Bugalagrande	21167	11902	9265	0,78
Valle del Cauca	Caicedonia	29824	24441	5383	0,22
Valle del Cauca	Calima	15763	9363	6400	0,68
Valle del Cauca	El Águila	11069	2689	8380	3,12
Valle del Cauca	El Cairo	9976	2812	7164	2,55
Valle del Cauca	El Dovio	8508	5057	3451	0,68
Valle del Cauca	Ginebra	21055	10119	10936	1,08
Valle del Cauca	La Cumbre	11512	2494	9018	3,62
Valle del Cauca	La Victoria	13247	9439	3808	0,4
Valle del Cauca	Obando	14980	11104	3876	0,35
Valle del Cauca	Restrepo	16227	9091	7136	0,78
Valle del Cauca	Riofrío	14716	4869	9847	2,02
Valle del Cauca	San Pedro	18128	7246	10882	1,5
Valle del Cauca	Toro	16394	9303	7091	0,76
Valle del Cauca	Trujillo	18100	8193	9907	1,21
Valle del Cauca	Ulloa	5457	2680	2777	1,04
Valle del Cauca	Versalles	7214	3000	4214	1,4
Valle del Cauca	Vijes	11010	7112	3898	0,55
Valle del Cauca	Yotoco	16263	8297	7966	0,96
Arauca	Cravo Nte	3331	2319	1012	0,44
Arauca	Fortul	25379	13081	12298	0,94
Arauca	Puerto Rondón	3844	2864	980	0,34
Casanare	Chameza	2460	1617	843	0,52
Casanare	Hato Corozal	12147	5280	6867	1,3
Casanare	La Salina	1420	610	810	1,33
Casanare	Maní	11135	7522	3613	0,48
Casanare	Monterrey	14828	12515	2313	0,18
Casanare	Nunchía	8827	2112	6715	3,18
Casanare	Orocué	8309	5215	3094	0,59
Casanare	Paz de Ariporo	26605	19135	7470	0,39
Casanare	Pore	7919	3968	3951	1
Casanare	Recetor	4070	1487	2583	1,74
Casanare	Sabanalarga	2987	1506	1481	0,98
Casanare	Sácama	2001	1414	587	0,42
-				"	,

GRUPO G1 municipios menores a 30.000 habitantes						
Departamento	Municipio	Total	cabecera	Rural	IPU	
Casanare	San Luis de Palenque	7765	2279	5486	2,41	
Casanare	Támara	7040	2328	4712	2,02	
Casanare	Tauramena	22076	14771	7305	0,49	
Casanare	Trinidad	14741	8400	6341	0,75	
Casanare	Villanueva	23859	20512	3347	0,16	
Putumayo	Colón	5519	3276	2243	0,68	
Putumayo	Puerto Caicedo	14575	5198	9377	1,8	
Putumayo	Puerto Guzmán	23699	4692	19007	4,05	
Putumayo	Leguízamo	15445	9029	6416	0,71	
Putumayo	Sibundoy	14136	10280	3856	0,38	
Putumayo	San Francisco	7083	4152	2931	0,71	
Putumayo	San Miguel	26551	5811	20740	3,57	
Putumayo	Santiago	10428	4259	6169	1,45	
Putumayo	Villagarzón	21134	10914	10220	0,94	
San Andrés	Providencia	5137	2266	2871	1,27	
Amazonas	El Encanto (CD)	4841	0	4841	0	
Amazonas	La Chorrera (CD)	3878	0	3878	0	
Amazonas	La Pedrera (CD)	4985	0	4985	0	
Amazonas	La Victoria (CD)	1102	0	1102	0	
Amazonas	Miriti - Paraná (CD)	1531	0	1531	0	
Amazonas	Puerto Alegría (CD)	1941	0	1941	0	
Amazonas	Puerto Arica (CD)	1350	0	1350	0	
Amazonas	Puerto Nariño	8162	2164	5998	2,77	
Amazonas	Puerto Santander (CD)	2932	0	2932	0	
Amazonas	Tarapacá (CD)	4195	0	4195	0	
Guainía	Inírida	19816	12690	7126	0,56	
Guainía	Barranco Minas (CD)	4862	0	4862	0	
Guainía	Mapiripana (CD)	2845	0	2845	0	
Guainía	San Felipe (CD)	2050	0	2050	0	
Guainía	Puerto Colombia (CD)	4736	0	4736	0	
Guainía	La Guadalupe (CD)	358	0	358	0	
Guainía	Cacahual (CD)	2474	0	2474	0	
Guainía	Pana Pana (CD)	3149	0	3149	0	
Guainía	Morichal (CD)	1192	0	1192	0	
Guaviare	Calamar	9091	5305	3786	0,71	
Guaviare	El Retorno	22975	11684	11291	0,97	
Guaviare	Miraflores	14439	3469	10970	3,16	
Vaupés	Caruru	3327	686	2641	3,85	
Vaupés	Pacoa (CD)	5709	0	5709	0	
Vaupés	Taraira	976	146	830	5,68	
Vaupés	Papunaua (CD)	845	0	845	0	
Vaupés	Yavaraté (CD)	1240	0	1240	0	

GRUPO G1 municipios menores a 30.000 habitantes							
Departamento	Municipio	Total	cabecera	Rural	IPU		
Vichada	Puerto Carreño	15753	13217	2536	0,19		
Vichada	La Primavera	15342	8502	6840	0,8		
Vichada	Santa Rosalía	4012	2622	1390	0,53		

