

Código	FDE 089
Versión	03
Fecha	2015-01-27

DISEÑO DE MÁQUINA PARA DILUIR AZÚCAR EN LA INDUSTRIA DE BEBIDAS GASEOSAS PARA MEJORAR EL PROCESO DE PRODUCCIÓN

Autor 1

MIGUEL DARNEY ARIAS

Autor 2

ALEXANDER ÁLVAREZ BERRIOS

Programa Académico

INGENIERÍA ELECTROMECÁNICA

Director(es) del trabajo de grado: DANIEL SANÍN

INSTITUTO TECNOLÓGICO METROPOLITANO

Fecha

2018

Código	FDE 089
Versión	03
Fecha	2015-01-27

RESUMEN

El proceso de dilución de azúcar en las fábricas de gaseosas es importante ya que da homogeneidad en la mezcla (agua-azúcar) a sus productos, pero empresas pequeñas realizan este proceso de mezcla de forma manual y artesanal, adicionando azúcar directamente al tanque, provocando sedimentaciones y mezclas no homogéneas; si no hay homogeneidad en la mezcla se presentan sólidos, lo que disminuiría la vida útil de las bombas para transporte de fluidos y afectan gradualmente su eficiencia. De esta manera no se cumple con las normas establecidas por el estado y entes reguladores de las mismas, tales como la ISO 9001 (International Organization for Standardization, 1947) de calidad y de seguridad OHSAS 1800 (Autogestión, 2015). Por otra parte, el personal que realiza dicha actividad incurre en riesgos de accidentalidad media definidos por la ley 1562 de 2012, tales como la exposición a altas temperaturas y riesgos eléctricos, y mecánicos, esto debido a que se encuentran muy cerca del lugar donde se hace el proceso de flotación, (consiste en que al azúcar sulfitada o con impurezas se le hace un tratamiento químico; además se realiza un choque térmico para separar las impurezas del azúcar clarificado y se realiza con el jarabe simple a 82°C y el agua carbonatada a -2°C). Con el diseño de este nuevo equipo se busca mejorar el proceso, dando paso a la prolongación de la vida útil de las máquinas que intervienen en dicho proceso, además de la salud y la seguridad en los operarios. Se propone un diseño automatizado para este sistema a partir de una maquina diluidora de azúcar, que, por medio de un tornillo sin fin junto con un intercambiador de calor, válvulas neumáticas de mariposa y un refractómetro (instrumento para medir concentración de azúcar en el agua), realice el trabajo cíclico, continuo, sin riesgo de lesiones o traumas a operarios y mejore la calidad del proceso de dilución de mezcla entre azúcar y agua.

Palabras claves: Mejoramiento y eficiencia del proceso, automatización y diseño de máquina para diluir azúcar de forma industrial.

Código	FDE 089
Versión	03
Fecha	2015-01-27

GLOSARIO

AGUA: Sustancia cuyas moléculas están compuestas por 1 átomo de oxígeno y 2 átomos de hidrogeno. Es un líquido inodoro (sin olor9, insípido (sin sabor), e incoloro (sin color), aunque también se puede hallar en estado sólido (cuando se conoce como hielo), o en estado gaseoso (vapor).

AUTOMATA: En tecnología, hace referencia a un dispositivo capaz de ejecutar acciones y operaciones a partir de un procesamiento de información, y una serie de instrucciones previamente programas en un chip de memoria que trae incorporado.

AZÚCAR: Cuerpo de características sólidas, que se encuentra cristalizado, y forma parte de los hidratos de carbono, es soluble en agua y se caracteriza por su sabor dulce.

FIRMWARE: Conjunto de instrucciones con una función específica, que se registra en una memoria.

FLUJO VOLUMETRICO: También conocido como caudal, define la cantidad de volumen de un fluido que circula a través de una sección transversal dada por unidad de tiempo, se simboliza con la letra "Q", y su unidad básica de medida se da en metros cúbicos sobre segundo $\frac{m^3}{s}$.

SISTEMA EMBEBIDO: Este consiste en un dispositivo electrónico diseñado para realizar funciones específicas y que puede utilizar la combinación de hardware, software y algunas piezas mecánicas para poder cumplir su función final o una serie de ellas.

Código	FDE 089
Versión	03
Fecha	2015-01-27

RECONOCIMIENTOS

Con el ánimo de agradecer a todos aquellos que tuvieron que ver con este logro, queremos agradecer, en primer lugar, a Dios, por permitirnos contar con los ánimos y el espíritu necesario para afrontar los diferentes obstáculos que se nos presentaron en las diferentes etapas de nuestras carreras universitarias.

Agradecemos también a nuestras familias, quienes con su paciencia y comprensión supieron apoyarnos de una forma dinámica, silenciosa a veces, y en otras, animándonos a continuar hacia adelante cuando queríamos aplazar alguna de las metas propuestas.

Y en tercer lugar, y no menos importante, a nuestra institución universitaria, quien nos recibió día tras día en sus acogedoras instalaciones, donde compartimos y conocimos algunos compañeros y amigos, quienes compartieron nuestras experiencias en los claustros de aprendizaje, donde contamos con un excelente grupo de docentes, conocedores de sus capacidades y poseedores de un método de enseñanza que nos facilitó enormemente nuestro aprendizaje, llegando incluso a compartir momentos personales, lo cual era parte importante de nuestra vida estudiantil.

Si acaso por omisión, u olvido, se nos queda alguien sin mencionar, queremos que sepa que desde lo más profundo de nuestro corazón estamos agradecidos por haber puesto su granito de arena, lo que nos permitió alcanzar esta satisfacción que hoy nos abre las puertas a la vida profesional, dándonos una mirada distinta a cómo veíamos las cosas antes. Mil y mil gracias.

Código	FDE 089
Versión	03
Fecha	2015-01-27

ACRÓNIMOS

A: Altura de espiral

AC: Alternating Current (en español: Corriente Alterna)

AWG: American Wire Gauge (en español: Calibre de Cable Americano)

BETA: Ángulo beta

BX: Brix

CAD: Computer-Aided Design (en español: Diseño Asistido por Computadora)

DC: Direct Current (en español: Corriente Directa)

DELTA: Incrementó (longitud de circunferencia de R)

DP: Decentralised Peripherals (en español: Periferia Descentralizada)

EJ: Ejemplo

EXT: Diámetro exterior

IXT: Diámetro interior

L: Longitud

LTS: Litros

mA: Miliamperios

NA: Normalmente abierto

NC: Normalmente cerrado

Código	FDE 089
Versión	03
Fecha	2015-01-27

ND: Índice refractivo

P: Paso

PLC: Programmable Logic Controller (en español: Controlador Lógico Programable)

PN: Profinet

PSI: Pounds-Force Per Square (en español: Libra Fuerza por Pulgada Cuadrada)

R: Radio

RE: Longitud diámetro interior

RPM: Revolutions Per Minute (en español: Revoluciones Por Minuto)

RU: Longitud diámetro exterior

S: Segundo

Código	FDE 089
Versión	03
Fecha	2015-01-27

TABLA DE CONTENIDO

1.	II	NTR	ODUCCIÓN	15
	1.1	(Generalidades	15
	1.2	(Objetivos	18
	1	.2.1	Generales	18
	1	.2.2	Específicos	18
	1.3	(Organización de la tesis	19
2.	Ν	ΛAR	CO TEÓRICO	21
	2.1		Descripción del proceso de dilución de azúcar de forma manual	22
	2.2	İ	Índice de refracción	25
	2.3		Tornillo sin fin	26
	2.4		Tolva	27
	2.5	,	Válvula de mariposa	28
	2.6	ı	Intercambiador De Calor	29
	2.7		Refractómetro	30
	2.8	•	Termopar	31
	2.9	:	Sensores De Nivel	32
	2.10	0	Moto Bomba	33
	2.1	1	Motor Eléctrico	34
	2.12	2 :	Software Cas 200	35
	2.13	3	Siemens	36
	2.14	4	Red de Petri	36
	2.1	5	Software Simatic Step 7	38
	2.10	6	Software SolidWorks Student Edition 2016	39
	2.1	7	Recipiente de Agitación	40
	2.18	8	Grado brix	41

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.	ME	TODO)LOGÍA	12
	3.1	Dise	eño y cálculo del transportador helicoidal4	13
	3.1	.1	Diseño de la hélice del tornillo sin fin	14
	3.1	.2	Carcasa del tornillo sin fin	19
	3.2	Gru	po motriz del transportador de tornillo sin fin5	0
	3.2	.1	Velocidad de giro del tornillo sin fin	60
	3.2	.2	Paso diametral del tornillo sin fin	51
	3.2	.3	Capacidad de transporte del tornillo sin fin	51
	3.2	.4	Velocidad de desplazamiento del tornillo sin fin	;3
	3.2	.5	Potencia de accionamiento del motor	55
	3.3	Sele	ección de la tolva5	8
	3.4	Sele	ección del motor para el accionamiento del tornillo sin fin	;9
	3.5	Sele	ección de la tubería6	50
	3.6	Dise	eño de la estructura mecánica desde un software CAD6	51
	3.6	.1	Área de trabajo6	52
	3.7	Sele	ección del refractómetro para la medición del porcentaje de Brix6	53
	3.7	.1	Selección del intercambiador de calor6	55
	3.8 azúca		cripción del sistema de control automático y manual de la máquina para dilu	ir
	3.8	.1	Tablas de variables de entrada, salida y marcas digitales utilizadas en	la
	pro	gram	ación del PLC	'2
	3.8	.2	Descripción de la Red de Petri implementada en la programación del PLC.7	'8
		3.8.2.	'	
	ŗ	rogr	amación del PLC	'9
	3	3.8.2.	2 Descripción de estados simbolizados con letras en la Red c	le
	F	etri	79	

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.8.2.3		Esquema	gráfico	de l	a Red	de	Petri	imple	mentad	a er	ı la
pro	ograma	ción del PLC									81
3.8.3	Des	cripción del	proceso	de f	unciona	mien	to de	la má	quina p	ara d	liluir
azúca	ır 83										
3.8	3.3.1	Parte 1: In	icio del p	oroce	so de co	ntro	l autoi	mático			83
3.8	3.3.2	Parte 2: In	cio del c	ontro	l autom	nático	o que r	egula	el valor	de gr	ado
bri	х	87									
3.8	3.3.3	Parte 3: In	icio del	proce	so de v	aciac	lo de l	a mez	cla cont	enida	en en
el t	tanque	mezclador									90
3.8	3.3.4	Parte 4: Fi	nalizació	n del	proceso	de (contro	l autor	nático .		91
3.8.4	Con	diciones inic	iales del	proces	60				•••••		92
3.8.5	Esq	uema gráfico	de cone	xiones	físicas o	de la i	máquir	na para	diluir az	úcar .	.101
3.9	Selecciór	n del PLC a in	nplement	tar en	el sisten	na de	contro	ol			.102
3.9.1	Sele	ección del r	nódulo	de ex	pansión	de	salidas	digita	ales par	a el	PLC
selecc	cionado	•••••									.105
3.10	Selecciór	n de la panta	lla HMI p	ara vis	sualizar e	el pro	ceso d	e contr	ol		.107
3.10.1	1 Dise	eño de la im	iagen de	conti	ol y mo	onito	reo de	l proce	so de la	a pan	talla
НМІ	110										
4. RESUI	LTADOS	Y DISCUSIÓN	l								.113
5. CONC	CLUSION	ES, RECOMEI	NDACION	IES Y T	RABAJO	FUT	JRO				.119
REFERENC	IAS	•••••									.121
APÉNDICE.										•••••	.123
APÉNDI	CE A: Pla	nos de cone	xiones el	éctrica	ıs						.123
APÉNDI	APÉNDICE B: Planos mecánicos										
APÉNDI	CE C: Re	d de Petri im	plementa	ada en	la progi	rama	ción de	l PLC			.134
APÉNDI	CE D: Pro	ogramación r	ealizada	para e	l PLC						.136

Código	FDE 089
Versión	03
Fecha	2015-01-27

ILUSTRACIONES

Figura 1. Diagrama de un rayo de luz siendo refractado	25
Figura 2. Tornillo sin fin	26
Figura 3. Tolva fabricada en acero inoxidable	27
Figura 4. Croquis de funcionamiento de una válvula de mariposa	28
Figura 5. Intercambiador de calor de tubo y coraza	29
Figura 6. Refractómetro de escala Brix, para proceso industrial	30
Figura 7. Termopar tipo J	31
Figura 8. Sensor de nivel	32
Figura 9. Moto bomba	33
Figura 10. Motor eléctrico.	34
Figura 11. Software Cas 200	35
Figura 12. Siemens en Múnich, Alemania	36
Figura 13. Partes que conforman una Red de Petri	37
Figura 14. Simatic step 7	38
Figura 15. Recipiente de agitación.	40
Figura 16. Escala de grado brix	41
Figura 17. Tabla de criterio de diseño de selección del tornillo sin fin, según	el material a
transportar	44
Figura 18. Diagrama del tornillo sin fin.	45
Figura 19. Carcasa del transportador.	49
Figura 20. Grupo motriz	50
Figura 21. Criterio de diseño, velocidad según el material a transportar	50
Figura 22. Tabla de criterio de diseño, coeficiente de relleno según material a	transportar.
	52
Figura 23. Grado de inclinación del canalón.	54
Figura 24. Tabla de grado de inclinación del canalón	56

Código	FDE 089
Versión	03
Fecha	2015-01-27

Figura 25. Vista general de la tolva y el transportador de tornillo sin fin
Figura 26. Vista general de la tolva, transportador y plataforma
Figura 27. Refractómetro digital "UR24" de proceso en línea (in-line)
Figura 28. Paso 1 – Ejecución del software Cas 20065
Figura 29. Paso 2 – Ejecución del software Cas 200
Figura 30. Paso 3 – Ejecución del software Cas 20066
Figura 31. Paso 4 – Ejecución del software Cas 20067
Figura 32. Paso 5 – Ejecución del software Cas 200
Figura 33. Paso 6 – Ejecución del software Cas 200
Figura 34. Paso 7 – Ejecución del software Cas 20069
Figura 35. Representación simbólica del Estado "A" (Red de Petri)80
Figura 36. Representación simbólica de una "transición global" (Estado "A" + Estado "B")
(Red de Petri)80
Figura 37. Parte 1 - Red de Petri implementada en la programación del PLC81
Figura 38. Parte 2 - Red de Petri implementada en la programación del PLC82
Figura 39. inicialización del proceso (Red de Petri)84
Figura 40. Activación del proceso con el pulsador de "Start" (Red de Petri)85
Figura 41. Nivel en el tanque mezclador >= 12% y activación de las válvulas de recirculación
(Red de Petri)86
Figura 42. Control automático para ajustar el grado de brix al valor ingresado en el Set Point
(Red de Petri)87
Figura 43. Inicio del control automático para regular el valor de grado brix (Red de Petri)89
Figura 44. Inicio del proceso de vaciado de mezcla (Red de Petri)91
Figura 45. Retorno hacia el inicio del proceso de control (Red de Petri)92
Figura 46. Condición de desactivación de válvula ("V_AF"), al activarse el sensor "S_high"
(Red de Petri)93
Figura 47. Condición de activación de falla con el sensor "S low" (Red de Petri)93

Código	FDE 089
Versión	03
Fecha	2015-01-27

Figura 48. Condición de activación de falla por posible derramen en tanque (Red de Petri)
94
Figura 49. Condición de parada, por activación del paro de emergencia (Red de Petri) 94
Figura 50. Condición de falla por falta de aire comprimido en tanque pulmón (Red de Petri)
95
Figura 51. Condición de paro del sistema por falla en el proceso (Red de Petri)95
Figura 52. Condición de activación del pulsador de "Reset" (Red de Petri)96
Figura 53. Condición de falla por falta de material en la tolva (Red de Petri)96
Figura 54. Condición de falla por brix superior al 68° (Red de Petri)97
Figura 55. Condición de activación de alarma por nivel alto en la mezcla (Red de Petri)97
Figura 56. Condición para ejecutar solo un ciclo de proceso al pulsar "Stop" (Red de Petri)
98
Figura 57. Condición de falla al inicio, por falta de agua en tanque mezclador (Red de Petri)
99
Figura 58. Condición de falla al inicio, por falta de azúcar en la tolva (Red de Petri)99
Figura 59. Condición de falla al inicio, por falta de azúcar en la tolva (Red de Petri) 100
Figura 60. Esquema gráfico de conexiones físicas de la máquina para diluir azúcar 101
Figura 61.Catalogo de PLC's de la serie S7-300 siemens
Figura 62. PLC de la marca siemens "CPU 314-2DP - 6ES7314-6CH04-0AB0"104
Figura 63. Módulo de expansión de salidas digitales "6ES7322-1BH01-0AA0"106
Figura 64. Catálogo de pantallas HMI de la marca siemens
Figura 65. Pantalla HMI "MP 377 19" Touch"
Figura 66. Imagen del sistema de control diseñado para la pantalla HMI seleccionada110
Figura 67. Gráfica Grados brix Vs Tiempo (Ciclo de trabajo continuo)
Figura 68. Gráfica Grados brix Vs Tiempo (Set Point de Brix: 50°)114
Figura 69. Gráfica Grados Brix Vs Tiempo (Set Point de Brix: 55°)115
Figura 70. Gráfica Grados Brix Vs Tiempo (Set Point de Brix: 60°)116
Figura 71. Gráfica Grados Brix Vs Tiempo (Set Point de Brix: 65°)117

Código	FDE 089
Versión	03
Fecha	2015-01-27

TABLAS

Tabla 1. Comparación entre un proceso manual vs uno automático	24
Tabla 2. Características de un proceso manual vs uno automático	24
Tabla 3. Características del tornillo sin fin	26
Tabla 4. Características de la tolva	27
Tabla 5. Características de la válvula mariposa	28
Tabla 6. Características del intercambiador de calor	29
Tabla 7. Características del Refractómetro de proceso con bypass PR21	30
Tabla 8. Características de la termocupla	31
Tabla 9. Características sensor de nivel de líquido R-Series	32
Tabla 10. Características de la moto bomba	33
Tabla 11. Características del motor eléctrico	34
Tabla 12. Características Cas 200	35
Tabla 13. Características Simatic step 7	38
Tabla 14. SolidWorks Student Edition 2016	39
Tabla 15. Características del Recipiente de agitación	40
Tabla 16. Especificaciones del tornillo sin fin	45
Tabla 17. Criterio de diseño, tipos de material a transportar	51
Tabla 18. Densidad del azúcar	54
Tabla 19. Tipos de tolvas ventajas y desventajas	58
Tabla 20. Tipos de motores ventajas y desventajas	59
Tabla 21. Tipos de tuberías ventajas y desventajas	60
Tabla 22. Ficha técnica del refractómetro seleccionado	64
Tabla 23. Tabla de ventajas y desventajas de los tipos de intercambiadores de calor	70
Tabla 24. Tabla de variables de entrada utilizadas en la programación del PLC	73
Tabla 25. Tabla de variables de salida utilizadas en la programación del PLC	75
Tabla 26. Tabla de marcas digitales utilizadas en la programación del PLC	78

Código	FDE 089
Versión	03
Fecha	2015-01-27

Tabla 27. Vector de salidas de la Red de Petri implementada en la programación del Pl	LC 79
Tabla 28. Ficha técnica del PLC seleccionado	105
Tabla 29. Ficha técnica del módulo de expansión de salidas digitales seleccionado	106
Tabla 30. Ficha técnica de La pantalla HMI seleccionada	109
Tabla 31. Mandos de control del proceso implementados en la pantalla HMI	111
Tabla 32. Indicadores visuales del proceso implementados en la pantalla HMI	112
Tabla 33. Datos recopilados de las gráficas de Grados Brix Vs Tiempo	117

Código	FDE 089
Versión	03
Fecha	2015-01-27

1. INTRODUCCIÓN

1.1 Generalidades

El proyecto está basado en la no existencia de una maquinaria que logre la dilución del azúcar; por lo tanto, este proyecto es pensado con el fin de crear dicha máquina. La base de datos más cercana a ideas creadas sobre máquinas que diluyan el azúcar han sido informes académicos sobre máquinas que hacen más fácil el procesamiento de la caña para la obtención del azúcar refinado. Una de las propuestas estudiadas es una máquina que logre capturar el polvo o residuos que deja el azúcar durante su procesamiento, lo que lograría el aprovechamiento en gran cantidad de la caña de azúcar (Buchelli Carpio & Andrade, 2004). Otros estudios se basan en la comparación de las maquinas actuales y las antiguas a vapor, para el procesamiento del azúcar, teniendo en cuenta valores como la contaminación, la rapidez y el aprovechamiento de la caña (Rojas Sola & Ureña Marín, 2012).