GRUPO G2 municipios entre 30.000 y 100.000 habitantes							
Departamento	o Municipio	Total	Cabecera	Rural	IPU		
Antioquia	Andes	45814	22667	23147	1,02		
Antioquia	Arboletes	40147	16870	23277	1,38		
Antioquia	Barbosa	50050	23003	27047	1,18		
Antioquia	Cáceres	37806	8695	29111	3,35		
Antioquia	Caldas	77854	61343	16511	0,27		
Antioquia	Carepa	55788	42808	12980	0,30		
Antioquia	El Carmen de Viboral	46751	30107	16644	0,55		
Antioquia	Chigorodó	76202	66530	9672	0,15		
Antioquia	Copacabana	70171	61281	8890	0,15		
Antioquia	El Bagre	49583	25955	23628	0,91		
Antioquia	Girardota	54219	32453	21766	0,67		
Antioquia	La Ceja	52723	45779	6944	0,15		
Antioquia	La Estrella	62344	35099	27245	0,78		
Antioquia	Marinilla	53374	41861	11513	0,28		
Antioquia	Necoclí	62365	15419	46946	3,04		
Antioquia	Puerto Berrío	46883	42084	4799	0,11		
Antioquia	Sabaneta	51868	41380	10488	0,25		
Antioquia	San Pedro de Uraba	31280	14104	17176	1,22		
Antioquia	Santa Rosa de Osos	35650	18640	17010	0,91		
Antioquia	Segovia	40174	31934	8240	0,26		
Antioquia	Sonson	35405	15109	20296	1,34		
Antioquia	Tarazá	42641	26693	15948	0,60		
Antioquia	Urrao	44648	17401	27247	1,57		
Antioquia	Yarumal	46865	30515	16350	0,54		
Antioquia	Zaragoza	30738	13978	16760	1,20		
Atlántico	Baranoa	57845	48570	9275	0,19		
Atlántico	Galapa	42706	38730	3976	0,10		
Atlántico	Sabanagrande	31678	30641	1037	0,03		
Atlántico	Sabanalarga	98173	80432	17741	0,22		
Bolívar	Arjona	72514	57002	15512	0,27		
Bolívar	El Carmen de Bolívar	75151	59639	15512	0,26		
Bolívar	María La Baja	48079	21159	26920	1,27		
Bolívar	Mompós	44124	25785	18339	0,71		
Bolívar	San Juan Nepomuceno	33466	26441	7025	0,27		
Bolívar	San Pablo	33291	29395	3896	0,13		

GRUPO G2 municipios entre 30.000 y 100.000 habitantes						
Departamento	Municipio	Total	Cabecera	Rural	IPU	
Bolívar	Santa Rosa del Sur	42003	22563	19440	0,86	
Bolívar	Turbaco	72168	66913	5255	0,08	
Boyacá	Chiquinquirá	65274	56061	9213	0,16	
Boyacá	Paipa	30740	18950	11790	0,62	
Boyacá	Puerto Boyacá	55286	37722	17564	0,47	
Caldas	Anserma	33792	21425	12367	0,58	
Caldas	Chinchiná	51492	45875	5617	0,12	
Caldas	La Dorada	76963	69227	7736	0,11	
Caldas	Neira	30513	16209	14304	0,88	
Caldas	Riosucio	61535	18990	42545	2,24	
Caldas	Villamaría	56288	46479	9809	0,21	
Caquetá	Cartagena del Chairá	33391	12198	21193	1,74	
Caquetá	Puerto Rico	33347	14207	19140	1,35	
Caquetá	San Vicente del Caguán	67994	41948	26046	0,62	
Cauca	Bolívar	44611	5282	39329	7,45	
Cauca	Buenos Aires	32225	2451	29774	12,15	
Cauca	Cajibío	37522	1725	35797	20,75	
Cauca	Caldono	33122	1454	31668	21,78	
Cauca	Corinto	31872	12932	18940	1,46	
Cauca	El Tambo	47525	6822	40703	5,97	
Cauca	Inzá	30803	2266	28537	12,59	
Cauca	La Vega	45563	3239	42324	13,07	
Cauca	Miranda	39718	28454	11264	0,40	
Cauca	Paez	35059	2711	32348	11,93	
Cauca	Patía	36205	13444	22761	1,69	
Cauca	Piendamó	42886	14696	28190	1,92	
Cauca	Puerto Tejada	45678	40304	5374	0,13	
Cauca	Santander de Quilichao	93545	52970	40575	0,77	
Cauca	Silvia	32159	4289	27870	6,50	
Cauca	Timbío	33883	13269	20614	1,55	
Cesar	Aguachica	92957	80978	11979	0,15	
Cesar	Agustín Codazzi	50829	38727	12102	0,31	
Cesar	Bosconia	37248	33889	3359	0,10	
Cesar	Chimichagua	30658	11715	18943	1,62	
Córdoba	Ayapel	51164	26475	24689	0,93	
Córdoba	Cereté	91525	52675	38850	0,74	
Córdoba	Chinú	48304	24043	24261	1,01	
Córdoba	Ciénaga de Oro	64226	25671	38555	1,50	
Córdoba	Montelíbano(1)(3)	81341	64109	17232	0,27	
Córdoba	Planeta Rica	67188	42461	24727	0,58	
Córdoba	Pueblo Nuevo	38559	15011	23548	1,57	
Córdoba	Puerto Libertador	47643	19549	28094	1,44	
					-	

Anexo A 109

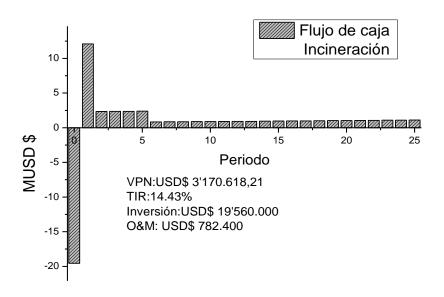
GRUPO G2 municipios entre 30.000 y 100.000 habitantes					
Departamento	Municipio	Total	Cabecera	Rural	IPU
Córdoba	Sahagún	89867	48172	41695	0,87
0/ 11	San Andrés Sotavento		40=44		
Córdoba	(1) (3)	42747	12541	30206	2,41
Córdoba	San Antero	31365	17506	13859	0,79
Córdoba	San Bernardo del Viento	34782	9193	25589	2,78
Córdoba	San Pelayo	43584	8208	35376	4,31
Córdoba	Tierralta	99911	43884	56027	1,28
Córdoba	Tuchín (1)	37716	6031	31685	5,25
Córdoba	Valencia	42971	15601	27370	1,75
Cundinamarca	Cajicá –	56875	35700	21175	0,59
Cundinamarca	Funza	75350	70622	4728	0,07
Cundinamarca	Guaduas	38366	19434	18932	0,97
Cundinamarca	La Mesa	31350	17521	13829	0,79
Cundinamarca	Madrid	77627	67527	10100	0,15
Cundinamarca	Mosquera	82750	79316	3434	0,04
Cundinamarca	Sibaté	38412	25903	12509	0,48
Cundinamarca	Tocancipá Villa de San Diego de	31975	13618	18357	1,35
Cundinamarca	Ubate	38809	25141	13668	0,54
Chocó	Alto Baudo	36773	9563	27210	2,85
Huila	Acevedo	32897	6341	26556	4,19
Huila	Campoalegre	34309	25993	8316	0,32
Huila	Garzón	88213	42377	45836	1,08
Huila	Gigante	33313	17976	15337	0,85
Huila	La Plata	62722	25936	36786	1,42
Huila	Palermo	32677	15760	16917	1,07
Huila	San Agustín	32898	11366	21532	1,89
La Guajira	Barrancas	34619	17585	17034	0,97
La Guajira	Dibulla	32983	5388	27595	5,12
La Guajira	Fonseca	33254	21442	11812	0,55
La Guajira	San Juan del Cesar	37327	24445	12882	0,53
Magdalena	Aracataca	39473	27235	12238	0,45
Magdalena	Ariguaní	32166	19972	12194	0,61
Magdalena	El Banco	55530	35368	20162	0,57
Magdalena	Fundación	57344	55099	2245	0,04
Magdalena	Pivijay	33924	19201	14723	0,77
Magdalena	Plato	57848	44307	13541	0,31
Magdalena	Puebloviejo	30462	11763	18699	1,59
Magdalena	Sitionuevo	31706	15560	16146	1,04
Magdalena	Zona Bananera	60524	4944	55580	11,24
Meta	Acacías	68888	58128	10760	0,19
Meta	Granada	62209	52185	10024	0,19
Meta	La Macarena	32861	4458	28403	6,37
					-