Para el desarrollo de este proyecto, se deben tener en cuenta los tipos de mezcladores que funcionan con líquidos y con sólidos. Existen principalmente tres tipos de mezcladores para alimentos secos: de cintas, de volteo y de tornillo interno (Meneses, 2015), y 3 tipos de mezcladores para alimentos fluidos: de paletas, de hélice y de turbina; dado que la mezcla que se realizará en el proceso es entre un alimento seco y un fluido, se debe utilizar un mezclador para alimentos fluidos, siendo el de paletas el más conveniente a utilizar, por ser el más barato de los 3, por presentar un buen flujo radial y un buen flujo rotacional (Colina, 2017). Otra cosa importante es el servicio de contenedores prácticos que puedan transportar y almacenar gráneles y líquidos que estén adaptados para no derramar, además que sean antisépticos, que pueda soportar altas temperaturas y que no sean desechables, para permitir su reutilización.

Código	FDE 089
Versión	03
Fecha	2015-01-27

Las inconsistencias que se visualizaron en el proceso de dilución de azúcar, al momento de realizar el vaciado al contenedor, es que los operarios lo hacen directamente al tanque, provocando sedimentaciones en los mismos y haciéndolo de forma insegura, según la ley 1562/2012, ya que se presentan riesgos mecánicos, térmicos, y eléctricos, como lo son las quemaduras, fallas en la maquinaria y probabilidad de descargas eléctricas.

Por otra parte, se disminuye la vida útil de la maquinaria y equipos, tales como las bombas de desplazamientos de líquidos, válvulas y tuberías, ya que son sobrecargadas por densidades altas en los contenedores, cuyos solidos no disueltos serían los principales causantes de desgastes prematuros y erosiones.

No obstante, la calidad e inocuidad de cualquier producto debe ser regida bajo las normas que guían los procesos industriales, como la norma ISO 9001 (International Organization for Standardization, 1947), debido a que ésta es una de las normas que debe cumplir cualquier industria que tenga en su proyección la exportación de productos.

Otra de las normas a tener en cuenta es la OHSAS 18000 (Autogestión, 2015), que es una serie de estándares internacionales relacionados con gestión de seguridad y salud ocupacional, y que influye en la seguridad que deben tener los empleados de una empresa.

Es por lo mencionado anteriormente, que un contenedor debe estar hecho con materiales especializados; según "Mercalux", un directorio comercial industrializado online, existen diferentes cantidades de contenedores con una capacidad desde 100 lts.

Es muy importante tener en cuenta los valores de concentración del azúcar cuando está en contacto con el agua, porque así mismo será su espesor y facilidad o dificultad al diluirla. De igual forma, estos valores cambian dependiendo del tiempo y la temperatura de los contenedores (Curiososinea, 2014).

Por lo tanto, es necesario la creación de máquinas que cumplan las funciones antes mencionadas, debido a que aún no se ha tenido en cuenta la necesidad de implementar

Código	FDE 089
Versión	03
Fecha	2015-01-27

esta nueva tecnología y pensar que gracias a la calidad de los contenedores se pueda hacer el proceso de dilución de azúcar más rápido, lo que ayudaría a reducir costos y tiempo a las empresas creadoras de productos a base de azúcar.

Código	FDE 089
Versión	03
Fecha	2015-01-27

1.2 Objetivos

1.2.1 Generales

Diseñar una máquina que desarrolle el proceso de dilución de azúcar de una manera en la que sea mejor aprovechado el producto, mejore su calidad y el proceso sea más rápido. También se quiere mejorar las condiciones de operaciones de los equipos en el sistema que le permita funcionar por medio de un control automático que será supervisado mediante una pantalla HMI, lo que disminuiría riesgo en los operadores evitando quemaduras, descargas eléctricas entre otras; siendo este un problema común de las maquinas actuales.

.

1.2.2 Específicos

- Consultar los diferentes tipos de máquinas existentes en el mercado, como contenedores, motores, y tuberías apropiadas para el diseño.
- Definir las dimensiones generales del área donde se ubicará la máquina.
- Elaborar los planos técnicos necesarios para su correcta instalación (eléctricos y mecánicos).
- Elaborar el sistema de control automático para el proceso.
- Comunicar el programa de control con una pantalla HMI que permita visualizar la ejecución del proceso.
- Seleccionar el intercambiador de calor apropiado para el proceso.

Código	FDE 089
Versión	03
Fecha	2015-01-27

1.3 Organización de la tesis

Con el fin de establecer las bases fundamentales para el entendimiento y el desarrollo de este proyecto, iniciamos el recorrido de este trabajo con la presentación de un marco teórico, el cual integra de forma competente, los conceptos claves a tener en cuenta para llevar a cabo el desarrollo de un sistema de control automático, que permita operar y supervisar correctamente, los diferentes procesos que gobiernan el funcionamiento de una máquina para diluir azúcar, enfocada a la automatización de un proceso industrial.

La información brindada, incluye los conceptos requeridos para realizar el diseño de partes y elementos mecánicos que conformarán la máquina diluidora de azúcar, se incluyen también datos técnicos relevantes sobre algunos elementos de control, como actuadores de campo, sistemas y elementos de monitoreo como sensores y transductores, y máquinas eléctricas como motores, que permitan el accionamiento de bombas hidráulicas y sistemas de transporte de materiales basados en tornillos sin fin.

Una vez plasmada toda la información anterior, procedemos a describir el proceso de selección de cada una de las partes que conformaran el diseño tanto mecánico como eléctrico de la máquina para diluir azúcar, incluyendo las fórmulas y cálculos realizados para llevar a cabo el diseño del sistema del transportador helicoidal del tornillo sin fin, encargado de desplazar el azúcar en el proceso de adicción de material que ejecuta la máquina.

Luego, continuaremos con la descripción del sistema de control automático, elaborado para ser el encargado de controlar y monitorear todos los procesos que ejecutará la máquina, presentando junto con este, el diagrama de estados basado en una Red de Petri, que será la parte fundamental de la programación realizada para el PLC. Después, presentaremos el proceso de selección del PLC que se encargará de controlar todos los actuadores y sensores implementados en el sistema de control, y finalizaremos esta sección, con la descripción del proceso de selección de la pantalla HMI, que permitirá supervisar y manipular el sistema de control implementado para la máquina diluidora azúcar.

Código	FDE 089
Versión	03
Fecha	2015-01-27

Por último, presentaremos los resultados y conclusiones obtenidas en el desarrollo de este proyecto y se anexan los diseños de los planos eléctricos y mecánicos necesarios para la fabricación de la máquina, así como también imágenes que contengan la programación realizada para el PLC.

Código	FDE 089
Versión	03
Fecha	2015-01-27

2. MARCO TEÓRICO

Los primeros registros de cultivos de caña de azúcar nos llevan hasta la remota isla de Nueva Guinea, desde donde se extendió su dulce jugo como bebida por otras zonas del Sudeste asiático. En la India se desarrolló la técnica para obtener los cristales de azúcar, el formato que conocemos y consumimos actualmente. Desde allí llegó por primera vez a algunos lugares de la antigua Europa, alrededor del siglo IV a. C., a través de las tropas de Alejandro Magno, que en sus expediciones por Asia habían descubierto aquella "planta que producía miel sin necesidad de abejas". Habría que esperar al siglo VIII para asistir a la progresiva extensión del comercio de azúcar, especialmente en la cuenca mediterránea y más concretamente en la Península Ibérica, de la mano de los pueblos árabes. La producción se volvió mundial y creció exponencialmente tras la llegada de los europeos a América, donde encontraron las condiciones climáticas y laborales (mano de obra esclava, autóctona o traída desde África) para aumentar las cosechas y responder a una demanda creciente. En vista del crecimiento de productos azucarados y su exponencial consumo, la industria ha visto la necesidad de aumentar la eficiencia para garantizar el abastecimiento y demanda de este (Unisima, 2018), llevando a que se tomaran medidas para poder automatizar los procesos y mejorar la calidad y productividad en un porcentaje muy elevado; y es en este punto en el cual se desenvuelve el desarrollo de este proyecto para lo cual se presentarán en los párrafos siguientes, los conceptos, teorías y bases fundamentales que se requieren para llevar a cabo el diseño de una máquina automatizada que realice el proceso de dilución del azúcar.

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.1 Descripción del proceso de dilución de azúcar de forma manual

El proceso de dilución de azúcar para la fabricación de productos azucarados es realizado de forma manual por algunas empresas, esto es debido a que muchas veces no cuentan con la maquinaria necesaria o hay escasez de recursos económicos, por lo cual no automatizan cada una de las tareas requeridas en el proceso de dilución del azúcar. Dichos factores generan algunos inconvenientes en el resultado del producto final como, por ejemplo, baja calidad, debido al error humano, y adicional a esto, se aumentan los tiempos de producción, ya que son procesos que involucran muchos pasos; además, el precio final del producto aumenta, ya que se requiere de varios operarios para llevar acabo el desarrollo de dicho producto.

A continuación, se describe el proceso de dilución de azúcar de forma manual:

Inicia con la recolección de agua en el tanque donde se realiza la mezcla, después el agua debe calentarse por medio de vapor de agua que ingresa a dicho tanque. Este proceso de calentamiento es muy necesario para garantizar una buena homogenización de la mezcla, sin embargo, muchas empresas no lo practican por falta de recursos, ya que es necesario una caldera o algún tipo de generador de calor que genere dicho vapor, incurriendo con esto en la reducción de la calidad del producto y aumentado el tiempo de agitación y de mezcla.

El proceso continúa con el ingreso de azúcar al tanque, el cual se realiza por medio de un tornillo sin fin, que tiene conexión directa con el tanque de mezclado; la cantidad de azúcar que ingresa al tanque se determina con la medición manual de los grados Brix (utilizando para ello un refractómetro portable), el operario verifica que los grados Brix, o concentración de azúcar en la mezcla, tengan un valor óptimo (valor que es determinado en base a las características del producto a elaborar), este proceso puede tardar un tiempo aproximado de 5 a 10 minutos .

Código	FDE 089
Versión	03
Fecha	2015-01-27

Una vez realizados todos los pasos anteriores, el operario procede a prender la bomba de vaciado de la mezcla, con el fin de retirar una cantidad de volumen de la mezcla, el cual determina de forma empírica, con lo cual, el proceso manual de dilución de azúcar se da por terminado.

Analizando la descripción del proceso manual de dilución de azúcar, se puede inferir que es un método que presenta muchos inconvenientes, los cuales se podrían solucionar implementado un sistema de control automático, que se encargue de realizar cada una de las tareas que ejecutan los operarios.

A continuación, se presentan la Tabla 1, tomada como referencia del libro "Instrumentación Industrial" (Solé, 2012), en la cual se hace una comparación entre un proceso industrial realizado de forma manual y uno realizado de forma automática. También se presenta la Tabla 2, en la cual se comparan las características del proceso de dilución de azúcar realizado tanto de forma manual, como de forma automática. En base a estas 2 tablas se determinan cuáles son las ventajas de implementar un sistema de control automático en el proceso de dilución de azúcar de forma industrial.

PROCESO INDUSTRIAL	
MANUAL	AUTOMÁTICO
Método artesanal.	Método automatizado.
El operario tiene una visión subjetiva del	Objetivos claros, medibles, verificables.
problema.	N. I
Medición limitada, engorrosa, lenta, cara.	Valoración completa del proceso.
Poco eficiente y con pocas posibilidades	Más eficiencia en menor tiempo.
de mantener estándares de calidad.	
Poco confiable, ya que depende	Requiere la intervención de un operario
continuamente de la intervención del	para nuevos ajustes, esporádicamente.
operario.	
El tiempo de respuesta del control	El tiempo de respuesta es casi instantáneo
depende de la habilidad del operador, su	y continuo.

Código	FDE 089
Versión	03
Fecha	2015-01-27

intervención se realiza en forma	
intermitente.	
El producto final obtenido no es continuo,	El producto final obtenido es continuo y
en consecuencia, puede llegar a ser no	homogéneo.
homogéneo.	
Por sus características de no ser auto-	Auto-regulable por efecto de la reacción
regulable, puede existir la posibilidad de	constante para la cual fue diseñado.
cometer errores.	Luego de iniciado el funcionamiento, la
	posibilidad de error es remota.

Tabla 1. Comparación entre un proceso manual vs uno automático

[Fuente: "Instrumentación Industrial", (Solé, 2012)]

Método de dilución de azúcar	Manual	Automático
Calidad	Medio	Alta
Costo equipos	Bajo	Alto
Volumen de producción	Medio	Alto
Velocidad de respuesta de control	Ваја	Alta
Precisión de medición de variables	Media-Alta	Alta

Tabla 2. Características de un proceso manual vs uno automático

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.2 Índice de refracción

El índice de refracción se trata de un valor adimensional representado con la letra "n", aunque puede encontrarse como "nD" en las fichas técnicas de algunos instrumentos de medición como los refractómetros. Este se utiliza para indicar la medida de la flexión de un rayo de luz cuando se pasa de un medio a otro. El índice de refracción se puede calcular con la con la fórmula $n=\frac{c}{v}$, que se expresa como la velocidad de la luz (c) de una longitud de onda dada en el espacio vacío dividido por su velocidad (v) en una sustancia (Britannica, 2018).

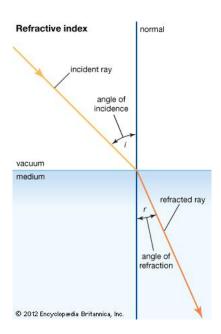


Figura 1. Diagrama de un rayo de luz siendo refractado

[Fuente: https://www.britannica.com/science/refractive-index]

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.3 Tornillo sin fin

En ingeniería mecánica se denomina tornillo sin fin a un dispositivo mecánico que transmite potencia entre ejes que se cruzan, en su mayoría son perpendiculares; también son instalaciones transportadoras para materiales a granulados, que se basa en principio de funcionamiento del tornillo de Arquímedes. El elemento transportador es un metal plano moldeado en forma de hélice (hélice tornillo sin fin), y rota alrededor del eje longitudinal.

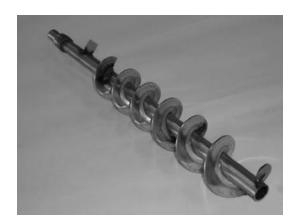


Figura 2. Tornillo sin fin

[Fuente: http://www.atmos.eu/spanish/nahradni-dily-279]

Nombre	Valor
Angulo de ataque	64.14°
Longitud eje	2000mm
Diámetro eje	100mm
Diámetro espiral	200mm
Material	Acero inoxidable
Máxima revolución	180 rpm

Tabla 3. Características del tornillo sin fin.

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.4 Tolva

Es un dispositivo generalmente cónico similar a un embudo con un ángulo importante de inclinación en sus paredes, de material con acabado generalmente tipo liso, para permitir el deslizamiento y canalización de materiales granulados o pulverizados; la carga entra por el diámetro superior y sale por el diámetro inferior. De mucha utilidad en maquinaria industrial, agrícola y construcciones civiles (Oliveros, Sanz, Ramirez, & Mejía, 2007).

Figura 3. Tolva fabricada en acero inoxidable

[Fuente: https://goo.gl/xh5c8V]

Nombre	Valor
Ángulo de inclinación	40.60°
Diámetro superior	1498mm
Diámetro inferior	100mm
Altura	900mm
Espesor	3mm
Material	Acero inoxidable

Tabla 4. Características de la tolva.

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.5 Válvula de mariposa

Es un dispositivo utilizado para interrumpir o regular el flujo de un fluido en un conducto, aumentando o reduciendo la sección de paso mediante una placa denominada mariposa (que gira sobre un eje, de uso en aplicaciones de baja presión (125 psi)). Muy usadas a nivel industrial por su rápida operación, reducido espacio y sus múltiples materiales, ya que se puede ajustar a distintas aplicaciones dependiendo donde se necesite regular.

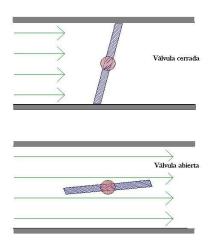


Figura 4. Croquis de funcionamiento de una válvula de mariposa [Fuente: http://www.esacademic.com/dic.nsf/eswiki/1464741]

Nombre	Valor
Presión máxima de trabajo	120 psi
Tipo de control	ON/OFF
Material	Acero inoxidable
Diámetro	4"

Tabla 5. Características de la válvula mariposa

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.6 Intercambiador De Calor

Dispositivo termodinámico, similar al radiador de un automóvil, diseñado para transferir calor entre dos fluidos, o entre la superficie de un sólido o un fluido en movimiento. Normalmente en las industrias es usado para elevar la temperatura de fluidos mediante otro fluido más caliente o enfriar con uno de menor temperatura, condensar gases mediante fluidos fríos, o llevar al punto de ebullición un fluido.

Figura 5. Intercambiador de calor de tubo y coraza

[Fuente: https://dir.indiamart.com/ghaziabad/tube-shell-heat-exchangers.html]

Nombre	Valor
Potencia	697kw
Material	Acero inoxidable
Tipo de flujo	Paralelo
Temperatura	0 - 120 °C
°C fluido a calentar	60-70°C
Caudal	12 – 49 m³/h
Presión máxima	10 bar
Peso	85 kg

Tabla 6. Características del intercambiador de calor

[Fuente: http://www.derwaermetauscher.de/]

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.7 Refractómetro

Instrumento óptico de alta precisión y de sencillo manejo. Se basa en la refracción de la luz al pasar por un prisma; los hay análogos y digitales, estos últimos son ampliamente usados a nivel industrial para medir en una sustancia acuosa el contenido de azúcar de una mezcla.

Figura 6. Refractómetro de escala Brix, para proceso industrial [Fuente: https://goo.gl/YazSrW]

Nombre	Valor
Rango de medición	0-90° brix
Interfaces de datos	Análoga 4-20mA, Ethernet y Profibus
LCD	No
Grado de protección	IP67

Tabla 7. Características del Refractómetro de proceso con bypass PR21

[Fuente: https://goo.gl/YazSrW]

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.8 Termopar

Es un sensor de temperatura eléctrico analógico, el más utilizado comúnmente en las industrias por su alta durabilidad y soporte de temperaturas altas; se hace con dos alambres de distintos materiales unidos en un extremo y, al aplicar temperatura en la unión de los metales, se genera un voltaje muy pequeño, del orden de los mil voltios, los cuales aumentan con la temperatura, y con la diferencia de estos se obtiene una función de transferencia.

Figura 7. Termopar tipo J

[Fuente: https://goo.gl/GXBGnG]

Nombre	Valor
Tipo	J
Función de transferencia	42.2mV/750°C
Materiales	Cobre y níquel
Uso	Industrial
Número de hilos	Dos

Tabla 8. Características de la termocupla.

[Fuente: https://goo.gl/GXBGnG]

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.9 Sensores De Nivel

Un sensor de nivel de agua es un dispositivo electrónico que mide la altura del material (generalmente líquido), dentro de un tanque u otro recipiente. Integral para el control de procesos en muchas industrias; algunas especificaciones longitudinales se pueden fabricar de acuerdo a las necesidades del ingeniero diseñador.

Figura 8. Sensor de nivel [Fuente: https://goo.gl/bHcFuE]

Nombre	Valor
Material	Acero inoxidable
Salida	Análoga de 0-5v
Temperatura de funcionamiento	-40°C a +125°C
Máxima longitud	500mm
Principio de funcionamiento	Capacitivo

Tabla 9. Características sensor de nivel de líquido R-Series.

[Fuente: https://goo.gl/bHcFuE]

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.10 Moto Bomba

Dispositivo utilizado para mover fluidos como líquidos, lodos, e incluso gases.

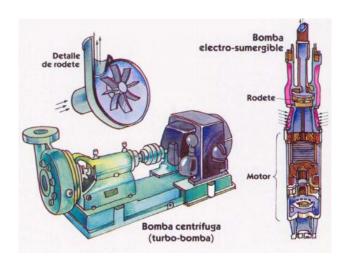


Figura 9. Moto bomba.

[Fuente: https://goo.gl/FycbXD]

Nombre	Valor
Caudal	72.5L/s
Presión	14.3 bar
Temperatura trabajo	0/120 °C
°C Fluido	60 – 70 °C
Fabricante	Alfa Laval Lund AB
Tipo de bomba	Centrifuga
Tipo de accionamiento	Eléctrico

Tabla 10. Características de la moto bomba.

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.11 Motor Eléctrico

El motor eléctrico es un artefacto que convierte la energía eléctrica en energía mecánica por medio de la acción de los campos magnéticos generados en sus bobinas, así puede impulsar el movimiento de una maquina industrial, la invención de este es de gran importancia en la industria ya que muchos procesos industriales que implica movimiento requieren de su uso.

Figura 10. Motor eléctrico.

[Fuente https://goo.gl/V2HnVE]

Nombre	Valor
Tipo	Trifásico
Potencia	1HP
Voltaje	220v
Marca	Siemens
Tipo de conexión	Delta-estrella

Tabla 11. Características del motor eléctrico.

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.12 Software Cas 200

Software desarrollado por la empresa Alfa Laval para el cálculo de intercambiadores de calor. Este software realiza los cálculos en base a parámetros de entrada, que dependen de las características de los fluidos que realizarán la transferencia de calor.

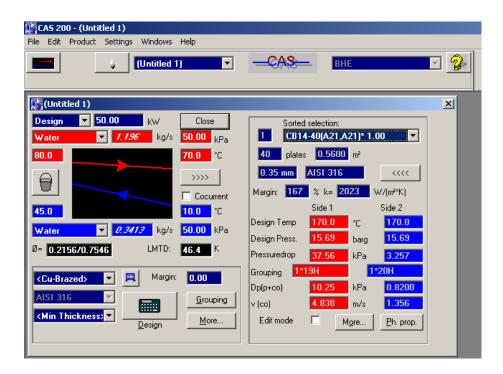


Figura 11. Software Cas 200

[Fuente: Autores]

Nombre	Valor
Versión	V4.10
Idioma	Inglés
Sistema operativo	Microsoft Windows XP, Windows 7
Link de descarga gratuita	http://energosoft.info/soft_teplotex_21_30.html

Tabla 12. Características Cas 200.

Código	FDE 089
Versión	03
Fecha	2015-01-27

2.13 Siemens

Siemens es una empresa conglomerada alemana, que cuenta con sedes y sucursales en diferentes países; es reconocida a nivel internacional como marca fabricante por excelencia de productos enfocados a la automatización de procesos industriales. Entre sus productos se pueden encontrar PLC`s, variadores de velocidad, pantallas HMI, sensores, transductores, entre otros. Además de la alta calidad que presentan sus productos, la empresa también brinda soporte y cobertura a nivel mundial, resultando muy cómodo para sus clientes y usuarios, solicitar mantenimientos y/o repuestos de los productos adquiridos.

Figura 12. Siemens en Múnich, Alemania

[Fuente: https://goo.gl/hyHac2]

2.14 Red de Petri

Una red de Petri, también conocida como red de estado/transición, consiste en un lenguaje gráfico fácil de entender y de gran utilidad, muy empleado para la modelación de sistemas de control en sistema embebidos, ya que permite representar y analizar de forma efectiva procesos concurrentes (Jensen, 2013).

Una red de Petri está conformada por los siguientes elementos:

- **Estados o plazas:** A estos se les asigna uno o varios conjuntos de marcas y/o variables del proceso, sobre las cuales tienen dominio para modificar su valor de

Código	FDE 089	
Versión	03	
Fecha	2015-01-27	

estado lógico (O/desactivo o 1/activo), o para asignarles algún valor en específico. Las plazas cuentan con un conjunto principal de marcas y/o variables del proceso, que recibe el nombre de vector de salidas, el cual se utiliza comúnmente para controlar el estado lógico de los actuadores en un sistema de control. A la plaza se les asigna una marca que sirve como identificación de la misma, y su representación simbólica se realiza mediante una circunferencia.

- Transiciones: Estas se activan o "disparan", cuando la variable o variables asignadas a dicha transición, generan un valor de resultado de operaciones lógicas igual a "1".
 Se representan simbólicamente mediante segmentos rectilíneos.
- Arcos o flechas: Esto permiten interconectar estados y transiciones, las conexiones siempre deben realizarse de "estado a transición", o de "transición a estado", no es permitido realizar conexiones de "transición a transición", ni tampoco de "estado a estado".

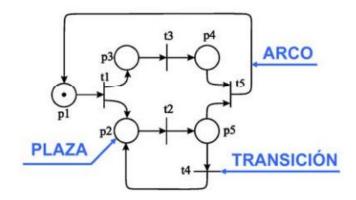


Figura 13. Partes que conforman una Red de Petri

[Fuente: https://www.ctr.unican.es/asignaturas/MC_ProCon/Doc/PETRI_1.pdf]

Código	FDE 089	
Versión	03	
Fecha	2015-01-27	

2.15 Software Simatic Step 7

Software por excelencia distribuido y creado por la empresa Siemens, para la programación y configuración de PLC´s (Controladores Lógicos Programables); aunque han surgido nuevos softwares, su uso es extendido a nivel industrial por su confiablidad facilidad de uso y años de funcionamiento. Este software cuenta con una interfaz de usuario, que integra un completo abanico de herramientas que permite la completa gestión de los PLC.

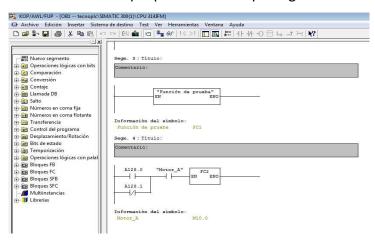


Figura 14. Simatic step 7.

[Fuente https://goo.gl/mXhcvn]

Nombre	Valor	
Versión	V5.5 + SP2 (Versión Estudiantil)	
Sistema operativo	Microsoft Windows 7	

Tabla 13. Características Simatic step 7.

Código	FDE 089	
Versión	03	
Fecha	2015-01-27	

2.16 Software SolidWorks Student Edition 2016

Software líder en tecnología de modelado 3D y de diseño asistido por computadora (CAD), utilizado ampliamente en el desarrollo de productos de ingeniería. Este software cuenta con un entorno de trabajo, que provee de forma intuitiva herramientas y características que facilitan el diseño y el análisis, convirtiéndose de esta forma en un software amigable al usuario.

Nombre	Valor
Versión	SolidWorks Student Edition 2016 (Versión Estudiantil)
Sistema operativo	Microsoft Windows 7,8.1, 10 [64 bits]

Tabla 14. SolidWorks Student Edition 2016

Código	FDE 089	
Versión	03	
Fecha	2015-01-27	

2.17 Recipiente de Agitación

El tanque de mezcla o recipiente agitado es el elemento más comúnmente utilizado en equipos de agitación; los recipientes cilíndricos son preferibles a los de sección cuadrada o rectangular para evitar el asentamiento de partículas.

El diámetro del tanque no puede ser mayor a 4.6m por motivos de transporte.

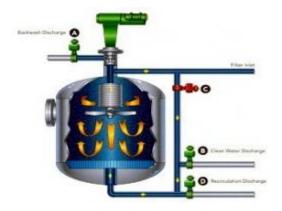


Figura 15. Recipiente de agitación.

[Fuente: https://goo.gl/o7hx6E]

Nombre	Valor
Diámetro del tanque	3 m
Volumen	80 L
Tipo de agitador	Paletas

Tabla 15. Características del Recipiente de agitación.

Código	FDE 089	
Versión	03	
Fecha	2015-01-27	

2.18 Grado brix

Escala que determina la cantidad de azúcar de una sustancia en un porcentaje de 0% a 100%. Esta escala es de alto uso a nivel de las industrias a nivel mundial, fácilmente medible mediante artefactos electrónicos que funcionan bajo el principio de la refracción, dando como resultado mucha precisión a la hora de medir el grado brix en una sustancia.

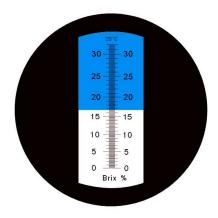


Figura 16. Escala de grado brix

[Fuente: https://goo.gl/YhLwAU]

Código	FDE 089	
Versión	03	
Fecha	2015-01-27	

3. METODOLOGÍA

Para el cumplimiento de los objetivos específicos, se propone una lista de actividades que se muestra a continuación, donde a partir de un proceso industrial, se pretende mejorar eficiencia, seguridad y calidad en productos azucarados, en el cual se detectó un problema que afectaba la certificación de las normas ISO y OHSAS.

Inicialmente se realizarán las mediciones del área para empezar a diseñar las piezas mecánicas, utilizando para ello el software de diseño CAD "SolidWorks Student Edition 2016". Algunas de las piezas a diseñar son tolvas, plataforma, tornillo sin fin, escalera, entre otras, teniendo en cuenta que se pueden presentar otros tipos de ajustes o piezas en el momento del montaje. Los demás elementos e instrumentación se elegirán y seleccionarán de acuerdo a las condiciones de operación definidas (cantidades, flujos, etc.) Acto seguido se harán los planos eléctricos. De manera paralela se realizará la definición de variables y la lógica del sistema automático de control con el fin de que el proceso mejore la calidad de la mezcla y disminuya los riesgos anteriormente descritos. Se generará el diagrama del proceso que se mostrará en una pantalla HMI con el fin de mejorar la interacción entre las personas que manejan el equipo y las maquinas.

Código	FDE 089	
Versión	03	
Fecha	2015-01-27	

3.1 Diseño y cálculo del transportador helicoidal.

A nivel industrial entre los mecanismos más usados para el transporte de materiales tenemos los tornillos sin fin, este es un transportador constituido por una hélice soldada sobre un eje suspendido en un canal, el eje es rotado por un motor reductor haciendo que el material sea transportado al lugar deseado, gracias a su sencillez de fabricación, bajo costo, hermeticidad, adaptación fácil de boca de carga y fácil instalación es de uso generalizado en las industrias para transporte de mezclas y sustancias.

Para el diseño del transportador de tornillo sin fin, se debe tener en cuenta una serie de criterios y cálculos que serán presentados en las líneas siguientes.

Dependiendo de la forma del diseño del eje del tornillo, los transportadores de tornillo se pueden clasificar en:

- Tornillo sin fin de hélice helicoidal
- Tornillo sin fin de hélice seccional
- Tornillo sin fin de paletas cortadas
- Tornillo sin fin de paletas tipo cinta
- Tornillo sin fin con palas
- Tornillo sin fin de paletas plegadas y cortadas
- Tornillo sin fin de paso corto de paletas cortadas con palas
- Tornillo sin fin de palas
- Tornillo sin fin de paletas distribuidas formando un cono
- Tornillo sin fin de diámetro escalonado
- Tornillo sin fin de paso escalonado
- Tornillo sin fin de paso largo
- Tornillo sin fin de doble paleta

Para el desarrollo de este proyecto, se usará un tornillo sin fin de hélice helicoidal, dado que se requiere desplazar material de forma de lineal.

Código	FDE 089
Versión	03
Fecha	2015-01-27

El sistema de tornillo sin fin de hélice helicoidal está compuesto por un eje, hélice, y carcasa del transportador.

3.1.1 Diseño de la hélice del tornillo sin fin.

Basado en los criterios de diseño para el transportador de tornillo sin fin, se debe seleccionar la hélice de acuerdo con el material a transportar.

Tipo de Hélice	Tipo de Material para Transportar / Aplicación	Figura
Hélice continua, de paso igual al diámetro	Tipo de hélice normal para transporte de sólidos	
Hélice de gran paso, de 1,5 a 2 veces el diámetro	Se utiliza para productos que fluyen muy bien	
Hélice de pequeño paso, normalmente la mitad del diámetro	inclinados hasta unos 20-25°, o cuando se quiere un prolongado tiempo de permanencia del producto en el transportador con el objeto de enfriarlo, secarlo, etc.	11111111
Hélice de paso variable	Utilizado para compresión de productos, como es el caso de las prensas de tornillo.	
Hélice de diámetro variable	Se utiliza como extractor dosificador de sólidos de tolvas.	~~~~~
Hélice de cinta	Tipo de hélice adecuada para productos que producen atascamiento.	
Hélice mezcladora, con dos hélices tipo cinta, uno a derecha y otro a izquierda	Se utiliza como equipo mezclador	
Hélice mezcladora, con eje provisto de paletas	Se utiliza como equipo mezclador	

Figura 17. Tabla de criterio de diseño de selección del tornillo sin fin, según el material a transportar.

[Fuente: http://ingemecanica.com/tutorialsemanal/tutorialn143.html]

Código	FDE 089
Versión	03
Fecha	2015-01-27

Como se observa en la Figura 17, están los diferentes tipos de hélices y los tipos de materiales que estas trasportan. Para este proyecto el material a transportar es azúcar, por tanto, debe seleccionarse una "Hélice de gran paso" (de 1,5 a 2 veces el diámetro) dado que el azúcar es un material que fluye muy bien.

Se presenta la Tabla 16, en la cual se visualizan las características de la hélice a implementar en el desarrollo del proyecto

Diámetro externo	100mm
Diámetro interno	45mm
Vueltas	13 vueltas
Paro constante	150mm
Sentido de giro	Manecillas del reloj
Diámetro eje de apoyo	35mm
Longitud	2000mm

Tabla 16. Especificaciones del tornillo sin fin.

[Fuente: Autores]

Para finalizar el diseño del tornillo sin fin, sólo resta conocer el ángulo de ataque del mismo, el cual se calcula de la siguiente manera:

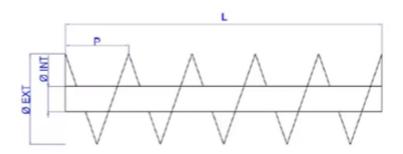


Figura 18. Diagrama del tornillo sin fin.

Código	FDE 089
Versión	03
Fecha	2015-01-27

Para calcular el ángulo de ataque de la espiral, se utilizan la siguientes formulas:

4 -	Diámetro Exterior – Diámetro Interior	Fórmula 1
н —	2	

$$RU = \sqrt[2]{(Di\'{a}metro\ Exterior)^2 \times (\pi)^2 + (Paso)^2}$$
 Fórmula 2

$$RE = \sqrt[2]{(Di\'{a}metro\ Interior)^2 \times (\pi)^2 + (Paso)^2}$$
 Fórmula 3

$$r = \frac{(A \times RE)}{(RU - RE)}$$
 Fórmula 4

$$R=r+A$$
 Fórmula 5

$$\Delta = \mathbf{2} \times \mathbf{R} \times \boldsymbol{\pi}$$
 Fórmula 6

$$oldsymbol{eta} = rac{(RU imes 360^\circ)}{(\Delta)}$$
 Fórmula 7

Angulo de entrada = $360^{\circ} - \beta$	Fórmula 8

Donde:

EXT, diámetro exterior.

IXT, diámetro interior.

Código	FDE 089
Versión	03
Fecha	2015-01-27

P, paso.

L, longitud del tornillo.

A, altura de espiral.

r, radio.

 Δ , incremento (longitud de la circunferencia R).

R, radio mayor.

β, ángulo beta.

RU, longitud diámetro exterior.

RE, longitud diámetro interior.

La Fórmula 1 hasta Fórmula 8, fueron tomadas de: "Cálculo de transportadores de tornillo sin fin según la Norma UNE. Alimentación, Equipos y Tecnología" (Cárcel, Nevares, & Navas, 2003).

En la **Fórmula 1** se reemplazan los valores del diámetro interior y exterior para calcular el área **A**.

$$A = \frac{100 \, mm - 45 \, mm}{2} = 27.50 \, mm$$

En la Fórmula 2 se reemplazan los valores para calcular RU.

$$RU = \sqrt[2]{(100 \ mm)^2 \times (\pi)^2 + (150 \ mm)^2} = 348.13 \ mm$$

En la Fórmula 3 se reemplazan los valores para calcular RE.

$$RE = \sqrt[2]{(45 \ mm)^2 \times (\pi)^2 + (150)^2} = 206.12 \ mm$$

Código	FDE 089
Versión	03
Fecha	2015-01-27

En la **Fórmula 4** se reemplazan los valores anteriormente calculados para calcular r.

$$r = \frac{(27.50 \ mm \times 206.12 \ mm)}{(348.13 \ mm - 206.12 \ mm)} = 39.92 \ mm$$

En la **Fórmula 5** se reemplazan los valores de **A** y r para obtener R.

$$R = 39.92 \ mm + 27.50 \ mm = 67.42 \ mm$$

En la **Fórmula 6** se reemplaza R para obtener Δ .

$$\Delta = 2 \times 67.42 \ mm \times \pi = 423.61 \ mm$$

En la **Fórmula 7** se calcula el ángulo **\beta**

$$\beta = \frac{(348.13 \ mm \times 360^{\circ})}{(423.61 \ mm)} = 295.86^{\circ}$$

En la **Fórmula 8** finalmente se resta el ángulo de la circunferencia menos el ángulo $oldsymbol{eta}$ calculado para obtener $Angulo\ de\ entrada$.

Angulo de entrada =
$$360^{\circ} - 295.86^{\circ} = 64.14^{\circ}$$

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.1.2 Carcasa del tornillo sin fin.

Para aquellas aplicaciones en las que es importante proteger del ambiente exterior el material a transportar, se hace imprescindible el uso de las carcasas.