GRUPO G2 municipios entre 30.000 y 100.000 habitantes					
Departamento	Municipio	Total	Cabecera	Rural	IPU
Meta	Puerto López	33440	22152	11288	0,51
Nariño	Barbacoas	37851	16169	21682	1,34
Nariño	Cumbal	37635	8428	29207	3,47
Nariño	El Charco	36856	10078	26778	2,66
Nariño	Olaya Herrera	31204	9768	21436	2,19
Nariño	Samaniego	49545	18852	30693	1,63
Nariño	Túquerres	40599	17503	23096	1,32
Norte de Santander	Abrego	37997	17009	20988	1,23
Norte de Santander	Los Patios	76524	74272	2252	0,03
Norte de Santander	Ocaña	98229	88908	9321	0,10
Norte de Santander	Pamplona	57393	54401	2992	0,05
Norte de Santander	Tibú	36502	13566	22936	1,69
Norte de Santander	Villa del Rosario	88433	84609	3824	0,05
Quindio	Calarca	77598	59630	17968	0,30
Quindio	La Tebaida	42141	39478	2663	0,07
Quindio	Montenegro	41286	33800	7486	0,22
Quindio	Quimbaya	34945	29146	5799	0,20
Risaralda	La Virginia	32039	31505	534	0,02
Risaralda	Quinchía	33754	8195	25559	3,12
Risaralda	Santa Rosa de Cabal	72228	60191	12037	0,20
Santander	Cimitarra	44733	17903	26830	1,50
Santander	Lebríja	38560	18747	19813	1,06
Santander	Puerto Wilches	31511	16851	14660	0,87
Santander	San Gil	45445	40336	5109	0,13
Santander	San Vicente de Chucurí	34640	13667	20973	1,53
Santander	Socorro	30577	25125	5452	0,22
Sucre	Corozal	62409	51157	11252	0,22
Sucre	Majagual	33258	10883	22375	2,06
Sucre	Sampués	37925	20954	16971	0,81
Sucre	San Marcos	57071	33629	23442	0,70
Sucre	San Onofre	50214	24333	25881	1,06
Sucre	San Luis de Sincé	33688	25551	8137	0,32
Sucre	Santiago de Tolú	33296	27290	6006	0,22
Tolima	Chaparral	47195	26622	20573	0,77
Tolima	Espinal	76227	58367	17860	0,31
Tolima	Fresno	30284	14878	15406	1,04
Tolima	Guamo	32373	16706	15667	0,94
Tolima	Líbano	40456	25192	15264	0,61
Tolima	Mariquita	33309	24237	9072	0,37
Tolima	Melgar	36047	29809	6238	0,21
Tolima	Ortega	32524	8098	24426	3,02
Valle del Cauca	Candelaria	81697	22705	58992	2,60

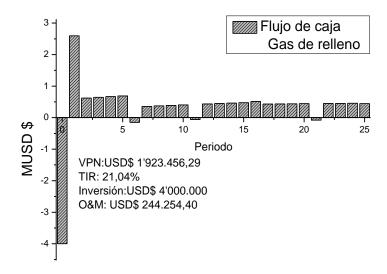
Anexo A 111

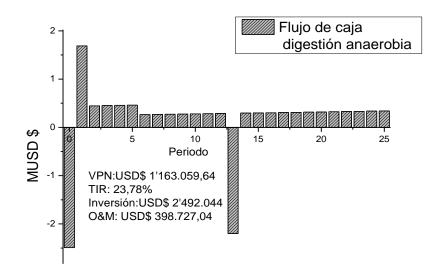
GRUPO G2 municipios entre 30.000 y 100.000 habitantes					
Departamento	Municipio	Total	Cabecera	Rural	IPU
Valle del Cauca	Dagua	36400	8113	28287	3,49
Valle del Cauca	El Cerrito	57463	35516	21947	0,62
Valle del Cauca	Florida	58122	42959	15163	0,35
Valle del Cauca	Guacarí	34522	20677	13845	0,67
Valle del Cauca	La Unión	37703	29634	8069	0,27
Valle del Cauca	Pradera	55137	48107	7030	0,15
Valle del Cauca	Roldanillo	32778	24774	8004	0,32
Valle del Cauca	Sevilla	45142	34484	10658	0,31
Valle del Cauca	Zarzal	45227	31956	13271	0,42
Arauca	Arauca	88481	76431	12050	0,16
Arauca	Arauquita	41309	18723	22586	1,21
Arauca	Saravena	47203	32035	15168	0,47
Arauca	Tame	52768	20011	32757	1,64
Casanare	Aguazul	38515	29153	9362	0,32
Putumayo	Mocoa	42074	34111	7963	0,23
Putumayo	Orito	52580	23633	28947	1,22
Putumayo	Puerto Asís	60138	32692	27446	0,84
Putumayo	Valle del Guamuez	51842	20488	31354	1,53
Archipiélago de San					
Andrés	San Andrés	71305	52733	18572	0,35
Amazonas	Leticia	41326	26226	15100	0,58
Guaviare	San José del Guaviare	64555	44692	19863	0,44
Vaupés	Mitú	31568	16032	15536	0,97
Vichada	Cumaribo	36867	6840	30027	4,39

GRUPO G3 municipios mayores a 100.000 habitantes					
Departamento	Municipio	Total	Cabecera	Rural	IPU
Antioquia	Medellín	2464322	2434647	29675	0,01
Antioquia	Apartadó	178257	154284	23973	0,16
Antioquia	Bello	455807	448928	6879	0,02
Antioquia	Caucasia	112168	92180	19988	0,22
Antioquia	Envigado	222410	214692	7718	0,04
Antioquia	Itagui	267872	245081	22791	0,09
Antioquia	Rionegro	120249	78804	41445	0,53
Antioquia	Turbo	159268	63503	95765	1,51
Atlántico	Barranquilla	1218737	1214513	4224	0,00
Atlántico	Malambo	121289	114306	6983	0,06
Atlántico	Soledad	615349	614759	590	0,00
Bogotá, D.C.	Bogotá, D.C.	7878783	7862277	16506	0,00
Bolívar	Cartagena	1001680	959570	42110	0,04
Bolívar	Magangué	123737	85691	38046	0,44

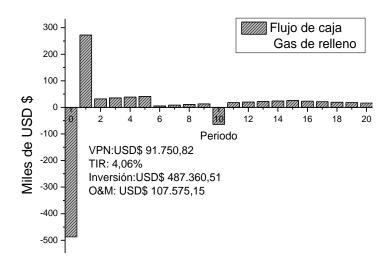

GRUPO G3 municipios mayores a 100.000 habitantes					
Departamento	Municipio	Total	Cabecera	Rural	IPU
Boyacá	Tunja	188340	180554	7786	0,04
Boyacá	Duitama	112692	102519	10173	0,10
Boyacá	Sogamoso	113295	98550	14745	0,15
Caldas	Manizales	396102	368655	27447	0,07
Caquetá	Florencia	172341	150908	21433	0,14
Cauca	Popayán	277441	247417	30024	0,12
Cesar	Valledupar	453205	386684	66521	0,17
Córdoba	Montería	441260	341331	99929	0,29
Córdoba	Lorica	118237	54541	63696	1,17
Cundinamarca	Chía	126647	99226	27421	0,28
Cundinamarca	Facatativá	132106	119294	12812	0,11
Cundinamarca	Fusagasugá	134523	108157	26366	0,24
Cundinamarca	Girardot	105085	101610	3475	0,03
Cundinamarca	Soacha	511262	505319	5943	0,01
Cundinamarca	Zipaquirá	122347	107278	15069	0,14
Chocó	Quibdó	115694	107639	8055	0,07
Huila	Neiva	342221	322536	19685	0,06
Huila	Pitalito	125823	74762	51061	0,68
La Guajira	Riohacha	259509	220610	38899	0,18
La Guajira	Maicao	157054	107554	49500	0,46
La Guajira	Manaure	103961	44868	59093	1,32
La Guajira	Uribia	174287	12477	161810	12,97
Magdalena	Santa Marta	483722	466296	17426	0,04
Magdalena	Ciénaga	104319	98694	5625	0,06
Meta	Villavicencio	484429	460704	23725	0,05
Nariño	Pasto	440040	365650	74390	0,20
Nariño	lpiales	138679	99682	38997	0,39
Nariño	San Andres de Tumaco	199659	111589	88070	0,79
Norte de					•
Santander	Cúcuta	649983	628082	21901	0,03
Quindio	Armenia	296691	288686	8005	0,03
Risaralda	Pereira	469644	396187	73457	0,19
Risaralda	Dosquebradas	198874	190388	8486	0,04
Santander	Bucaramanga	527985	521520	6465	0,01
Santander	Barrancabermeja	191768	173424	18344	0,11
Santander	Floridablanca	265452	255885	9567	0,04
Santander	Girón	180305	161402	18903	0,12
Santander	Piedecuesta	149219	121987	27232	0,22
Sucre	Sincelejo	275218	257663	17555	0,07

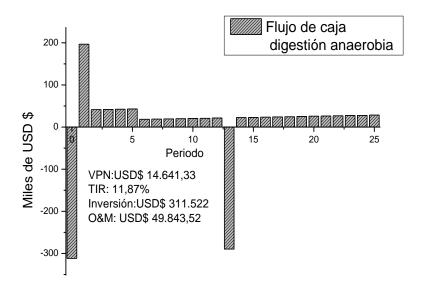
Anexo A 113

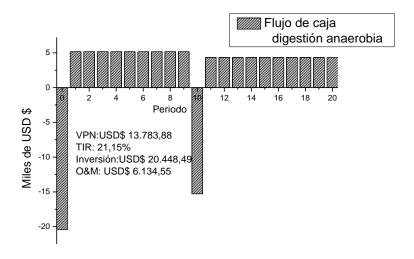

GRUPO G3 municipios mayores a 100.000 habitantes					
Departamento	Municipio	Total	Cabecera	Rural	IPU
Tolima	lbagué	553526	523068	30458	0,06
Valle del Cauca	Cali	2369829	2333213	36616	0,02
Valle del Cauca	Buenaventura	399619	365607	34012	0,09
	Guadalajara de				
Valle del Cauca	Buga	115249	99106	16143	0,16
Valle del Cauca	Cartago	132251	130283	1968	0,02
Valle del Cauca	Jamundí	119532	81474	38058	0,47
Valle del Cauca	Palmira	304763	244406	60357	0,25
Valle del Cauca	Tuluá	211581	182674	28907	0,16
Valle del Cauca	Yumbo	117118	102836	14282	0,14
Casanare	Yopal	139734	124518	15216	0,12