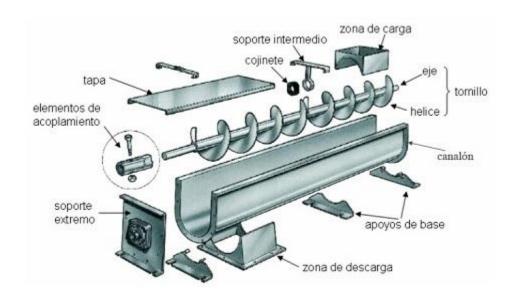


Figura 19. Carcasa del transportador.

[Fuente: https://goo.gl/niJi42]

Normalmente, los elementos que componen la carcasa de los transportadores de tornillo sin fin están fabricadas en chapa de acero al carbono de 3 a 6 mm de espesor, pero dado que en este caso se trata de un producto alimenticio, por razones sanitarias y de normatividad nacional, las paredes del trasportador deberán ser construidas en acero inoxidable, y por las mismas razones expuestas, el trasportador deberá ser totalmente hermético, por lo cual se diseña como un canalón tipo tubo cilíndrico. Este criterio de diseño es suficiente para llevar a cabo la fabricación del canalón (Mott, 2006).

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.2 Grupo motriz del transportador de tornillo sin fin.

Para el accionamiento del giro del eje del tornillo sin fin, se utilizará un motor reductor de accionamiento eléctrico, ya que permitirá tener un movimiento uniforme y continuo, facilitando de esta manera el control de la planta. El motor irá acoplado directamente al eje, tal como se ilustra en la Figura 20.

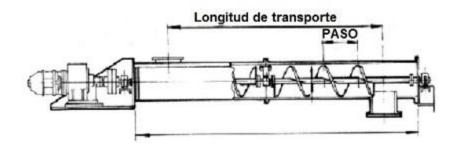


Figura 20. Grupo motriz.

[Fuente: https://goo.gl/niJi42]

3.2.1 Velocidad de giro del tornillo sin fin

Diámetro del tornillo	Velocidad máxima (r.p.m.) según la clase de material (*)				
(mm.)	Clase I	Clase II	Clase III	Clase IV	Clase V
100	180	120	90	70	30
200	160	110	80	65	30
300	140	100	70	60	25
400	120	90	60	55	25
500	100	80	50	50	25
600	90	75	45	45	25

Figura 21. Criterio de diseño, velocidad según el material a transportar.

(*) Ver las distintas clases de material definidas en el apartado 5.

[Fuente: http://ingemecanica.com/tutorialsemanal/tutorialn143.html]

Código	FDE 089
Versión	03
Fecha	2015-01-27

CLASE SEGUN EL TIPO DE MATERIAL				
Clase I	Clase II	Clase III	Clase IV	Clase V
Cebada, trigo,	Alumbre en	Alumbre de	Bautiza en	Cenizas,
malta, arroz,	polvo, haba de	terrones, Bórax,	polvo, Negro de	hollines de
harina de trigo,	soja, granos de	carbón vegetal,	humo, harina de	conductos de
carbón en	café, cacao,	corcho	huesos,	humos,
polvo, cal	maíz, carbón	troceado, pulpa	cemento, arcilla,	cuarzo
hidratada y	de hulla, cal	de papel, leche	azufre, arena,	pulverizado,
pulverizada.	hidratada.	en polvo, sal,	polvo de piedra	arena de
		almidón, Azúcar	caliza, azúcar sin	silícea.
		refinada, jabón	refinar, resinas	
		pulverizado.	sintéticas, óxido	
			de cinc	

Tabla 17. Criterio de diseño, tipos de material a transportar.

[Fuente: http://ingemecanica.com/tutorialsemanal/tutorialn143.html]

Según los criterios de diseño resumidos en la Tabla 17, el material a transportar es clase 3 (Azúcar refinada) y dado que el diámetro del tornillo de es de 100 mm(ver Figura 21), con estos dos datos se establece que la velocidad de giro del eje del tornillo sin fin será de 90 rpm.

3.2.2 Paso diametral del tornillo sin fin

Con el criterio de diseño seleccionado de la Figura 17, se establece un paso diametral de 1.5 veces el diámetro del tornillo sin fin, siendo este último de 100 mm dadas las dimensiones de la planta.

3.2.3 Capacidad de transporte del tornillo sin fin

Para este cálculo se define en primera instancia el área de relleno del canalón (S), el cual se puede obtener mediante la siguiente fórmula, tomada de: "Cálculo de transportadores de tornillo sin fin según la Norma UNE. Alimentación, Equipos y Tecnología" (Cárcel, Nevares, & Navas, 2003)..

Código	FDE 089
Versión	03
Fecha	2015-01-27

$\pi \times D^2$	Fórmula 9
$S = \lambda \times \frac{1}{4}$	

Donde:

- S, Área de relleno del transportador.
- D, Diámetro del canalón del transportador.
- λ , coeficiente de relleno se sección.

El coeficiente de relleno de sección deberá ser inferior a la unidad más pequeña del material a transportar, con el fin de evitar que se atasque.

Tipo de carga	Coeficiente de relleno, λ
Pesada y abrasiva	0,125
Pesada y poco abrasiva	0,25
Ligera y poco abrasiva	0,32
Ligera y no abrasiva	0,4

Figura 22. Tabla de criterio de diseño, coeficiente de relleno según material a transportar. [Fuente: http://ingemecanica.com/tutorialsemanal/tutorialn143.html]

En la Figura 22, se observa que, para materiales ligeros y poco abrasivos, el coeficiente de relleno es de 0.32.

Así, el área de relleno del transportador (S) será:

$$\lambda = 0.32$$

Dado que en promedio la partícula de azúcar más pequeña es de 0.75 mm (lesmat, 2018), para evitar atascamiento se usará 0.25mm.

Código	FDE 089
Versión	03
Fecha	2015-01-27

D = Diámetro EXT + 0.25 mm

$$D = 100mm + 0.25 mm = 100.25 mm$$

$$S = 0.32 \times \frac{\pi \times (100.25 \times 10^{-3} \, m)^2}{4} = 2.53 \times 10^{-3} \, m^2$$

3.2.4 Velocidad de desplazamiento del tornillo sin fin

Las Fórmulas que van desde la 10 hasta la 16, fueron tomadas de: "Ingemecánica: Ingeniería, Consultoría y Formación" (Rodríguez, 2018).

$$V = \frac{p \times n}{60}$$
 Fórmula 10

$$V = \frac{150x10^{-3}m \times 90RPM}{60} = 0.23 \, m/s$$

Una vez calculada la velocidad de desplazamiento del tornillo sin fin, es posible determinar el flujo de material.

$Q = 3600 \times S \times v \times \rho \times i$	Fórmula 11
---	------------

- Q, flujo de material.
- S, Área de relleno del transportador.
- V, Velocidad de desplazamiento del transportador.
- ρ, densidad del material a transportar.
- I, inclinación del canalón.

Código	FDE 089
Versión	03
Fecha	2015-01-27

En la siguiente tabla se muestran los valores de este coeficiente (i) de disminución de flujo que indica la reducción de capacidad de transporte debida a la inclinación:

Inclinación del canalón	0°	5°	10°	15°	20°
i	1	0,9	0,8	0,7	0,6

Figura 23. Grado de inclinación del canalón.

[Fuente: https://goo.gl/niJi42]

El ángulo de inclinación del transportador será 0°, por tanto, el valor del coeficiente será de 1 según la Figura 23.

$$Q = 3600 \times 2.53 \times 10^{-3} m^2 \times 0.23 \times 0.9 \times 1 = 1.89 t/h$$

La densidad del azúcar en unidades tonelada métrica por metro cúbico (TM/M3).

Azúcar no refinada	0.88-1.04
Azúcar refinada	0.8-0.9

Tabla 18. Densidad del azúcar

[Fuente: https://goo.gl/se3nrw]

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.2.5 Potencia de accionamiento del motor

La potencia total de accionamiento del motor es la sumatoria de 3 potencias, por tanto, se calcula con la **Fórmula 12**:

$P = P_H + P_N + P_I$	Fórmula 12
-----------------------	------------

Donde:

P, es la potencia total.

 P_{H} , es la potencia necesaria para el desplazamiento horizontal.

 P_N , en la potencia necesaria para el accionamiento en vacío.

 $P_{\rm I}$, es la potencia necesaria en caso de que el tornillo esté inclinado.

De la Fórmula 12 data la extensión de cada potencia surgen tres fórmulas más (PH, PN, PI).

$Q \times L$	Fórmula 13
$P_H(kW) = c_0 \times \frac{\sqrt{K}}{367}$	

Donde:

Q, es el flujo de material transportado.

L, es la longitud del transportador.

 c_0 , es el coeficiente del material trasportado.

La longitud del transportador será de 2000mm.

Código	FDE 089
Versión	03
Fecha	2015-01-27

tabla adjunta obtenida empíricamente a partir del ensayo con materiales de distinta naturaleza:

Tipo de material	Valor de c ₀
Harina, serrín, productos granulosos	1,2
Turba, sosa, polvo de carbón	1,6
Antracita, carbón, sal de roca	2,5
Yeso, arcilla seca, tierra fina, cemento, cal, arena	4

Figura 24. Tabla de grado de inclinación del canalón.

[Fuente: https://goo.gl/niJi42]

El material es un producto granuloso por tanto c_0 es de 1.2.

Ahora para calcular P_{N}

$D \times L$	Fórmula 14
$P_N(kW) = \frac{2V + 2}{20}$	

Donde:

D, es el diámetro de sección del canalón.

L, es la longitud del transportador.

 $D = 100.25 \, mm$

Ahora para calcular $P_{\rm I}$

$P_{I}(kW) = \frac{Q \times H}{Q \times T}$	Fórmula 15
$P_I(RW) = \frac{1}{367}$	

Donde:

Código	FDE 089
Versión	03
Fecha	2015-01-27

Q, es el flujo de material transportado.

H, es la altura del transportador.

La altura de nuestro transbordador será de 1.5 m

Para hacer más fácil el cálculo se juntan las ecuaciones. Sacando factor común la ecuación queda de la siguiente manera:

$P(kW) = \frac{1}{2}$	$Q(c_0 \times L + H)$	$D \times L$	Fórmula 16
$F(\kappa W) = 0$	367	20	

Donde:

Q, es el flujo de material transportado.

L, es la longitud del transportador.

 c_0 , es el coeficiente del material trasportado

D, es el diámetro de sección del canalón.

H, es la altura del transportador.

La altura de nuestro transportador será de 1.5 m

 $D = 100.25 \ mm$

La longitud de nuestro transportador será de 2000 mm (2 m).

El material es un producto granuloso por tanto c_0 es de 1.2.

Código	FDE 089
Versión	03
Fecha	2015-01-27

$$P(kW) = \frac{1.89 (1.2 \times 2 + 1.5)}{367} + \frac{100.25 \times 10^{-3} \times 2}{20} = 0.0301$$

Por tanto, se requiere una potencia de 0,0403 Hp, dado esto se utilizará un motor de 1 Hp de potencia, para tomar en cuenta futuras aplicaciones y mejoras en el proceso.

3.3 Selección de la tolva

Existe una gran variedad de tolvas para usos variados y específicos, en la tabla siguiente se muestran sus diferentes características:

	VENTAJAS	DESVENTAJAS
Tolva con	Transporte de materiales granulados,	
dosificador de	buena potencia de transporte según	Aparatoso y grande,
tornillo sin fin	accionamiento, fácil de limpiar,	requiere de alguna
	ampliamente usado en industria de	fuente de energía para su
	alimentos, forma cónica para facilidad de	funcionamiento, precio
	deslizamiento de material, usado para	más alto.
	transportar alimentos.	
Tolva con	No requiere de energía para su	
dosificador por	funcionamiento, es económico	Bajo flujo de material
gravedad	Turicionalmento, es economico	
Tolva con		
dosificador de	Gran precisión a la hora de dosificar	Proceso lento.
tornillo y	alimento, usado en empacadoras.	Froceso lento.
balanza		
Tolva con	Ideal para dosificación de elementos	
dosificador	granulados, idóneo para empaquetado	Proceso rápido
volumétrico.	de granos.	

Tabla 19. Tipos de tolvas ventajas y desventajas.

[Fuente: https://goo.gl/8gjWZq]

Se deben tomar en cuenta algunos aspectos al momento de seleccionar una tolva, la garganta de alimentación debe tener un diámetro igual al diámetro nominal del husillo y un

Código	FDE 089
Versión	03
Fecha	2015-01-27

largo 1.5 ó 2 veces el diámetro nominal del tornillo, y la altura total de la tolva depende de la cantidad de material que se quiere almacenar. Las tolvas con dosificador de tornillos sin fin son ideales para transportar materiales granulados como el azúcar, por tal razón se utilizará este tipo de tolva.

3.4 Selección del motor para el accionamiento del tornillo sin fin

	VENTAJAS	DESVENTAJAS
Motor	Rotación continúa y uniforme, poco	
eléctrico	ruido, bajos niveles de	Dependencia de las centrales
	contaminación, compacto, fácil	eléctrica para suministro de energía
	mantenimiento.	
Motor a		Rotación no uniforme, genera ruido,
gasolina	Más económico en comparación	genera contaminación medio
	con los motores diésel	ambiental por el uso de
		combustibles fósiles.
Motor	Bajos niveles de contaminación en	Rotación no uniforme, genera ruido,
diésel	comparación del de gasolina.	difícil mantenimiento.
Motor a	Bajos costo de suministro	Rotación no uniforme,
vapor	_	contaminación por combustión de
	energético	carbón

Tabla 20. Tipos de motores ventajas y desventajas

[Fuente: https://goo.gl/tv9aRq]

Dado que se requiere un accionamiento compacto, eficiente, y amigable con el medio ambiente, se opta escoger un motor eléctrico, ya que ofrece una serie de ventajas que permiten un mejor control y fácil mantenimiento, así como también bajos niveles de contaminación, lo cual es muy importante a la hora de trabajar con alimentos.

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.5 Selección de la tubería

Los diferentes tipos de tubería deben ser seleccionados de acuerdo a la aplicabilidad que tendrá en el sistema que se desea diseñar, en la tabla siguiente se observa una comparación entre los tipos de tubería más comunes, enunciando sus respectivas ventajas y desventajas.

	VENTAJAS	DESVENTAJAS
Tubería PVC	Bajos costos, durabilidad	No acto para fluidos corrosivos
Tubería hierro	Es de uso doméstico y	Barrada a Marifa
galvanizado	económica	Presenta oxidación
Tubería hierro		No apto para alimentos, no son
fundido	Son económicas	aconsejables en climas y lugares
	Soft economicas	con alta concentración de
		humedad
Acero	De uso en industrias de	
inoxidable	alimento, fácil de limpiar, alta	Costos más altos
	durabilidad, y resistencia a la	COSTOS ITIAS AITOS
	oxidación	

Tabla 21. Tipos de tuberías ventajas y desventajas.

[Fuente: https://goo.gl/QAM3sw]

Para facilitar el transporte de la mezcla, y por su amplio uso en la industria alimenticia, así como también por su durabilidad, y fácil mantenimiento, se selecciona una tubería de 4 pulgadas en acero inoxidable.

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.6 Diseño de la estructura mecánica desde un software CAD

Se presentan a continuación la Figura 25 y la Figura 26, en las cuales se puede observar un dibujo del conjunto tolva, transportador de tornillo sin fin y banco de instalación, realizado desde el software de modelación CAD "SolidWorks Student Edition 2016".

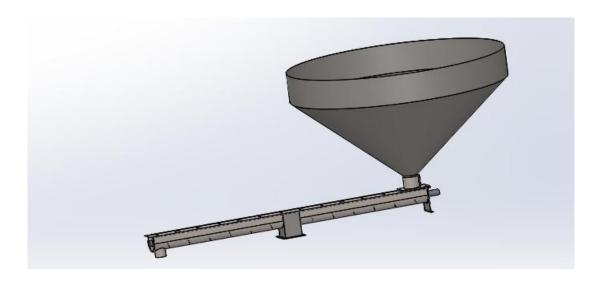


Figura 25. Vista general de la tolva y el transportador de tornillo sin fin [Fuente: Autores]

Código	FDE 089
Versión	03
Fecha	2015-01-27



Figura 26. Vista general de la tolva, transportador y plataforma

[Fuente: Autores]

Los planos para más detalle de los diferentes elementos mecánicos se encuentran en el **Apéndice B.**

3.6.1 Área de trabajo

Las dimensiones mínimas requeridas para ubicar la máquina diluidora de azúcar son de 4.5 m X 5.2 m y una altura de 3.5 m, pero para poder garantizar una fácil movilidad y un adecuado espacio trabajo, se definen unas dimensiones generales de 7m x 7m para un área total de 49 m^2 , y una altura de 5 m.

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.7 Selección del refractómetro para la medición del porcentaje de Brix

El proceso de selección del refractómetro que medirá el índice de refracción o grados de brix en el proceso de dilución del azúcar se realizó tomando en cuenta los siguientes criterios:

- Fácil instalación en el proceso
- Indicador visual para supervisión del proceso
- Configuración desde campo y remotamente
- Interfaz de salida analógica de intensidad de 4 a 20 mA

Tomando en cuenta los criterios mencionados, se selecciona entonces el refractómetro digital de referencia "UR24" (Figura 27), diseñado para una fácil instalación en línea (online), es decir, permite ser incorporado directamente en la tubería del proceso; cuenta en su panel frontal con una pantalla lcd retroiluminada y unas teclas de control que permiten monitorear y configurar, en tiempo real, la medición de la concentración de brix o del índice de refracción, a su vez cuenta con un puerto de comunicación serial RS485 y una interfaz de señal de salida analógica de intensidad de 0 a 20mA ó 4 a 20mA, aislada ópticamente de la fuente de energía, permitiendo una correcta comunicación con el PLC para el procesamiento de las mediciones realizadas por el instrumento.

Figura 27. Refractómetro digital "UR24" de proceso en línea (in-line)

[Fuente: http://www.maselli.com/en/product/ur24-inline-process-refractometer/]

Código	FDE 089
Versión	03
Fecha	2015-01-27

	Medición de concentración de líquido en líneas de	
Aplicación	proceso de alimentos, químicos, textiles, industrias	
	petroquímicas, etc. en plantas continuas o discontinuas.	
	Prisma en zafiro: 1.3170 1.5318 nD (0 95 Brix)	
	Prisma en Balf: 13305 1.4907 nD (0 80 Brix)	
Límites de medición	Prisma en Zafiro HR: 1.3812 1.5687 nD (30 100 Brix)	
Limites de medición	Prisma en corona: 1.3170 1.4201 nD (0 50 Brix)	
	Prisma en N-BK10: 1.3170 1.3725 nD (0 25 Brix)	
	Prisma en Sapphire LR: 1.3170 1.4030 nD (0 40 Brix)	
	Con referencia a las soluciones estándar de sacarosa:	
	Versión estándar de precisión: 0.5% del rango de escala;	
	precisión máxima ± 0.0002 nD (± 0.15 Brix).	
	Versión de alta precisión (HA): 0.3% del rango de escala;	
Precisión	precisión máxima ± 0.00007 nD (± 0.05 Brix)	
	Versión Super Accuracy (SA): 0.1% del rango de escala;	
	precisión ± 0.00003 nD (± 0.02 Brix) válida para	
	variaciones máximas de producto y / o temperatura	
	ambiente de ± 10 ° C (± 18 ° F)	
	"BRIX" o "USUARIO"; la escala "BRIX" se refiere a las	
Escalas de medición	tablas de conversión nD/Bx ICUMSA (1974); la escala	
	"USUARIO" puede configurarse al momento de la orden	
Tiempo de respuesta	1.8 segundos	
Temperatura del producto	-5°C + 105 ° C con compensación automática de	
durante la medición	temperatura medida por una Pt100. Versión especial	
durante la medición	para temperaturas de hasta 140 ° C	
Temperatura máxima	125 ° C (257 ° F) x 30 min o 145 ° C (293 ° F) x 30 min para	
durante la desinfección	la versión "LP"	
Tiempo de respuesta a	2 '/ 10 ° C (18 ° F).	
variaciones de temperatura		
	max. 10 bar (145 psi) a 20 ° C (68 ° F)	
Presión de línea relativa	max. 8 bar (116 psi) a 100 ° C (212 ° F)	
	Configuración especial para presiones de hasta 25 bar	
	(362 psi) a 100 ° C (212 ° F)	

Tabla 22. Ficha técnica del refractómetro seleccionado

[Fuente: http://www.maselli.com/en/product/ur24-inline-process-refractometer/]

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.7.1 Selección del intercambiador de calor

Para facilitar el proceso de selección del intercambiador de calor, se utilizó el software Cas 200, el cual es proporcionado por la empresa Alfa Laval, líder en fabricación de intercambiadores de calor.