B. Anexo: Flujos de caja de los diferentes escenarios (Caso 4)

Municipio de Pasto




Anexo B 115


Municipio de Andes

Anexo B 117

Municipio de Guayatá

C. Anexo: Modelo CAPM ajustado

Las firmas que invierten internacionalmente asumen riesgos de incertidumbre como las tasas de impuestos, regulaciones y normas legales, régimen de cambio, políticas macroeconómicas. Todo ello genera volatilidad en los negocios. Se proponen ajustar el CAPM de dos maneras (modelo de Godfrey y Espinosa): primero adicionando a la tasa libre de riesgo, el spread entre el retorno de un bono soberano del mercado emergente y el retorno de un bono comparable en los Estados Unidos. Segundo, usando un beta ajustado, definido como el 60% de la razón entre la desviación estándar de los retornos en el mercado emergente y la desviación estándar de los retornos en el mercado de los Estados Unidos. La expresión para el cálculo de la tasa de descuento incluyendo los dos parámetros mencionados se muestra a continuación:

$$Ra = Rf_{USD} + Credit \, spread_i + 60\% * \beta_{ai} * (R_m - R_f)$$

Donde:

Ra = Tasa de descuento

Rf_{USD} = Tasa de interés libre de riesgo en Estados Unidos

 $Credit\ spread_i = Refleja\ la\ calidad\ de\ crédito\ país\ i.$ Mide la diferencia entre los bonos soberanos en moneda local y los denominados en moneda extranjera, recogiendo así la percepción del riesgo país por el mercado internacional.

 $(R_m - R_f)$: Risk Premium, tasa de retorno por encima del mercado en país desarrollado.

 β_{ai} : Beta ajustado para el país i. Definido como el 60% de la razón equivalente a volatilidad del mercado foráneo/volatilidad del mercado en los Estados Unidos.

Anexo C 119

Para evaluar este modelo se tomaron los valores mostrados en la siguiente tabla. Estos fueron utilizados por Sánchez en su estudio, para el cálculo de la tasa de descuento en economías emergentes como es el caso colombiano (Sánchez 2010).

Parámetro	Valor
(Rf _{USD})	4,97
Credit spread _i	3,126%
Beta	0,58
β_{ai}	0,35 (Beta ajustado = Beta * 0.60)
$(R_m - R_f)$	3,92%
Tasa en USD	9,47 %≈10%

Bibliografía

- Abd Kadir, Sharifah Aishah Syed et al. 2013. "Incineration of Municipal Solid Waste in Malaysia: Salient Issues, Policies and Waste-to-Energy Initiatives." Renewable and Sustainable Energy Reviews 24: 181–86. http://www.sciencedirect.com/science/article/pii/S1364032113002001 (September 21, 2014).
- Abu-Hijleh, B.A/K et al. 1998. "Feasibility Study of a Municipality Solid Waste Incineration Plant in Jordan." *Energy Conversion and Management* 39(11): 1155–59. http://www.sciencedirect.com/science/article/pii/S0196890498000107 (September 22, 2014).
- Acevedo, Liliana, and Carlos Peláez. 2010. "Ciudad Postmoderna Sumidero de Materia Y Energía El Agujero Negro de La Biósfera." *Eolo-Revista Ambiental (Medellín)* 15: 63–68.
- Aguilar-Virgen, Quetzalli, Paul Taboada-González, and Sara Ojeda-Benítez. 2014. "Analysis of the Feasibility of the Recovery of Landfill Gas: A Case Study of Mexico." *Journal of Cleaner Production* 79: 53–60. http://linkinghub.elsevier.com/retrieve/pii/S0959652614004855 (September 23, 2014).
- Alcaldía de Andes. 2016. "Sitio Web Del Municipio de Andes En Antioquia." http://www.andes-antioquia.gov.co.
- Alcaldía de Pasto. 2016. "Información General Pasto Nariño Colombia." *Mapas*. http://www.pasto.gov.co/index.php/nuestro-municipio.
- Área Metropolitana, Del Valle De Aburrá. 2006. "Manual Para El Manejo Integral De Residuos En El Valle De Aburrá." : 1–47.
- Arroyave Tobón, Isabel Cristina. 2005. "Plan De Gestión De Residuos Sólidos Municipio De Andes 2006-2020." : 43–45.
- Autret, Erwan, Francine Berthier, Audrey Luszezanec, and Florence Nicolas. 2007.
 "Incineration of Municipal and Assimilated Wastes in France: Assessment of Latest Energy and Material Recovery Performances." Journal of hazardous materials 139(3): 569–74.
 http://www.sciencedirect.com/science/article/pii/S0304389406002470 (September 7, 2014).

- Bajić, Bojana Ž. et al. 2015. "Waste-to-Energy Status in Serbia." *Renewable and Sustainable Energy Reviews* 50: 1437–44. http://linkinghub.elsevier.com/retrieve/pii/S1364032115005614.
- Baker & McKenzie International. 2014. "Bondades de La Ley 1715 de 2014."
- Banco de la República. 2016. "Comunicado-25-11-2016 Del Banco de La República." http://www.banrep.gov.co/es/comunicado-25-11-2016.
- Bancomundial. 2016. "Promedio Detallado de Precipitaciones (Mm Anuales)." http://datos.bancomundial.org/indicador/AG.LND.PRCP.MM?locations=CO&view=m ap&year=1962.
- Bébar, Ladislav, Petr Stehlík, Leoš Havlen, and Jaroslav Oral. 2005. "Analysis of Using Gasification and Incineration for Thermal Processing of Wastes." *Applied Thermal Engineering* 25(7): 1045–55. http://www.sciencedirect.com/science/article/pii/S1359431104002340 (October 14, 2014).
- Beylot, Antoine, and Jacques Villeneuve. 2013. "Environmental Impacts of Residual Municipal Solid Waste Incineration: A Comparison of 110 French Incinerators Using a Life Cycle Approach." *Waste management (New York, N.Y.)* 33(12): 2781–88. http://www.sciencedirect.com/science/article/pii/S0956053X1300305X (September 23, 2014).
- Bidart, Christian, Magnus Fröhling, and Frank Schultmann. 2013. "Municipal Solid Waste and Production of Substitute Natural Gas and Electricity as Energy Alternatives." *Applied Thermal Engineering* 51(1–2): 1110. http://www.sciencedirect.com/science/article/pii/S1359431112006771 (September 7, 2014).
- Bove, Roberto, and Piero Lunghi. 2006. "Electric Power Generation from Landfill Gas Using Traditional and Innovative Technologies." *Energy Conversion and Management* 47(11–12): 1395. http://linkinghub.elsevier.com/retrieve/pii/S0196890405002153 (October 14, 2014).
- Cadena, Juan, Sandra Pérez, and Juan Mora. 2012. "Análisis de Viabilidad Financiera de Una Central de Generación de Energía Eléctrica a Partir Del Biogás de Vertedero." *Scientia et Technica Año XVI* 51(88): 2.
- CalRecycle. 2015. Landfill Tipping Fees in California. California. www.calrecycle.ca.gov/Publications/.
- Castells, Xavier Elías. 2005. *Tratamiento Y Valorización Energética de Residuos*. ed. Días de Santos. España.
- Chang, Y. F. et al. 2007. "Multiple Regression Models for the Lower Heating Value of Municipal Solid Waste in Taiwan." *Journal of Environmental Management* 85(4): 891–99.
- Coimbra-Araújo, Carlos H et al. 2014. "Brazilian Case Study for Biogas Energy: Production of Electric Power, Heat and Automotive Energy in Condominiums of Agroenergy." Renewable and Sustainable Energy Reviews 40: 826–39.

- http://www.sciencedirect.com/science/article/pii/S1364032114004766.
- Comision de Regulación de Energía y Gas (CREG). 2016. "Desarrollo de La Prestación Del Servicio Domiciliario de Gas Combustible Con Biogás." : 26. http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=51162.
- Commodity Exchange Bratislavava. 2016. "Carbon Place." http://www.carbonplace.eu/info-commodities-CER.
- Consonni, Stefano, and Federico Viganò. 2012. "Waste Gasification vs. Conventional Waste-To-Energy: A Comparative Evaluation of Two Commercial Technologies." *Waste Management* 32(4): 653–66. http://dx.doi.org/10.1016/j.wasman.2011.12.019.
- Contraloría general de la república. 2016. "Glosario de Términos Del Mercado Financiero Para Uso de Los Operadores Jurídicos En Su Función de Búsqueda de Bienes a Nivel Nacional E Internacional." 1.
- Corredor Becerra, Oscar Fernando. 2008. "Evaluación Del Potencial Energético de La Biomasa Residual Proveniente de Cultivos Energéticos."
- DANE Departamento Administrativo Nacional de Estadisticas. 2009. ESTUDIOS POSTCENSALES No. 7 ISBN 978-958-624-078-9 BOGOTÁ COLOMBIA 2009 Proyecciones Nacionales Y Departamentales de Poblacion 2005-2020.
- EBSA. 2016. "Tarifa Mes de Mayo Empresa de Energía de Boyacá." http://www.ebsa.com.co/ser/tar/SitePages/Tarifas mes.aspx.
- Ellyin, Claudine, and Nickolas J Themelis. 2012. "Small Scale Waste-To-Energy Technologies." Columbia.
- Emvarias-grupo EPM. 2016. "Información Tarifaria." http://www.emvarias.com.co/SitePages/tarifas.aspx.
- Environment and Plastics Industry Council (EPIC). 2004. *A Review of the Options for the Thermal Treatment of Plastics*. Ontario. http://www.plastics.ca/_files/file.php?fileid=0&filename=file_files_Review_of_options_for_the_thermal_treatment_of_plastics_full_paper_14_Oct._04.pdf.
- Estrada Wiechers, Andres. 2015. "Pre-Feasibility Study of Using the Circulating Fluid Bed (CFB) Waste-to-Energy Technology in Mexico City." Columbia University. http://www.seas.columbia.edu/earth/wtert/sofos/Andres Estrada_thesis.pdf.
- Farming futures. 2016. "Focus on: Farm Anaerobic." Farming futures 17: 2.
- Fernandez de Castro del Castillo, José Antonio. 2005. "Una Nueva Concepción Del Municipio Colombiano." Pontificia Unversidad Javeriana.
- GICON. 2016. "Valorización Energética de Los Resiudos a Través de Tratamientos Biológicos Tecnología de Biogás." In 1ª Conferencia Panamericana Waste to Energy 2016, Medellín, 41–50.
- Gómez, Antonio et al. 2010. "Potential and Cost of Electricity Generation from Human and Animal Waste in Spain." *Renewable Energy* 35(2): 498–505.

- http://www.sciencedirect.com/science/article/pii/S0960148109003139 (September 7, 2014).
- Grupo epm. 2016. "Gestión Y Valorización de Residuos Sólidos Urbanos (RSU). Evaluación de Nuevas Oportunidades de Negocio." In *1ª Conferencia Panamericana Waste to Energy 2016*, Medellín, 25.
- Guerrero, Raul delgado. 2006. "Plan de Gestion Integral de Residuos Sólidos Pgirs Municipio de Pasto." : 63–70. http://www.cortolima.gov.co/2006/images/stories/pgirs/resumen_ejecutivo_ibague.pd f.
- Gutierrez, Elver. 2009. "Caracterización Del Gas de Síntesis de Una Planta Piloto a Alta Presión ."
- Hao, Xiaoli, Hongxing Yang, and Guoqiang Zhang. 2008. "Trigeneration: A New Way for Landfill Gas Utilization and Its Feasibility in Hong Kong." *Energy Policy* 36(10): 3662–73. http://linkinghub.elsevier.com/retrieve/pii/S0301421508002747 (September 23, 2014).
- Hitachi Zosen Inova. 2016. "Desarrollo Y Viabilidad de Una Planta WTE: Punto de Vista de Un Contratista." In 1^a Conferencia Panamericana Waste to Energy 2016, Medellín.
- Hossain, Zakir, Quazi Hasna H, Minhaj Uddin M, and Tofayal Ahmed. 2014. "Municipal Solid Waste (MSW) as a Source of Renewable Energy in Bangladesh: Revisited." Renewable and Sustainable Energy Reviews 39: 35–41. http://www.sciencedirect.com/science/article/pii/S1364032114004596 (August 7, 2014).
- IDAE. 2007. Instituto para la Diversificación y Ahorro de la Energía (IDAE) Biomasa: Digestores Anaerobios. http://www.idae.es/uploads/documentos/documentos_10737_Biomasa_digestores_07_a996b846.pdf.
- IPSE. 2014. "LEY 1715 DEL 13 DE MAYO DE 2014." (May): 9–10. http://www.ipse.gov.co/ipse/comunicaciones-ipse/noticias-ipse/893-nueva-ley-1715-de-2014-promueve-el-aprovechamiento-de-las-fuentes-no-convencionales-de-energia.
- Jaramillo, Jorge. 1999. "Gestión Integral de Residuos Sólidos Municipales GIRSM." In Seminario Internacional Gestión Integral de Residuos Sólidos Y Peligrosos, Siglo XXI, , 1–20.
- Jiang, Jianguo et al. 2007. "Prospects of Anaerobic Digestion Technology in China." *Tsinghua Science and Technology* 12(4): 435–40. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6071775 (October 14, 2014).
- Kalyani, Khanjan Ajaybhai, and Krishan K. Pandey. 2014. "Waste to Energy Status in India: A Short Review." *Renewable and Sustainable Energy Reviews* 31: 113–20. http://dx.doi.org/10.1016/j.rser.2013.11.020.