En primera instancia se debe abrir el programa, para ello se busca en la bandeja de inicio del computador y se hace click sobre este para su ejecucion (ver Figura 28).

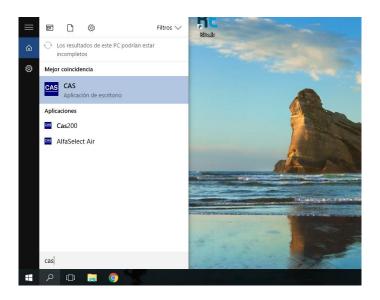


Figura 28. Paso 1 – Ejecución del software Cas 200

[Fuente: Autores]

Una vez se ejecuta el software, se debe hacer click sobre el icono de las flechas opuestas (ver Figura 29).

Código	FDE 089
Versión	03
Fecha	2015-01-27

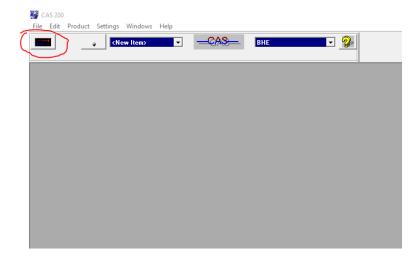


Figura 29. Paso 2 – Ejecución del software Cas 200 [Fuente: Autores]

Se abre una sub-ventana con una interfaz similar a la que se observa en la Figura 30.

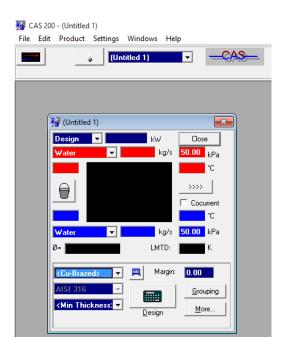


Figura 30. Paso 3 – Ejecución del software Cas 200

Código	FDE 089
Versión	03
Fecha	2015-01-27

En la Figura 31 se observa que esta interfaz tiene dos formularios coloreados de rojo y azul, el azul muestra el líquido frio y el rojo el líquido caliente. Para el caso del intercambiador de calor a usar, el líquido a utilizar en ambos casos será agua, pon tanto se selecciona "Water" para ambos, tal como se observa en la Figura 31.

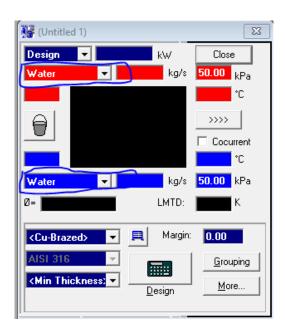


Figura 31. Paso 4 – Ejecución del software Cas 200

[Fuente: Autores]

En los recuadros señalados en la Figura 32, se ingresan los datos de temperatura y presión para el fluido caliente; estos datos deben ajustarse a las unidades solicitadas por el software.

Código	FDE 089
Versión	03
Fecha	2015-01-27

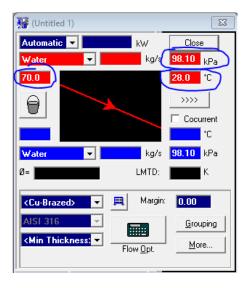


Figura 32. Paso 5 – Ejecución del software Cas 200

[Fuente: Autores]

En el recuadro azul subrayado de la Figura 33, se ingresa el valor de caudal del fluido frio, en unidades de Kg/s, y el software automáticamente rellenara los datos restantes, ajustándose al cálculo del intercambiador de calor. Por último, se debe presionar el botón Desing.

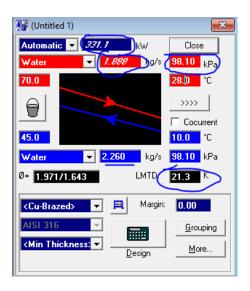


Figura 33. Paso 6 – Ejecución del software Cas 200

Código	FDE 089
Versión	03
Fecha	2015-01-27

En este punto, se obtiene el número de placas requeridas para la selección del intercambiador de calor, que para este caso será de 110 placas, tal como se observa en la Figura 34.

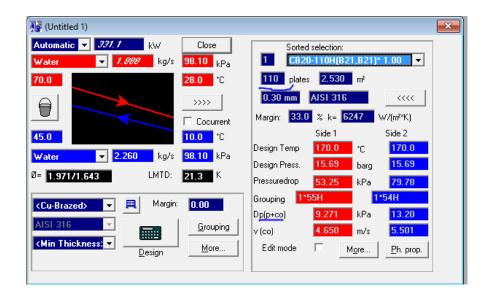


Figura 34. Paso 7 – Ejecución del software Cas 200

[Fuente: Autores]

Existen diferentes tipos de intercambiadores de calor los cuales presentan ventajas y desventajas que varían de acuerdo con el presupuesto, eficiencia, área de trabajo, etc. Para la selección del intercambiador de calor, será necesario observar en la tabla siguiente, cual es el más adecuado para este proyecto.

Código	FDE 089
Versión	03
Fecha	2015-01-27

Los intercambiadores se clasifican en 5 tipos:

- 1. Doble tubo.
- 2. Tubos y corazas.
- 3. Flujo cruzado.
- 4. Compacto.
- 5. Placas.

TIPOS	DOBLE TUBO	TUBOS Y	FLUJO	СОМРАСТ	PLACAS
		CORAZAS	CRUZADO	0	
VENTAJAS	Fácil	Son eficientes	Hay mayor	Reducido	Facilidad de
	mantenimient	debido a la alta	transferencia	tamaño,	desarmado
	o, Facilidad de	turbulencia,	de calor, baja	compacto.	para
	control y	Altas	incrustación y		limpieza,
	Económico en	temperaturas,	diferenciales		utilizado
	construcción.	sin sellos y	de		fundamental
		Altas presiones.	temperatura		mente en la
			pequeños.		industria de
					alimentos.
DESVENTAJ	Muchas fugas	Elevado factor	Bajas	Útiles en	No puede
AS	у роса	de	presiones,	dispositivo	trabajar
	transferencia	ensuciamiento,	sellos o juntas	S	presiones
	de calor.	equipos muy	y difícil	pequeños,	superiores a
		grandes y	mantenimient	baja	300 psia y no
		pesados y baja.	0.	transferen	se puede
		transferencia		cia de	trabajar a
		de calor		calor	temperatura
					s superiores
					a 149°C.

Tabla 23. Tabla de ventajas y desventajas de los tipos de intercambiadores de calor.

[Fuente: https://goo.gl/nGWKmM]

Código	FDE 089
Versión	03
Fecha	2015-01-27

Por su amplio uso en la industria de alimentos, facilidad de limpieza, tamaño y rangos de operación los intercambiadores de placas son de uso frecuente en fluidos de baja viscosidad, su temperatura está por debajo de los 150°C, por tal razón se selecciona este tipo de intercambiador, ya que la temperatura que se requiere mantener en el fluido es de 70°C, por tal motivo es suficiente para esta aplicación.

3.8 Descripción del sistema de control automático y manual de la máquina para diluir azúcar

En esta sección se describen todos los procesos involucrados tanto en el sistema de control automático, como en el sistema de control manual accionado por el operario de la máquina para diluir azúcar. Se indican, además, las condiciones iniciales del proceso, que rigen el comportamiento del sistema de control implementado en el PLC, incluyendo las condiciones de parada por final de ciclo de trabajo, así como también las condiciones de parada de emergencia. Por cada descripción realizada del proceso, se adjunta una representación gráfica del sistema de control implementado, utilizando para ello el uso de "Redes de Petri", que son parte fundamental de la programación desarrollada en el PLC.

Antes de comenzar a describir el proceso de funcionamiento de la máquina para diluir azúcar, se presentan las tablas de variables de entrada y salida y las marcas digitales utilizadas en la programación del PLC; a su vez, se brinda una descripción general de los elementos que conforman la Red de Petri implementada en la programación del PLC, con el fin de facilitar el entendimiento de la descripción de dicho proceso.

Código	FDE 089	
Versión	03	
Fecha	2015-01-27	

3.8.1 Tablas de variables de entrada, salida y marcas digitales utilizadas en la programación del PLC

ENTRADAS				
SÍMBOLO	NOMBRE	DIRECCIÓN	TIPO DE DATOS	DESCRIPCIÓN
S_low	Sensor-Low Tanque de Agua	DB1.DBX 0.0	Bool	Sensor que detecta si hay un nivel bajo de agua en el tanque de agua cuando se desactiva "0"
S_high	Sensor-High Tanque de Agua	DB1.DBX 0.1	Bool	Sensor que detecta si hay un nivel alto de agua en el tanque de agua cuando se activa "1"
S_tolva	Sensor de azúcar tolva	DB1.DBX 0.2	Bool	Sensor que detecta si hay azúcar en la tolva cuando se activa "1"
Start	Pulsador de Inicio	DB1.DBX 0.3	Bool	Pulsador que da inicio al proceso cuando se activa "1"
Stop	Pulsador de Paro	DB1.DBX 0.4	Bool	Pulsador que al activarse "1" detiene el proceso después de finalizar un ciclo completo de vaciado
EStop_NC	Paro de emergencia	DB1.DBX 0.5	Bool	Pulsador de paro de emergencia de configuración normalmente cerrado. Este detiene el proceso inmediatamente cuando se desactiva "0"
Reset	Reset	DB1.DBX 0.6	Bool	Pulsador que resetea las alarmas que se presenten en el sistema cuando se activa "1"
S_mezc	Sensor de mezcla	DB1.DBW 2	Int	Sensor Analógico que mide el porcentaje de mezcla que hay en el tanque mezclador
S_brix	Sensor de brix	DB1.DBW 4	Int	Sensor analógico que mide el grado de brix que hay en el filtro de mezcla

Código	FDE 089
Versión	03
Fecha	2015-01-27

S_pre	Sensor de presión- tanque pulmón	DB1.DBW	Int	Sensor analógico que mide el valor de presión que hay en el tanque pulmón
-------	---	---------	-----	---

Tabla 24. Tabla de variables de entrada utilizadas en la programación del PLC [Fuente: Autores]

	SALIDAS				
SÍMBOLO	NOMBRE	DIRECCIÓN	TIPO DE DATOS	DESCRIPCIÓN	
V_TOLV	Válvula de la tolva	DB1.DBX 8.0	Bool	Válvula ubicada a la salida de la tolva. Permite el ingreso de azúcar hacia el tornillo sin fin cuando se activa "1"	
V_AZ	Válvula de paso de azúcar	DB1.DBX 8.1	Bool	Válvula ubicada a la salida del tornillo sin fin. Permite el ingreso de azúcar hacia la tubería de la mezcla cuando se activa "1"	
V_COMP	Válvula del compresor	DB1.DBX 8.2	Bool	Válvula ubicada a la salida del compresor de aire. Permite el ingreso de aire comprimido al proceso cuando se activa "1"	
V_R1	Válvula de recirculación 1	DB1.DBX 8.3	Bool	Válvula ubicada a la salida del filtro. Permite la recirculación de la mezcla cuando se activa "1"	
V_R2	Válvula de recirculación 2	DB1.DBX 8.4	Bool	Válvula ubicada en la tubería acoplada al tanque de mezcla. Permite la recirculación de la mezcla cuando se activa "1"	
V_R3	Válvula de recirculación 3	DB1.DBX 8.5	Bool	Válvula ubicada después del acople en T de la tubería conectada al tanque de mezcla. Cuando se activa "1" permite la salida del flujo de la mezcla sin	

Código	FDE 089
Versión	03
Fecha	2015-01-27

				pasar por el tanque de mezcla, en
				caso de ser requerido
V_AC	Válvula ingreso de agua caliente	DB1.DBX 8.6	Bool	Válvula ubicada a la salida del intercambiador de calor. Permite el ingreso de agua hacia el tanque mezclador cuando se activa "1"
V_AF	Válvula ingreso de agua fría	DB1.DBX 8.7	Bool	Válvula ubicada a la entrada del tanque de agua. Permite el ingreso de agua hacia el tanque de agua cuando se activa "1"
V_V1	Válvula de vapor 1	DB1.DBX 9.0	Bool	Válvula ubicada a la entrada del serpentín del intercambiador de calor. Permite el ingreso de vapor caliente al serpentín cuando se activa "1"
V_V2	Válvula de vapor 2	DB1.DBX 9.1	Bool	Válvula ubicada a la entrada del serpentín del intercambiador de calor. Permite el ingreso de vapor caliente al serpentín cuando se activa "1"
V_E1	Válvula de envío 1	DB1.DBX 9.2	Bool	Válvula ubicada a la entrada del motor de envío. Permite que la mezcla ingrese al motor de vaciado cuando se activa "1"
V_E2	Válvula de envío 2	DB1.DBX 9.3	Bool	Válvula ubicada a la salida del motor de envío. Permite el proceso de vaciado de la mezcla cuando se activa "1"
M_REC	Motor de recirculación Mezcla	DB1.DBX 9.4	Bool	Motor que, al accionarse "1", permite la recirculación de la mezcla en la tubería
M_AG	Motor de ingreso de agua	DB1.DBX 9.5	Bool	Motor que, al accionarse "1", bombea el agua hacia el intercambiador de calor

Código	FDE 089
Versión	03
Fecha	2015-01-27

M_TOR	Motor del tornillo sin fin	DB1.DBX 9.6	Bool	Motor que, al accionarse "1", inicia la rotación del tornillo sin fin para ingresar el azúcar al proceso
M_VAC	Motor de Vaciado Mezcla	DB1.DBX 9.7	Bool	Motor que, al accionarse "1", inicia el proceso de vaciado de la mezcla
P_ALRM	Piloto de Alarma	DB1.DBX 10.0	Bool	Piloto que se activa "1" cuando hay una falla o alarma en el proceso
P_OK	Piloto de proceso en ejecución	DB1.DBX 10.1	Bool	Piloto que se activa "1" cuando el proceso se ejecuta correctamente

Tabla 25. Tabla de variables de salida utilizadas en la programación del PLC

[Fuente: Autores]

	MARCAS				
SÍMBOLO	NOMBRE	DIRECCIÓN	TIPO DE DATOS	DESCRIPCIÓN	
F_TDA	Falla-Falta de agua en tanque de agua	DB1.DBX 10.2	Bool	Falla que indica que al Tanque de Agua no le está ingresando agua. Esta falla se presenta, si al abrirse la válvula de agua fría(V_AF), pasa un tiempo determinado y no se activa el sensor low del tanque (S_low)	
F_TP	Falla-Falta de aire en tanque pulmón	DB1.DBX 10.3	Bool	Falla que indica que falta aire comprimido en el sistema. Esta falla se presenta cuando la presión detectada por ("S_pre") es inferior a 70 psi	
F_TM	Falla-Posible derrame en	DB1.DBX 10.4	Bool	Falla que indica un posible derrame de mezcla en tanque mezclador. Esta se	

Código	FDE 089
Versión	03
Fecha	2015-01-27

	1	I		
	tanque			presenta cuando en sensor
	mezclador			de mezcla ("S_mezc")
				detecta un valor mayor al
				95%
				Falla que indica falta de
	Falla-Falta	DB1.DBX		azúcar en la tolva. Se
F TOLV	de azúcar en		Bool	presenta cuando el sensor
1_1024	la tolva	10.5	2001	("S_tolva") no detecta
	la torva			material pasados 5min de
				haber iniciado el proceso
	Falla-Brix			Falla que indica que el
		DB1.DBX		porcentaje de Brix en el filtro
F_FM	superior en	10.6	Bool	de mezcla es superior al
	Filtro de	10.6		rango permitido, es
	Mezcla			detectado por ("S_brix").
	Falla-Paro	DB1.DBX		Marca que indica que se
F_ESTOP	Emergencia	10.7	Bool	activó el paro de emergencia
	Lillergencia	10.7		
	Alarma-			Alarma que indica nivel alto
	Nivel Alto en	DB1.DBX		en la mezcla. Se presenta
A_TM	Tanque	11.0	Bool	cuando el sensor
	Mezclador	11.0		("S_mezcla") detecta un
	IVIEZCIAGOI			valor mayor al 70%
	Falla en el	DB1.DBX		Marca que se activa cuando
FALLA		11.1	Bool	se presenta alguna falla en el
	proceso	11.1		sistema
				Marca que indica que falta
CICLO FINIAL	1 Ciclo para	DB1.DBX	Dool	solo 1 ciclo para finalizar el
CICLO_FINAL	finalizar	11.2	Bool	proceso. Esta se Activa al
				presionar el Stop
		DB1.DBX		Marca que, al activarse,
DESHABIL_	Deshabilitar		Bool	deshabilita el pulsador de
START	pulsador Start	11.3		start por seguridad
	Iniciar	DB1.DBX		Marca que habilita el control
INICIA PID	Control		Bool	automático para llegar al
_	Automático	11.4		valor de ºbrix deseado

Código	FDE 089
Versión	03
Fecha	2015-01-27

PID_ AumentarBrix	Aumentar Brix	DB1.DBX 11.5	Bool	Al activarse, Activa los actuadores necesarios para permitir el ingreso de azúcar y así aumentar el nivel de Brix
PID_ ReducirBrix	Reducir Brix	DB1.DBX 11.6	Bool	Al activarse, Activa los actuadores necesarios para permitir el ingreso de agua al tanque y así reducir el nivel de Brix
SP_BRIX	Ingrese Set Point de Brix	DB1.DBW 12	Int	Marca que almacena el valor de brix deseado para el proceso en porcentaje
LIM_INF_BRIX	Limite inferior de Brix	DB1.DBW 14	Int	Marca que almacena el límite inferior de brix. Corresponde a un valor de "SP_BRIX" - 2
LIM_SUP_BRIX	Limite superior de Brix	DB1.DBW 16	Int	Marca que almacena el límite superior de brix. Corresponde a un valor de "SP_BRIX" + 2
MEZC_1UND	Porcentaje de Mezcla + 1 unidad	DB1.DBW 18	Int	Marca que almacena el porcentaje de mezcla + 1% ("S_mezcl" + 1), para ingresar más agua caliente en tanque mezclador
F_inicio_S_low	Falla-Falta agua en tanque de agua	DB1.DBX 0.7	Bool	Falla de inicio de proceso al presionar el botón de "Start"
F_inicio_S_tolva	Falla-Falta azúcar en la tolva	DB1.DBX 1.0	Bool	Falla de inicio de proceso al presionar el botón de "Start"
F_inicio_SP_BRIX	Falla-Falta ingresar	DB1.DBX 1.1	Bool	Falla de inicio de proceso al presionar el botón de "Start"

Código	FDE 089
Versión	03
Fecha	2015-01-27

	SetPoint de BRIX			
MODO_JOG	Modo JOG	DB1.DBX 36.0	Bool	Variable que habilita el MODO JOG para controlar todos los actuadores de forma manual

Tabla 26. Tabla de marcas digitales utilizadas en la programación del PLC

[Fuente: Autores]

3.8.2 Descripción de la Red de Petri implementada en la programación del PLC

Para realizar correctamente la programación del PLC, se debe seguir un algoritmo básico de programación que permita añadir, corregir y modificar líneas de código de forma organizada y estructurada. Para el caso de los PLC, es muy común implementar Redes de Petri, ya que éstas permiten visualizar de manera lógica y amigable la estructura y la organización del programa lógico desarrollado para regir un proceso industrial. Las ventajas de utilizar una Red de Petri residen en el hecho de que cualquier persona que tenga conocimientos técnicos de lectura y elaboración de Redes de Petri, estará en condiciones de poder analizar el funcionamiento de todo el proceso y además podrá identificar puntos claves de la programación, brindando la posibilidad de realizar modificaciones al programa desarrollado, en caso de ser pertinentes, situación contraria que se presentaría si no se implementará este tipo de algoritmo.

Una vez destacada la importancia que tiene la implementación de una Red de Petri en la programación de un autómata, se iniciará a describir los vectores de salidas que conforman la Red de Petri desarrollada para programar el PLC.

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.8.2.1 Vector de salidas de la Red de Petri implementada en la programación del PLC

Dado que el vector de salidas implementado en la Red de Petri es muy extenso, se presenta la Tabla 27, en la cual se indica el número del paréntesis al que corresponde cada variable de salida del vector, y por último se brindará la representación final de dicho vector.

VECTOR DE SALIDAS		
Nº paréntesis	Salidas	
1	(V_TOLV, V_AZ, V_COMP)	
2	(V_R1, V_R2, V_R3)	
3	(V_AC, V_AF)	
4	(V_V1, V_V2, V_E1, V_E2)	
5	(M_REC, M_AG, M_TOR, M_VAC)	
6	(P_ALRM, P_OK)	
7	(F_TDA, F_TP, F_TM, F_TOLV, F_FM, F_ESTOP)	

Tabla 27. Vector de salidas de la Red de Petri implementada en la programación del PLC

Representación simbólica del Vector de Salidas de la Red de Petri:

(V_TOLV, V_AZ, V_COMP) (V_R1, V_R2, V_R3) (V_AC, V_AF) (V_V1, V_V2, V_E1, V_E2) (M_REC, M_AG, M_TOR, M_VAC) (P_ALRM, P_OK) (F_TDA, F_TP, F_TM, F_TOLV, F_FM, F_ESTOP)

Representación del Vector de Salidas de la Red de Petri con todas las variables desactivadas (0):

(0,0,0) (0,0,0) (0,0) (0,0,0,0) (0,0,0,0) (0,0) (0,0,0,0,0)

3.8.2.2 Descripción de estados simbolizados con letras en la Red de Petri

Para facilitar la estructura y la lectura de la Red de Petri desarrollada, se implementaron el uso de 2 estados simbolizados con las letras "A" y "B", tal como se describe a continuación:

- Como existen bastantes transiciones que se habilitan con el estado [A], a este se le asignó la marca "M2.0" para indicar su activación en la programación del PLC, tal como se observa en Figura 35.

Código	FDE 089
Versión	03
Fecha	2015-01-27

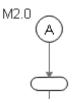


Figura 35. Representación simbólica del Estado "A" (Red de Petri)

[Fuente: Autores]

- Las transiciones que se puedan habilitar tanto con el estado [A] como con el [B], serán consideradas transiciones globales (Figura 36) y, por tal razón, no requerirán de la activación previa de una marca (para el caso del estado [A] no será necesario anteponer la marca "M2.0" para la activación de dicha transición) para estar disponibles en el programa del PLC; esto se debe a que son transiciones que tienen una alta prioridad en el programa, como lo es el caso de la activación del paro de emergencia, el cual se encuentra asignado a una transición global para que permanezca disponible en todo momento de la ejecución del programa.

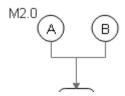


Figura 36. Representación simbólica de una "transición global" (Estado "A" + Estado "B") (Red de Petri)

[Fuente: Autores]

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.8.2.3 Esquema gráfico de la Red de Petri implementada en la programación del PLC

A continuación, se presenta la Red de Petri implementada en la programación del PLC, la cual se divide en 2 partes para su presentación:

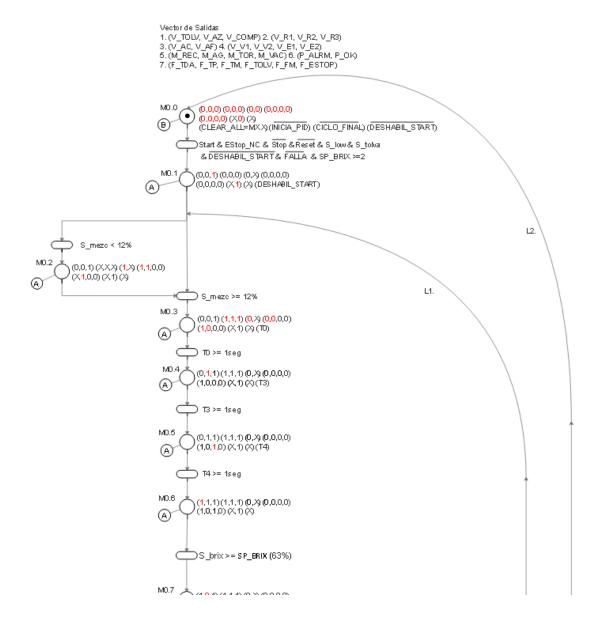


Figura 37. Parte 1 - Red de Petri implementada en la programación del PLC

[Fuente: Autores]

Código	FDE 089
Versión	03
Fecha	2015-01-27

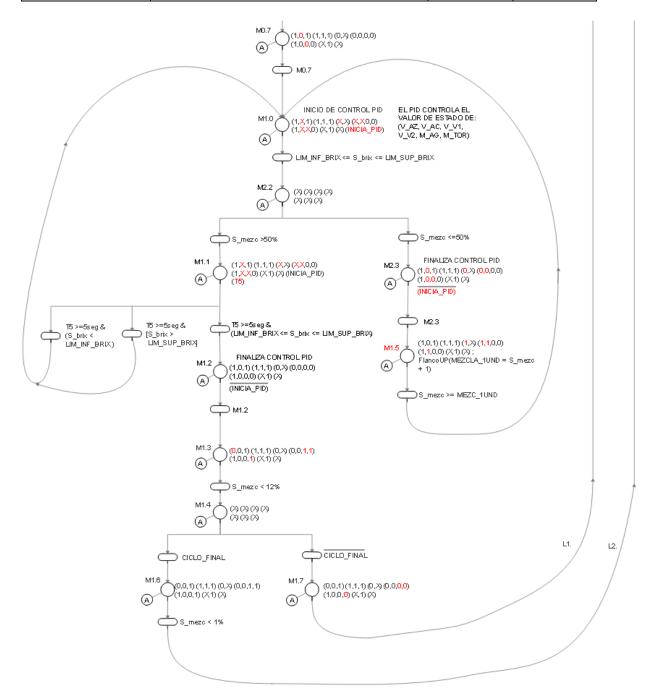


Figura 38. Parte 2 - Red de Petri implementada en la programación del PLC [Fuente: Autores]

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.8.3 Descripción del proceso de funcionamiento de la máquina para diluir azúcar

Dado que la Red de Petri se construyó a partir de las descripciones brindadas en esta sección, así como también de las condiciones iniciales del proceso, es importante remitirse al apartado de condiciones iniciales del proceso, cada que se visualice una variable en la Red de Petri, y de la cual no se haga mención en esta sección de descripción del proceso, además, se hace la observación de que cada que se visualice un valor de estado ("0" ó "1") de color rojo en la Red de Petri, indica que la variable a la que corresponde el estado tuvo una variación con respecto a un estado anterior del proceso (ej. Un piloto que en un estado anterior estaba apagado "0", y en el estado siguiente se encendió "1"), esto se realiza para facilitar la visualización del cambio de estado de dichas variables. Como observación final, se advierte que cada que se visualice un valor de estado simbolizado con la letra "(X)", sea para una variable individual, como para todo el conjunto de variables de un paréntesis, este indicará que en ese estado no se ejecutará ningún cambio a la variable o variables correspondientes (ej. Un piloto que en un estado anterior estaba encendido "1", si en el próximo estado se le asigno la letra "(X)", permanecerá como se encontraba en el estado anterior, es decir, permanecerá encendido "1").

3.8.3.1 Parte 1: Inicio del proceso de control automático

Al inicio del proceso, el PLC inicializa el sistema con todos los actuadores de campo desactivados (tal como se ve en la marca "M0.0", de la Figura 39), esto quiere decir que para el caso de todas las válvulas implementadas en el proceso que son de tipo "mariposa con actuador neumático de simple efecto y configuración NC", iniciarán cerradas, restringiendo el paso de flujo volumétrico hacia las tuberías que interconectan los diferentes procesos; a su vez, los 4 motores (de recirculación mezcla, de ingreso de agua, de tornillo sin fin, y de vaciado de mezcla) iniciarán desactivados.

Código	FDE 089
Versión	03
Fecha	2015-01-27

Vector de Salidas

- 1. (V TOLV, V AZ, V COMP) 2. (V R1, V R2, V R3)
- (V_AC, V_AF) 4. (V_V1, V_V2, V_E1, V_E2)
- 5. (M_REC, M_AG, M_TOR, M_VAC) 6. (P_ALRM, P_OK)
- 7. (F_TDA, F_TP, F_TM, F_TOLV, F_FM, F_ESTOP)

Figura 39. inicialización del proceso (Red de Petri)

[Fuente: Autores]

El sistema de control automático se inicia cuando el operario realiza la activación manual del pulsador de "Start" (Figura 40), con lo cual se activa la válvula del compresor ("V_COMP") para que alimente todas las válvulas electroneumáticas del sistema. Este inicio se ejecutará, siempre y cuando se cumpla todo el apartado de condiciones iniciales del proceso que se enumeran más adelante.

Si el "Tanque Mezclador" no tiene agua para recircular la mezcla, o tiene un porcentaje inferior al 12% (el cual se mide con el sensor de mezcla ("s_mezc") tal como se observa en la Figura 40), se abrirá la válvula de entrada de agua caliente ("V_AC"), y a su vez, la válvula de vapor 1 ("V_v1") y la válvula de vapor 2 ("V_v2") y se prenderá el motor de envío de agua ("M AG")(ver la marca "M0.2" de la Figura 40).

Código	FDE 089
Versión	03
Fecha	2015-01-27

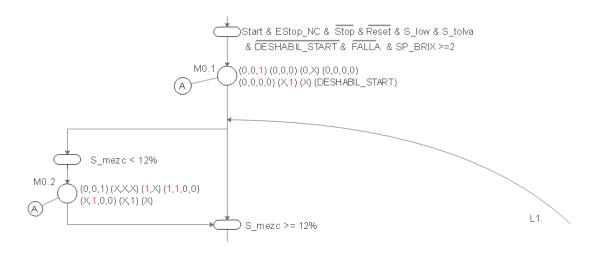


Figura 40. Activación del proceso con el pulsador de "Start" (Red de Petri)

[Fuente: Autores]

Cuando el Tanque Mezclador contenga un 12% de agua, se activarán las válvulas de recirculación 1 ("V_R1"), 2 ("V_R2"), 3 ("V_R3") y se encenderá el motor de recirculación ("M_REC"); como se necesita que aumente la concentración de azúcar en el agua, se desactiva el motor del agua ("M_AG"), y a su vez, la válvula de entrada de agua caliente ("V_AC"), junto con las válvulas de vapor 1 ("V_V1") y 2 ("V_V2"); todo este procedimiento puede observarse en la marca "M0.3" de la Figura 41.

Una vez desactivados los elementos anteriores, se ejecutará un temporizador ("TO") de 1 segundo, y pasado este tiempo, se activa la válvula de paso de azúcar ("V_AZ")(ver "M0.4" de la Figura 41), luego se ejecuta un temporizador ("T3") de 1 s, para después activar el motor del tornillo sin fin ("M_TOR") (ver "M0.5" de la Figura 41), y luego, después de ejecutarse otro periodo de tiempo ("T4") de 1 s, se activa la válvula de la tolva ("V_TOLVA") (ver "M0.6" de la Figura 41).

Código	FDE 089
Versión	03
Fecha	2015-01-27

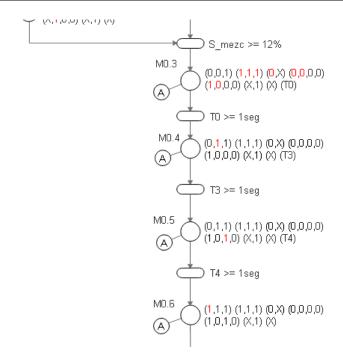


Figura 41. Nivel en el tanque mezclador >= 12% y activación de las válvulas de recirculación (Red de Petri)

[Fuente: Autores]

Ahora, el sistema de control automático llevará el valor de brix (concentración de azúcar en el agua), hasta el valor ingresado en el SetPoint de Brix ("SP_BRIX"), que debe ser inferior al 68% (Condición del proceso Nº10. si el valor de brix es superior al 68%, se activa una alarma que indica falla por brix superior en el filtro de mezcla ("F_FM") y se detiene el proceso). El filtro de mezcla cuenta con un refractómetro digital de referencia "UR24", que percibe el grado de brix ("S_brix"), éste detectará cuando la mezcla tenga como características un grado de brix mayor o igual al ingresado en el SetPoint de Brix ("SP_BRIX"), que debe ser del 63%. Una vez alcanzado dicho valor de brix, se desactiva el motor del tornillo sin fin ("M_TOR") y la válvula de azúcar ("V_AZ"), para que ya no ingrese más azúcar a la mezcla. Este procedimiento se puede observar en la marca "M0.7" de la Figura 42.

Código	FDE 089
Versión	03
Fecha	2015-01-27

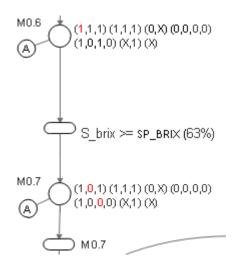


Figura 42. Control automático para ajustar el grado de brix al valor ingresado en el Set

Point (Red de Petri)

[Fuente: Autores]

3.8.3.2 Parte 2: Inicio del control automático que regula el valor de grado brix

A partir de este punto, se iniciará un control automático con la activación de la variable "Iniciar control automático" ("INICIA_PID") la cual se activa en la marca "M1.0" tal como se observa en la Figura 43. Este control automático tendrá como objetivo mantener el valor de grado brix dentro de un rango establecido por los límites inferior ("LIM_INF_BRIX") y superior ("LIM_SUP_BRIX") de brix. Se controlará la activación y desactivación de los actuadores mencionados a continuación, para que haya un aumento o disminución en el valor de grado brix:

- 1. Para que se presente un aumento del grado brix, el control automático realizará lo siguiente:
- Activará: el motor del tornillo sin fin ("M_TOR"), y la válvula de paso de azúcar
 ("V_AZ") para que ingrese más azúcar a la mezcla y aumente el grado brix.
- Desactivará: el motor de la bomba de ingreso de agua al tanque ("M_AG"), y la válvula de entrada de agua caliente ("V_AC"), para que no ingrese agua a la mezcla, y de esta forma no disminuya el grado brix.

Código	FDE 089
Versión	03
Fecha	2015-01-27

- 2. Para que se presente una disminución del grado brix, el control automático realizará lo siguiente:
- Activará: El motor de la bomba de ingreso de agua al tanque ("M_AG"), la válvula de ingreso de agua caliente ("V_AC"), y las 2 válvulas de ingreso de vapor al intercambiador de calor ("V_V1") ("V_V2"). Con esto se logra obtener una disminución en el grado brix. Ya que al ingresar más agua a la mezcla se reduce la concentración de azúcar.
- **Desactivará:** El motor del tornillo sin fin ("M_TOR"), y la válvula de paso de azúcar ("V AZ") para que no ingrese más azúcar a la mezcla, y no aumente el grado brix.

Una vez se cumpla el objetivo del control automático de mantener el grado brix dentro de los límites inferior ("LIM_INF_BRIX") y superior ("LIM_SUP_BRIX"), el proceso continuará en la marca "M2.2" (Figura 43). En este punto no se realizará ningún cambio al estado de las variables del proceso, pero si se analizará si el nivel del tanque mezclador es menor o igual al 50%; si es así, se activa la marca "M2.3" (Figura 43), con lo cual se deshabilita el funcionamiento del control que regula el valor de grado brix, para después activar la marca "M1.5", con la cual se activarán los actuadores que habilitan el ingreso de agua caliente a la mezcla. Esta operación de ingreso de agua al tanque se realizará hasta que el porcentaje o nivel en el tanque mezclador, aumente en un 1%, después de esto se activará la marca "M1.0" para repetir nuevamente todo el proceso anterior que inicia a partir de la activación del control que regula el valor de grado brix, y todo este ciclo continuará repitiéndose, hasta que al llegar al punto donde se analiza el nivel en el tanque mezclador, este contenga un valor de porcentaje mayor al 50%.

Cuando el nivel en el tanque mezclador sea superior al 50% (Condición del proceso Nº11. si el porcentaje de mezcla es superior al 70%, se activa una alarma por nivel alto en la mezcla ("A_TM"), pero no se detiene el proceso), se activará la marca "M1.1" (Figura 43), con la cual se activa un temporizador (T5) por un tiempo de 5 segundos, pasado este tiempo, se verifica nuevamente si el grado de brix se encuentra dentro del rango establecido por el

Código	FDE 089
Versión	03
Fecha	2015-01-27

límite de inferior ("LIM_INF_BRIX") y superior ("LIM_SUP_BRIX") de brix (esta verificación se realiza para tomar en cuenta posibles fluctuaciones y perturbaciones en el sistema). Si el grado de brix se encuentra fuera del rango, entonces se activará la marca "M1.0" y se ejecutará nuevamente todo el proceso anterior que inicia con el control automático para regular el valor de grado brix.

Si el valor de grado brix se encuentra dentro del rango establecido por ("LIM_INF_BRIX") y ("LIM_SUP_BRIX"), se activará entonces la marca "M1.2", con lo cual se detendrá la ejecución del control que regula el valor de grado brix, para así poder iniciar el proceso de vaciado de la mezcla en la siguiente etapa con la activación de la marca "M1.3".