- Khan, MR, and Haris Tanveer. 2012. "Production of Thermoelectric Power from Solid Waste of Urban Lahore." http://202.154.59.182/ejournal/files/PRODUCTION OF THERMOELECTRIC POWER FROM THE SOLID WASTE OF URBAN LAHORE.pdf.
- Kothari, Richa et al. 2014. "Different Aspects of Dry Anaerobic Digestion for Bio-Energy: An Overview." *Renewable and Sustainable Energy Reviews* 39: 174–95. http://dx.doi.org/10.1016/j.rser.2014.07.011.
- Larochelle, Leo, Michael Turner, and Michael LaGiglia. 2012. *Evaluation of NAMA Opportunities in Colombia's Solid Waste Sector*. http://ccap.org/assets/Evaluation-of-NAMA-Opportunities-in-Colombias-Solid-Waste-Sector_CCAP-Oct-2012.pdf.
- Leckner, Bo. 2015. "Process Aspects in Combustion and Gasification Waste-to-Energy (WtE) Units." Waste Management 37: 14. http://dx.doi.org/10.1016/j.wasman.2014.04.019.
- Local United. 2016. Energy Farms Anaerobic Digestion.
- Lombardi, Lidia, Ennio Carnevale, and Andrea Corti. 2014. "A Review of Technologies and Performances of Thermal Treatment Systems for Energy Recovery from Waste." *Waste Management* 37: 26–44. http://dx.doi.org/10.1016/j.wasman.2014.11.010.
- Luz, Fábio Codignole et al. 2015. "Techno-Economic Analysis of Municipal Solid Waste Gasification for Electricity Generation in Brazil." *Energy Conversion and Management* 103: 321–37. http://www.sciencedirect.com/science/article/pii/S0196890415006226.
- Maier, Sebastian, and Luciano Basto Oliveira. 2014. "Economic Feasibility of Energy Recovery from Solid Waste in the Light of Brazil's Waste Policy: The Case of Rio de Janeiro." Renewable and Sustainable Energy Reviews 35: 484–98. http://www.sciencedirect.com/science/article/pii/S1364032114002524.
- Mambeli Barros, Regina, Geraldo Lúcio Tiago Filho, and Tiago Rodrigo da Silva. 2014. "The Electric Energy Potential of Landfill Biogas in Brazil." *Energy Policy* 65: 150–64. http://linkinghub.elsevier.com/retrieve/pii/S0301421513010501 (September 7, 2014).
- Mbuligwe, Stephen E, and Gabriel R Kassenga. 2004. "Feasibility and Strategies for Anaerobic Digestion of Solid Waste for Energy Production in Dar Es Salaam City, Tanzania." Resources, Conservation and Recycling 42(2): 183–203. http://www.sciencedirect.com/science/article/pii/S0921344904000679 (September 7, 2014).
- Melikoglu, Mehmet. 2013. "Vision 2023: Assessing the Feasibility of Electricity and Biogas Production from Municipal Solid Waste in Turkey." Renewable and Sustainable Energy Reviews 19: 52–63. http://www.sciencedirect.com/science/article/pii/S1364032112006284 (September 7, 2014).
- Ministerio de Minas y Energía de Brasil. 2014. "Inventário Energético Dos Resíduos Sólidos Urbanos." : 25.

- Moratorio, Diego, Ignacio Rocco, and Marcelo Castelli. 2012. "Conversión de Residuos Sólidos Urbanos En Energía Converting Municipal Solid Waste into Energy." *Memoria de Trabajos de Difusión Científica y Técnica* 10: 119.
- Moriarty, Kristi. 2013. "Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana." *National Renewable Energy Laboratory* (January).
- Mpio de Guayatá. 2015. Plan de Gestión Integral de Residuos Sólidos PGIRS Municipio de Guayatá. Guayatá.
- Municipio de Guayatá. 2008. "Plan de Salud Territorial."
- Münster, Marie, and Henrik Lund. 2009. "Use of Waste for Heat, Electricity and transport—Challenges When Performing Energy System Analysis." *Energy* 34(5): 636–44. http://www.sciencedirect.com/science/article/pii/S0360544208002338 (July 29, 2014).
- Murphy, J.D., and K. McCarthy. 2005. "The Optimal Production of Biogas for Use as a Transport Fuel in Ireland." *Renewable Energy* 30(14): 2113. http://linkinghub.elsevier.com/retrieve/pii/S096014810500042X.
- Murphy, J.D., and E. McKeogh. 2004. "Technical, Economic and Environmental Analysis of Energy Production from Municipal Solid Waste." Renewable Energy 29(7): 1043–57. http://www.sciencedirect.com/science/article/pii/S0960148103003951 (July 9, 2014).
- Mustafa, Sameer S., Sameerah S. Mustafa, and Ali H. Mutlag. 2013. "Kirkuk Municipal Waste to Electrical Energy." *International Journal of Electrical Power & Energy Systems* 44(1): 506–13. http://www.sciencedirect.com/science/article/pii/S0142061512004139 (September 7, 2014).
- New York City Economic Development Corporation. 2010. Hunts Point Anaerobic Digestion Feasibility Study. New York.
- Ofori-Boateng, Cynthia, Keat Teong Lee, and Moses Mensah. 2013. "The Prospects of Electricity Generation from Municipal Solid Waste (MSW) in Ghana: A Better Waste Management Option." *Fuel Processing Technology* 110: 94–102. http://www.sciencedirect.com/science/article/pii/S037838201200447X.
- Ordoñez Ordoñez, Maria Del Carmen. 2011. "Evaluacion De La Generacion De Biogas En Rellenos Sanitarios En Colombia En El Marco Del Protocolo De Kyoto." Universidad Tecnológica de Pereira. http://recursosbiblioteca.utp.edu.co/tesisdigitales/texto/363728O65.pdf.
- Ouda, Omar K.M. et al. 2015. "Waste-to-Energy Potential in the Western Province of Saudi Arabia." *Journal of King Saud University Engineering Sciences*: 2–5. http://linkinghub.elsevier.com/retrieve/pii/S1018363915000033.
- Palacio Suárez, FABIAN FELIPE. 2007. 3 "Estudio de La Prefactibilidad de Generar Energía Eléctrica Utilizando Como Fuente Primaria La Cacota Del Café Que Se Produce En La Región de Cajamarca Para Satisfacer Las Necesidades de Una Finca Que Consume 1MWh Por Mes." Universidad de la Salle.

- Panesso, A F, J A Cadena, and M C Ordoñez. 2012. "Estudio Del Biogás Captado En Un Relleno Sanitario Para Su Posible Utilización Como Combustible Primario En La Generación de Energía Eléctrica." 7(88): 1170-82.
- Pirotta, F.J.C., E.C. Ferreira, and C.A. Bernardo, 2013, "Energy Recovery and Impact on Land Use of Maltese Municipal Solid Waste Incineration." Energy 49: 1-11. http://www.sciencedirect.com/science/article/pii/S0360544212008298 (September 4, 2014).
- Poletto Filho, José Antonio. 2008. "Viabilidade Energética E Econômica Da Incineração De Resíduo Sólido Urbano Considerando a Segregação Para Reciclagem. Universidade Estadual Paulista." Universidad Estadual Paulista.
- Posada Hernandez, Gabriel Jaime. 2010. "Agrupación de Municipios Colombianos Según Características de Ruralidad." Universidad Nacional de Colombia.
- Ramli, Makbul a.M., and Ssennoga Twaha. 2015. "Analysis of Renewable Energy Feed-in Tariffs in Selected Regions of the Globe: Lessons for Saudi Arabia." Renewable and Sustainable Energy Reviews 649-61. 45: http://linkinghub.elsevier.com/retrieve/pii/S1364032115001239.
- Rodriguez Perdigón, Luis Alejandro. 2014. "Viabilidad Técnica Para Producción de Biogás a Partir de La Fracción Orgánica de Los Residuos Sólidos Urbanos-FORSUM." Universidad EAN.
- Sabalza, Otoniel, and Oscar Villamizar. 2009. "Evaluacion Del Potencial Energetico De Los Residuos Sólidos Organicos Urbanos Provenientes De Las Plazas De Mercado Y Diseño Conceptual De Una Planta De Digestion Anaerobia Para Su Aprovechamiento Industrial En Colombia." Universidad Industrial de Santander.
- Sánchez, Jairo Humberto. 2010. "The Discount Rate in Emerging Countries-Application of the Colombian Case." Revista EAN (69): 120-34. http://www.scielo.org.co/scielo.php?script=sci arttext&pid=S0120-81602010000200008&lng=en&nrm=iso&tlng=es.
- Sanchéz Tolosa, Jorge León. 2012. "Modelación de La Incineración de Residuos Sólidos Urbanos Como Alternativa Complementaria Al Relleno Sanitario Doña Juana En Bogotá.": 14.
- Scarlat, N et al. 2015. "Evaluation of Energy Potential of Municipal Solid Waste from African Urban Areas." Renewable and Sustainable Energy Reviews 50: 1271. http://dx.doi.org/10.1016/j.rser.2015.05.067.
- Superintendencia de Servicios Públicos Domiciliarios República de Colombia. 2015. Disposición Final de Residuos Sólidos - Informe Nacional.
- Tan, Sie Ting et al. 2015. "Energy, Economic and Environmental (3E) Analysis of Wasteto-Energy (WTE) Strategies for Municipal Solid Waste (MSW) Management in Malaysia." Energy Conversion and Management 102: http://dx.doi.org/10.1016/j.enconman.2015.02.010.
- Themelis, Nickolas J et al. 2013. Guidebook for the Application of Waste to Energy

- Technologies in Latin America and the Caribbean.
- Tsai, W T. 2007. "Bioenergy from Landfill Gas (LFG) in Taiwan." Renewable and Sustainable Energy Reviews 11(2): 331–44. http://www.sciencedirect.com/science/article/pii/S1364032105000250.
- Tsai, Wen-Tien, and Kuan-Chi Kuo. 2010. "An Analysis of Power Generation from Municipal Solid Waste (MSW) Incineration Plants in Taiwan." *Energy* 35(12): 4824–30. http://www.sciencedirect.com/science/article/pii/S0360544210004846.
- UPME. 2016. Plan de Expansión E Integración de Energías Renovables En El Sistema Interconectado Nacional-SIN.
- Vicente L, Marcio Montagnana et al. 2014. "Techno-Economic Analysis and Environmental Impact Assessment of Energy Recovery from Municipal Solid Waste (MSW) in Brazil." Resources, Conservation and Recycling 87: 11. http://www.sciencedirect.com/science/article/pii/S0921344914000615 (July 23, 2014).
- Walla, C., and W. Schneeberger. 2008. "The Optimal Size for Biogas Plants." *Biomass and Bioenergy* 32(6): 553.
- Z, Juan Cadena, Juan Mora F, and Sandra Pérez L. 2012. "Análisis de Viabilidad Financiera de Una Central de Generación de Energía Eléctrica a Partir Del Biogás de Vertedero." (51): 1–7.
- Zaman, Atiq Uz, and Steffen Lehmann. 2013. "The Zero Waste Index: A Performance Measurement Tool for Waste Management Systems in a 'Zero Waste City." *Journal of Cleaner Production* 50: 123–32. http://dx.doi.org/10.1016/j.jclepro.2012.11.041.
- Zhao, Xin gang, Gui wu Jiang, Ang Li, and Ling Wang. 2016. "Economic Analysis of Waste-to-Energy Industry in China." *Waste Management* 48: 604–18. http://dx.doi.org/10.1016/j.wasman.2015.10.014.
- Zhao, Yan et al. 2012. "Environmental Impact Assessment of the Incineration of Municipal Solid Waste with Auxiliary Coal in China." Waste management (New York, N.Y.) 32(10): 1989–98. http://www.sciencedirect.com/science/article/pii/S0956053X12002218 (September 7, 2014).