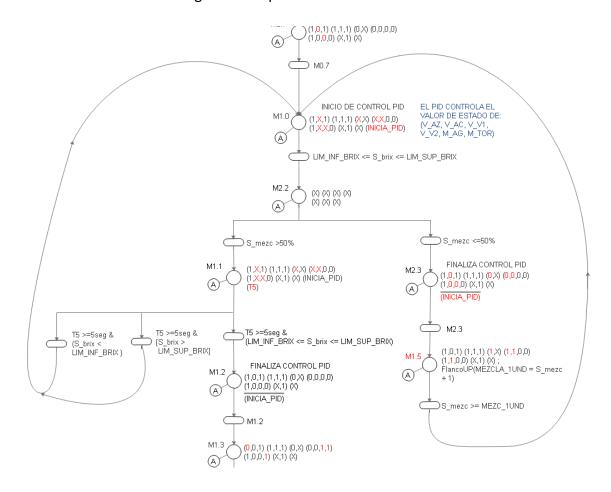


Figura 43. Inicio del control automático para regular el valor de grado brix (Red de Petri)

[Fuente: Autores]

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.8.3.3 Parte 3: Inicio del proceso de vaciado de la mezcla contenida en el tanque mezclador

El proceso de vaciado de la mezcla que se encuentra en el tanque mezclador, iniciará cuando se active la marca "M1.3" (ver Figura 44), en este punto se activarán las válvulas de envío 1 ("V_E1") y 2 ("V_E2"), y se activará el motor de vaciado de mezcla ("M_VAC"). Durante este proceso permanecerán abiertas las 3 válvulas de recirculación, y activado el motor de recirculación. El proceso de vaciado se ejecuta hasta que el porcentaje de mezcla en el tanque mezclador sea inferior al 12%,

Cuando el porcentaje de mezcla sea inferior al 12%, se activará la marca "M1.4" (ver Figura 44), y en este punto se analizará si la variable llamada "1 Ciclo para finalizar" ("CICLO_FINAL"), se encuentra activa o desactiva (Condición del proceso Nº12. Si se presiona el pulsador de "Stop", se activará la variable "1 Ciclo para finalizar" ("CICLO FINAL"), para que solo se ejecute un ciclo completo del proceso).

Si dicha variable se encuentra activa, significa que se desea que el proceso de control finalice (tal como se describe en la sección siguiente "Parte 4: Finalización del proceso de control automático"), si por el contrario se encuentra desactiva, significa que se desea que el proceso continúe ejecutándose de forma cíclica, por tal razón, se activará entonces la marca "M1.7" (ver Figura 44), con lo cual se desactivarán el motor de vaciado de la mezcla ("M_VAC") y las válvulas de envío 1 ("V_E1") y 2 ("V_E2"), y el sistema volverá a iniciar desde las transiciones siguientes a la marca "M0.1" (ver Figura 45), con lo cual el sistema retornará hacia el proceso descrito en el tercer párrafo de la sección anterior "Parte 1: Inicio del proceso de control" que inicia con el texto: "Si el "Tanque Mezclador" no tiene agua para recircular la mezcla, o tiene un porcentaje inferior al 12%...".

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.8.3.4 Parte 4: Finalización del proceso de control automático

Tal como se mencionó en la sección anterior, si la variable llamada "1 Ciclo para finalizar" ("CICLO_FINAL") se encuentra activa, significa que se desea que el proceso de control finalice, por tal razón, se activará la marca "M1.6" (ver Figura 44) y el proceso de vaciado de la mezcla que venía ejecutándose, continuará su ejecución hasta que se detecte un nivel o porcentaje en el tanque de mezcla inferior al 1%, cuando esto suceda, el proceso finalizará con la activación de la marca "M0.0" (ver Figura 45), con lo cual el sistema de control desactivará todos los actuadores del proceso (apagará todas las válvulas y motores) y el sistema volverá al estado inicial del proceso de control, es decir, al punto en que se requiere de nuevo la activación del pulsador de "Start" para iniciar nuevamente un ciclo de proceso de control. De esta forma habrá finalizado todo el proceso que realiza la máquina para diluir azúcar

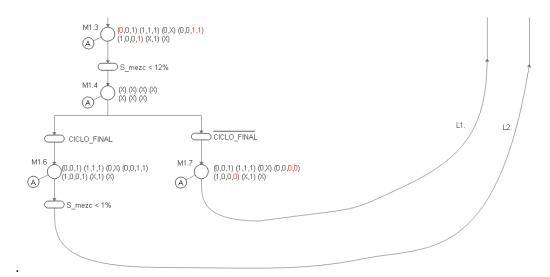


Figura 44. Inicio del proceso de vaciado de mezcla (Red de Petri)

[Fuente: Autores]

Código	FDE 089
Versión	03
Fecha	2015-01-27

Figura 45. Retorno hacia el inicio del proceso de control (Red de Petri)

[Fuente: Autores]

3.8.4 Condiciones iniciales del proceso

En esta sección, se enumeran las condiciones iniciales que debe cumplir en el sistema, para que el proceso de control pueda ejecutarse de forma correcta:

- Para que el proceso pueda comenzar, no puede haber presente ningún tipo de alarma por falla, solo se exceptuarán los tipos de alarmas que sean informativas y no producto de una falla en el proceso.
- 2. Cuando el sensor de nivel alto o "high" del tanque de agua ("S_high") esté activo, se debe desactivar la válvula de ingreso de agua fría ("V_AF"), tal como se observa en la siguiente figura:

Código	FDE 089
Versión	03
Fecha	2015-01-27

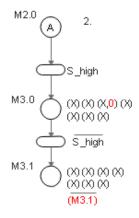


Figura 46. Condición de desactivación de válvula ("V_AF"), al activarse el sensor "S_high" (Red de Petri)

[Fuente: Autores]

3. Cuando el sensor de nivel bajo o "low" ("S_low") del tanque de agua se desactive, se debe activar la válvula de ingreso de agua fría, y si pasado un tiempo de 1 minuto, el sensor low no se ha activado, se activará entonces una alarma que indique falla por falta de agua en el tanque de agua ("F_TDA") (ver Figura 47).

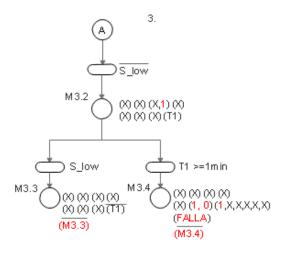


Figura 47. Condición de activación de falla con el sensor "S_low" (Red de Petri)

[Fuente: Autores]

Código	FDE 089
Versión	03
Fecha	2015-01-27

4. Cuando el nivel de mezcla en el Tanque Mezclador supere un 95%, se activa una alarma que indique falla por posible derrame en tanque mezclador ("F_TM") y el proceso se debe desactivar totalmente para evitar derrame (las válvulas permanecerán cerradas) (ver Figura 48).

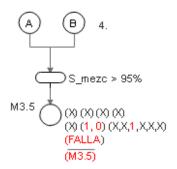


Figura 48. Condición de activación de falla por posible derramen en tanque (Red de Petri)

[Fuente: Autores]

5. En caso de presentarse alguna emergencia, se debe oprimir el botón de "paro de emergencia" ("EStop_NC") con lo que el sistema se detendrá completamente y activará una alarma de falla por activación del paro emergencia ("F_ESTOP"). Las válvulas permanecerán cerradas (ver Figura 49).

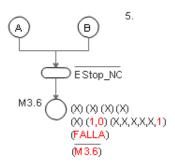


Figura 49. Condición de parada, por activación del paro de emergencia (Red de Petri)

[Fuente: Autores]

6. En el tanque pulmón debe haber aire comprimido, en caso tal de que la presión sea inferior a 70 psi, la cual se mide con el sensor de presión ("S_pre"), se activará una

Código	FDE 089
Versión	03
Fecha	2015-01-27

alarma por falta de aire comprimido ("F_TP") y se detendrá el proceso (ver Figura 50).



Figura 50. Condición de falla por falta de aire comprimido en tanque pulmón (Red de Petri)

[Fuente: Autores]

7. Si se presenta alguna falla en el proceso, el sistema se detiene y el botón de "Start" queda deshabilitado, impidiendo de esta forma que el proceso inicie hasta que se resetee la falla (ver Figura 51).

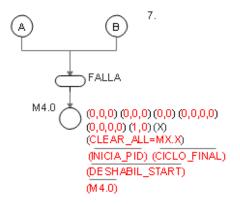


Figura 51. Condición de paro del sistema por falla en el proceso (Red de Petri)

[Fuente: Autores]

8. El sistema cuenta con un botón de "Reset" (el cual tendrá efecto, siempre y cuando no se esté pulsando el botón de paro de emergencia ("EStop"), el botón de "Start",

Código	FDE 089
Versión	03
Fecha	2015-01-27

o el botón de "Stop"), éste sirve para desactivar posibles alarmas por fallas y alarmas informativas, que se presenten en el proceso, y también sirve para habilitar nuevamente el botón de Start (Al resetear todas las fallas, el proceso puede iniciar nuevamente al presionar el botón "Start") (ver Figura 52).

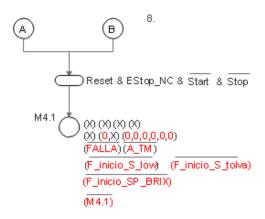


Figura 52. Condición de activación del pulsador de "Reset" (Red de Petri)

[Fuente: Autores]

9. Si pasados 5 minutos el sensor de la tolva no ha detectado material, se activará una alarma que indica falla por falta de material en la tolva ("F_TOLV"), y el sistema se apagará automáticamente (ver Figura 53).

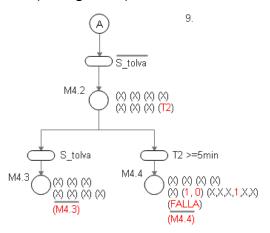


Figura 53. Condición de falla por falta de material en la tolva (Red de Petri)

[Fuente: Autores]

Código	FDE 089
Versión	03
Fecha	2015-01-27

10. Condición planteada en la descripción del proceso: "si el valor de brix es superior al 68%, se activa una alarma que indica Falla por brix superior en el filtro de mezcla ("F_FM") y se detiene el proceso" (ver Figura 54).

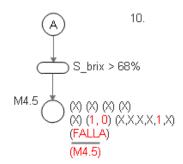


Figura 54. Condición de falla por brix superior al 68° (Red de Petri)

[Fuente: Autores]

11. Condición planteada en la descripción del proceso: "si el porcentaje de mezcla es superior al 70%, se activa una alarma por nivel alto en la mezcla ("A_TM"), pero no se detiene el proceso" (ver Figura 55).

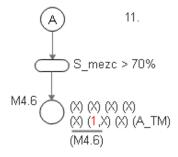


Figura 55. Condición de activación de alarma por nivel alto en la mezcla (Red de Petri)

[Fuente: Autores]

12. Condición planteada en el enunciado: "Si se presiona el pulsador de "Stop", se activará la variable "1 Ciclo para finalizar" ("CICLO_FINAL"), para que solo se ejecute un ciclo completo del proceso (ver Figura 56).

Código	FDE 089
Versión	03
Fecha	2015-01-27

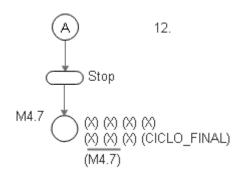


Figura 56. Condición para ejecutar solo un ciclo de proceso al pulsar "Stop" (Red de Petri)

[Fuente: Autores]

- 13. El proceso cuenta con 2 pilotos, uno que se activará cuando el proceso se ejecuta correctamente ("P_OK"), y otro que se activará cuando se presente alguna falla en el proceso ("P_ALARM"). Dado que las variables asignadas a estos 2 pilotos hacen parte del vector de salidas de la Red de Petri, su valor de estado se puede observar en todos los estados que conforman dicha Red.
- 14. El proceso cuenta con una variable llamada SetPoint de Brix ("SP_BRIX"), en la cual se ingresa el valor de Brix deseado para el proceso de mezclado, y a partir de este SetPoint de Brix, junto con la tolerancia de Brix permitida, se crean 2 variables que establecen el límite superior ("LIM_SUP_BRIX") e inferior ("LIM_INF_BRIX") de brix permitidos, tal como se indica a continuación:
 - **LIM_SUP_BRIX** = SP_BRIX + Tolerancia.
 - LIM_INF_BRIX = SP_BRIX Tolerancia.

Las condiciones siguientes, solo se podrán ejecutar al inicio del proceso, es decir, cuando se presione el botón de "Start":

15. Si al iniciar el proceso con la activación del pulsador de "Start", el sensor low del tanque de agua ("S_low"), se encuentra desactivado (lo cual indica que no hay agua en tanque de agua), se activa una alarma de falla al inicio, por falta de agua en el tanque de agua ("F inicio S low") (ver Figura 57).

Código	FDE 089
Versión	03
Fecha	2015-01-27

Figura 57. Condición de falla al inicio, por falta de agua en tanque mezclador (Red de Petri)

[Fuente: Autores]

16. Si al iniciar el proceso con la activación del pulsador de "Start", el sensor de la tolva ("S_tolva") se encuentra desactivado (lo cual indica que no hay azúcar en la tolva), se activa una alarma de falla al inicio por falta de azúcar en la tolva ("F_inicio_S_tolva") (ver Figura 58).

Figura 58. Condición de falla al inicio, por falta de azúcar en la tolva (Red de Petri)

[Fuente: Autores]

17. Si al iniciar el proceso con la activación del pulsador de "Start", el valor ingresado de Set Point de Brix ("SP_BRIX) es inferior a 2 (lo cual indica un valor de Set Point de Brix incorrecto), se activa una alarma de falla al inicio por falta de ingreso de valor de Set point de Brix correcto ("F inicio SP BRIX") (Figura 59).

Código	FDE 089
Versión	03
Fecha	2015-01-27

Figura 59. Condición de falla al inicio, por falta de azúcar en la tolva (Red de Petri)

[Fuente: Autores]

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.8.5 Esquema gráfico de conexiones físicas de la máquina para diluir azúcar

A continuación, se presenta en la Figura 60 el esquema gráfico de conexiones físicas de la máquina para diluir azúcar, conformado por actuadores de campo, elementos mecánicos y máquinas eléctricas para procesos industriales.

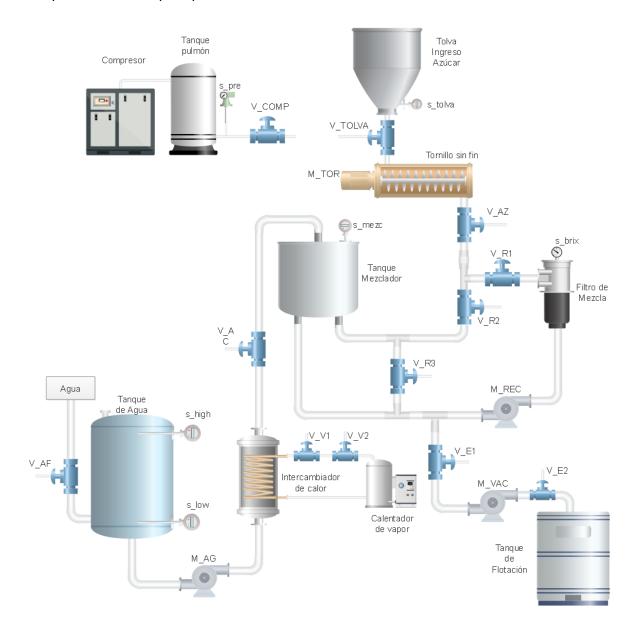


Figura 60. Esquema gráfico de conexiones físicas de la máquina para diluir azúcar [Fuente: Autores]

Código	FDE 089
Versión	03
Fecha	2015-01-27

Para más detalle los planos eléctricos implementados en el proyecto se añaden en el **Apéndice A.**

3.9 Selección del PLC a implementar en el sistema de control

Para realizar el proceso de selección del PLC, se tomaron en cuenta los requerimientos presentados a continuación:

- Compatibilidad con el software de programación "Simatic Step 7"
- Compatibilidad con el protocolo de comunicación Profibus-DP (para realizar la comunicación con la pantalla HMI)
- Entradas Digitales: 13 entradas
- Salidas Digitales: 24 salidas
- Entradas Analógicas:
 - 4 entradas de corriente (0..20mA; 4..20mA) (módulo de expansión)
- Salidas Analógicas:
 - 2 salidas de voltaje (+/-10; 0..10V)

Según los requerimientos expuestos, el PLC a seleccionar debe pertenecer a la línea de productos de la marca Siemens, ya que el software de programación "Simatic Step 7" fue desarrollado para utilizarse exclusivamente en productos de dicha marca. A su vez, no se tendrán en cuenta la gama de PLC's siemens de la serie S7-1200, ni tampoco de series superiores, ya que éstas son incompatibles con dicho software.

Por tal razón, se presentan a continuación en la Figura 61, un catálogo de PLC´s compatibles con el software de programación "Simatic Step 7", y que a la vez cumplen con los requerimientos exigidos:

Código	FDE 089
Versión	03
Fecha	2015-01-27

Figura 61. Catalogo de PLC's de la serie S7-300 siemens

[Fuente: https://goo.gl/fueESd]

Tal como se puede observar en la Figura 61, la CPU 315 y la CPU 317, son compatibles con los protocolos de comunicación "Profibus DP" y "Profinet IO", pero no cuentan con módulos de entradas y salidas, digitales y analógicas incorporados, por lo que sería necesario añadir módulos externos, lo cual elevaría bastante los costos del PLC a implementar, por tal razón, estos se descartan del proceso de selección, quedando solamente como posibles candidatos las CPU's de la serie 314.

Tanto la CPU 314-2DP, como la CPU 314-2PN/DP, cuentan con 24 entradas digitales, 16 salidas digitales, 4 entradas analógicas configurables como voltaje (+/-10; 0..10V) o corriente (0..20mA; 4..20mA), y 2 salidas analógicas configurables como voltaje (+/-10;

Código	FDE 089
Versión	03
Fecha	2015-01-27

0..10V) o corriente (0..20mA; 4..20mA), la única diferencia entre ambos PLC's reside en que la CPU 314-2PN/DP cuenta con una interfaz de comunicación incorporada para el protocolo de comunicación Profinet IO, mientras que la CPU 314-2DP, no cuenta con dicha interfaz, y por tal razón requeriría un módulo de expansión que le permitiera utilizar dicho protocolo. Dado que el protocolo de comunicación Profinet IO no es un requerimiento primordial para el desarrollo del sistema de control de la máquina para diluir azúcar, su implementación podría realizarse a futuro para realizar mejoras y ampliaciones del sistema, pero para el desarrollo de este proyecto no se utilizará, por tal razón, se opta por seleccionar el PLC Modelo: "CPU 314-2DP" de referencia: "6ES7314-6CH04-0AB0" (ver Figura 62). El único requerimiento pendiente, es el requisito de que el PLC debe contar con 24 salidas digitales, ya que el PLC seleccionado solamente cuenta con 16, por tal razón, se seleccionará un módulo de expansión de salidas digitales para completar el número de salidas digitales requeridas.

Figura 62. PLC de la marca siemens "CPU 314-2DP - 6ES7314-6CH04-0AB0" [Fuente: https://es.rs-online.com/web/p/cpus-para-automatas-programables/7466523/]

Código	FDE 089	
Versión	03	
Fecha	2015-01-27	

Fabricante	Siemens
Número de la serie	S7-300, Simatic S7
Tipo de Modelo	CPU 314C-2DP
Referencia	6ES7314-6CH04-0AB0
Memoria de trabajo	192KB; 0,06ms/1000 instr.
Número de entradas	24 digitales;
	4 analógicas configurables: voltaje (+/-10; 010V) ó
	intensidad (020mA ; 420mA);
	1 termorresistencia PT100.
Número de salidas	16 digitales;
	2 analógicas configurables: voltaje (+/-10; 010V) o
	intensidad (020mA ; 420mA).
Categoría de Tensión	24 Vdc
Corriente de Salida	500 mA
Tipo de Puerto de	RS485
Comunicación	
Funciones integradas	4 salidas de impulsos (2,5kHz);
	Contaje y medida 4 canales con encoders
	incrementales 24V;
	Interfaz Profibus DP

Tabla 28. Ficha técnica del PLC seleccionado

[Fuente: https://goo.gl/Zk3ELH]

3.9.1 Selección del módulo de expansión de salidas digitales para el PLC seleccionado

Para que el PLC pueda completar las 24 salidas digitales requeridas en el proceso, se debe implementar un módulo de expansión de salidas digitales, por tal razón se selecciona el módulo de expansión de salidas digitales referencia "6ES7322-1BH01-0AA0" presentado en la Figura 63, el cual cuenta con 16 salidas digitales. Este módulo se seleccionó por ser el que más se ajusta a las necesidades del proyecto, ya que otras referencias compatibles como la "6ES7322-1BL00-0AA0" cuenta con 32 salidas digitales, y tiene un costo más elevado, y ya que no se requieren tantas salidas, se descartan del proceso de selección.

Código	FDE 089
Versión	03
Fecha	2015-01-27

Figura 63. Módulo de expansión de salidas digitales "6ES7322-1BH01-0AA0" [Fuente: https://goo.gl/JKwhZk]

Numero de referencia	6ES7322-1BH01-0AA0
Tipo de modelo	SM322
Fabricante	Siemens
Modelos compatibles	S7-300, Simatic S7
Dimensiones	6" x 2" x 5" (15 cm x 5 cm x 13 cm)
Peso	0 lbs 9 oz (0.25 kg)
Información adicional	Módulo de salidas digitales, DO 16, 24Vdc, 0,5A

Tabla 29. Ficha técnica del módulo de expansión de salidas digitales seleccionado [Fuente: https://goo.gl/xieBdd]

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.10 Selección de la pantalla HMI para visualizar el proceso de control

Para poder visualizar todo el proceso de control que ejecutará la máquina para diluir azúcar, se implementará una pantalla HMI que permita monitorear el funcionamiento de cada uno de los actuadores, sensores y transductores involucrados en el sistema de control de la máquina. Para realizar el proceso de selección de la pantalla HMI, se tomaron en cuenta los siguientes requerimientos:

- Dimensión diagonal de pantalla: 19 pulgadas (Necesario para poder visualizar todo el sistema de control en una misma imagen)
- Pantalla táctil
- Compatibilidad con el protocolo de comunicación Profibus-DP (para realizar la conexión con el PLC)
- Compatibilidad visual con imágenes de colores

De acuerdo a todos los requerimientos establecidos, se selecciona entonces la pantalla HMI "MP 377 19" Touch" de referencia "6AV6644-0AC01-2AX1" presentada en la Figura 65, la cual se selección desde el catálogo de productos de pantallas HMI de la marca siemens (ver Figura 64). Esta pantalla cumple con todos los requerimientos planteados y además presenta compatibilidad con el protocolo de comunicación Industrial Ethernet, permitiendo a futuro la posibilidad de realizar expansiones y mejoras al sistema de control. Para el proceso de selección, no se tomaron en cuenta las otras referencias de pantallas HMI presentadas en el catálogo, ya que estas no cumplen con el requisito de dimensión diagonal de pantalla de 19 pulgadas.

Código	FDE 089
Versión	03
Fecha	2015-01-27

Paneles HMI Clásicos

Los nº y letras entre paréntesis ej. (3)(B) indican el software necesario para el panel y el/los tipos de conexiones posibles, verificar dicha información en las notas a pie de página.

y cinos apos de conexiones posibles, vermear alcha información en las notas a pre	o do pagina.
100018397 Panel Clásico, OP 73 3" (3)(B)	6AV6641-0AA11-0AX0
100017741 Panel Clásico, OP 77A 4,5" (3)(B)	6AV6641-0BA11-0AX1
100017742 Panel Clásico, OP 77B 4.5" (3)(B)	6AV6641-0CA01-0AX1
100018506 Panel Clásico, TP 177A 6" (3)(B)	6AV6642-0AA11-0AX1
100033764 Panel Clásico, TP 177B 4" PN/DP COLOR (3)(A)(B)	6AV6642-0BD01-3AX0
100017738 Panel Clásico, TP 177B DP 6" (3)(B)	6AV6642-0BC01-1AX1
100017739 Panel Clásico, OP 1778 6" (3)(B)	6AV6642-0DC01-1AX1
100017737 Panel Clásico, TP 177B 6" Color DP/PN (3)(A)(B)	6AV6642-0BA01-1AX1
100017740 Panel Clásico, OP 177B 6" Color DP/PN (3)(A)(B)	6AV6642-0DA01-1AX1
100017706 Panel Clásico, TP 277 6" (4)(A)	6AV6643-0AA01-1AX0
100017708 Panel Clásico, OP 277 6" (4)(A)	6AV6643-0BA01-1AX0
100033769 Panel Clásico, MP 177 6" Táctil (4)(A)(B)	6AV6642-0EA01-3AX0
100017725 Panel Clásico, MP 277 8" Táctil (4)(A)(B)	6AV6643-0CB01-1AX1
100017727 Panel Clásico, MP 277 8" Teclas (4)(A)(B)	6AV6643-0DB01-1AX1
100017724 Panel Clásico, MP 277 10" Táctil (4)(A)(B)	6AV6643-0CD01-1AX1
100017726 Panel Clásico, MP 277 10" Teclas (4)(A)(B)	6AV6643-0DD01-1AX1
100017732 Panel Clásico, MP 377 12" Táctil (4)(A)(B)	6AV6644-0AA01-2AX0
100017736 Panel Clásico, MP 377 12" Teclas (4)(A)(B)	6AV6644-0BA01-2AX1
100017735 Panel Clásico, MP 377 15" Touch (4)(A)(B)	6AV6644-0AB01-2AX0
100017765 Panel Clásico, MP 377 19" Touch (4)(A)(B)	6AV6644-0AC01-2AX1
100017734 MMC 128 Mb p/OP77B, TP/OP 177B para Paneles Clásicos	6AV6671-1CB00-0AX2
100019818 Cable MPI OP <> S7 y PG <> S7 (5 mts)	6ES7901-0BF00-0AA0

Software de configuración y tipos de conexión según modelo:

- (3) Configurables con WinCC Comfort o WinCC Flex 2008 Compact
- (4) Configurables con WinCC Comfort o WinCC Flex 2008 Standard.
- (A) Posibilidad de conexión por medio de cable Ethernet convencional.
- (B) Posibilidad de conexión por medio de cable MPI (Mat:100019818 / 6ES7901-0BF00-0AA0)

Figura 64. Catálogo de pantallas HMI de la marca siemens

[Fuente: https://goo.gl/fueESd]

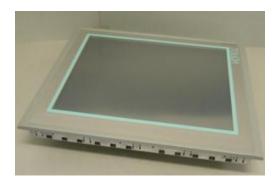


Figura 65. Pantalla HMI "MP 377 19" Touch"

[Fuente: https://goo.gl/LsrwFw]

Código	FDE 089
Versión	03
Fecha	2015-01-27

Fabricante	Siemens
Número de la serie	MP 377 19" Touch Multi Panel
Tipo de Modelo	Simatic HMI
Referencia	6AV6644-0AC01-2AX1
Tipo de display	TFT, 65536 colores
Tipo de color	Colores
Resolución de imagen horizontal	1280 pixeles
Resolución de imagen vertical	1024 pixeles
Resolución (WxH in pixel)	1280 x 1024 pixeles
Elementos de control	Pantalla táctil
Opciones de operación	Táctil
Conexión para mouse/teclado/lector	USB / USB / USB
código de barras	
Entrada Numérica/alfabética	Si/ Si
Teclado hexadecimal	Si
Voltaje de alimentación	24 V DC
Corriente de entrada	2.5 A
Potencia	60 W
Tipo de memoria	Flash / AM
Memoria disponible para datos de	12288 KB memoria disponible para datos
usuario	de usuario / 12288 KB memoria adicional
	para otras opciones
Interfaces	1 x RS422, 1 x RS485, 2 x Ethernet (RJ45)
	1
Puerto USB	2 x USB
Interfaz Industrial Ethernet	2 x Ethernet (RJ45)
Protocolo PROFIBUS	Si
Protocolo MPI	Si
Protocolo TCP/IP(Ethernet)	Si

Tabla 30. Ficha técnica de La pantalla HMI seleccionada

[Fuente: https://goo.gl/yjRCoE]

Código	FDE 089
Versión	03
Fecha	2015-01-27

3.10.1 Diseño de la imagen de control y monitoreo del proceso de la pantalla HMI

A continuación, se presenta en la Figura 66 el diseño gráfico de la imagen principal de la pantalla HMI, desde la cual se podrá controlar y monitorear todo el proceso y el sistema de control implementado en la máquina para diluir azúcar.

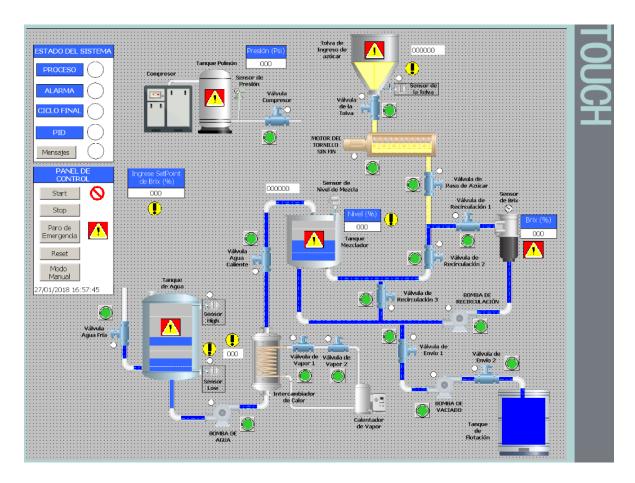


Figura 66. Imagen del sistema de control diseñado para la pantalla HMI seleccionada [Fuente: Autores]

Tal como se puede observar en la Figura 66, la imagen desarrollada para ser implementada en la pantalla HMI, está diseñada de tal forma que se pueda visualizar todo el sistema de control que permite la ejecución de la máquina para diluir azúcar. A continuación, se

Código	FDE 089
Versión	03
Fecha	2015-01-27

presenta en la Tabla 31 y la Tabla 32, la descripción de las partes y objetos que conforman la imagen implementada en la pantalla HMI

MANDOS DE CONTROL DEL PROCESO	
NOMBRE	DESCRIPCION
Start	Botón de inicio del proceso. Al ser presionado se inicia el sistema de
Start	control automático
	Botón de parada del proceso. Al ser presionado, solamente se
Stop	ejecutará un ciclo completo del proceso y el sistema de control
	automático se detendrá una vez finalice el ciclo de vaciado de la mezcla
Paro de	Botón de parada de emergencia. Al ser presionado, el sistema de
control se detendrá de forma inmediata y desactivará todos los	
Emergencia	actuadores del proceso
Botón de reset de fallas del proceso. Al ser presionado, se borrarán	
Reset	todas las fallas del proceso que hayan sido solucionadas
	Botón de activación del modo JOG o manual del proceso. Al ser
Modo Manual	presionado, se tendrá control total sobre todos los actuadores
	implementados en el sistema de control
Mensajes	Botón de visualización de mensajes del proceso. Al ser presionado, se
iviciisajes	podrán visualizar mensajes del proceso como fallas y alarmas

Tabla 31. Mandos de control del proceso implementados en la pantalla HMI

INDICADORES VISUALES DEL PROCESO		
NOMBRE	DESCRIPCION	
PROCESO	Indicador visual que cuando presenta un color verde indica que el	
	proceso se ejecuta correctamente	
ALARMA	Indicador visual que cuando presenta un color rojo indica que se ha	
	presentado una alarma en el proceso	
CICLO FINAL	Indicador visual que cuando presenta un color verde indica que se	
	ha presionado el botón de Stop, y el proceso se detendrá una vez	
	finalice el ciclo de vaciado de la mezcla	

Código	FDE 089
Versión	03
Fecha	2015-01-27

PID	Indicador visual que cuando presenta un color verde indica que el
	sistema de control está ejecutando el control automático para
	mantener estable el valor de °Brix de la mezcla
Porcentaje	Indicador visual que indica el valor de porcentaje de nivel del tanque
Tanque	mezclador
Mezclador	
Brix	Indicador visual que indica el valor de °Brix en la mezcla
Presión en el	Indicador visual que indica el valor de presión (Psi) en el tanque
tanque	pulmón.
Sensor de Tolva	Indicador visual que, al activarse, indica que hay material en la tolva
	de almacenaje de azúcar
Sensor low	Indicador visual que, al desactivarse, indica que no hay fluido en el
	tanque de agua
Sensor High	Indicador visual que, al activarse, indica que el nivel en el tanque de
	agua ha superado el límite permitido
Ingrese Set point	Indicador visual que permite ingresar el valor de °Brix deseado para
de Brix	el proceso
Sensor High Ingrese Set point	Indicador visual que, al activarse, indica que el nivel en el tanque de agua ha superado el límite permitido Indicador visual que permite ingresar el valor de °Brix deseado para

Tabla 32. Indicadores visuales del proceso implementados en la pantalla HMI

Código	FDE 089
Versión	03
Fecha	2015-01-27

4. RESULTADOS Y DISCUSIÓN

Como proceso de validación y verificación del funcionamiento del sistema de control implementado en el proceso de la máquina para diluir azúcar, se realizaron pruebas de simulación desde el software Simatic step 7, esto con el fin de obtener datos de los tiempos de duración que requiere dicho sistema para llevar el valor de grado brix (valor detectado por el sensor de brix), al valor ingresado en la variable de "Set point de brix".

Antes de exponer cada una de las gráficas que servirán para la toma de datos, se presenta la Figura 67, en la cual se puede observar un comportamiento cíclico del proceso que realiza la máquina, el cual inicia desde la activación del botón de "Start", continua con el proceso de igualar el valor de grado brix al valor ingresado en el Set point, para después realizar el vaciado del tanque hasta un nivel del 12%, para iniciar nuevamente un proceso de llenado y de esta forma el proceso continua ejecutándose de forma cíclica hasta que se presente la señal de final de ciclo con la activación del pulsador de "Stop"

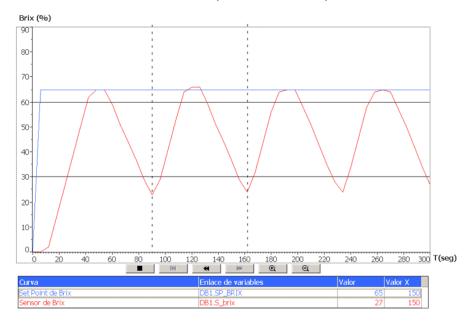


Figura 67. Gráfica Grados brix Vs Tiempo (Ciclo de trabajo continuo)

Código	FDE 089
Versión	03
Fecha	2015-01-27

Se presentan a continuación las gráficas de Grados brix Vs tiempo, en las cuales se puede observar el tiempo de respuesta del control automático para llevar la variable controlada al Set point especificado.

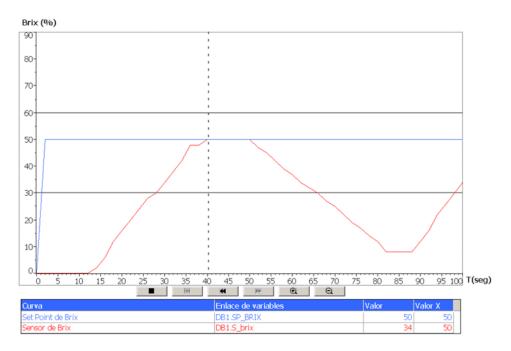


Figura 68. Gráfica Grados brix Vs Tiempo (Set Point de Brix: 50°)

[Fuente: Autores]

Como se puede observar en la Figura 68, el control automático que regula el valor de grados brix del proceso, lo lleva a un valor de 50° establecido en el Set Point brix, en un tiempo de 40 segundos desde el inicio del proceso (con la activación del pulsador de "Start").

Código	FDE 089
Versión	03
Fecha	2015-01-27

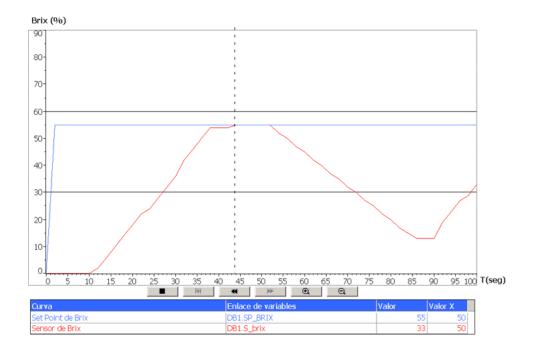


Figura 69. Gráfica Grados Brix Vs Tiempo (Set Point de Brix: 55°)

[Fuente: Autores]

En la Figura 69, se observa que el tiempo que tarda el control automático en llevar el valor de °Brix a un valor de 55°, es de 43 segundos.

Código	FDE 089
Versión	03
Fecha	2015-01-27

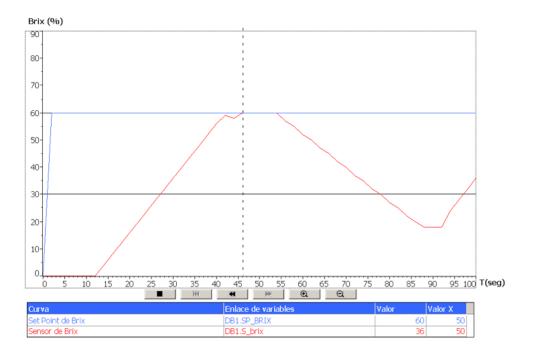


Figura 70. Gráfica Grados Brix Vs Tiempo (Set Point de Brix: 60°)

[Fuente: Autores]

En la Figura 70, se observa que el tiempo que tarda el control automático en llevar el valor de °Brix a un valor de 60°, es de 46 segundos.

Código	FDE 089
Versión	03
Fecha	2015-01-27

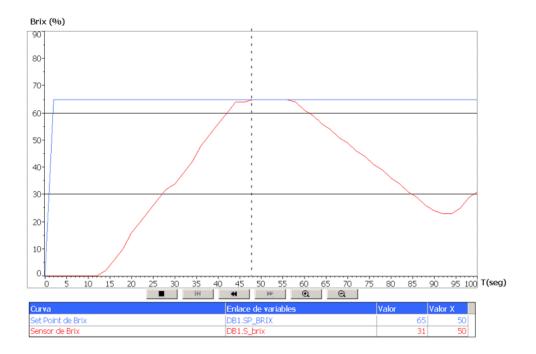


Figura 71. Gráfica Grados Brix Vs Tiempo (Set Point de Brix: 65°)

[Fuente: Autores]

En la Figura 71, se observa que el tiempo que tarda el control automático en llevar el valor de °Brix a un valor de 65°, es de 48 segundos.

En la tabla siguiente, se presentan los datos recopilados de las gráficas anteriores.

	Gráfica 1	Gráfica 2	Gráfica 3	Gráfica 4
Set Point de °Brix	50	55	60	65
Duración (S)	40	43	46	48

Tabla 33. Datos recopilados de las gráficas de Grados Brix Vs Tiempo

Código	FDE 089
Versión	03
Fecha	2015-01-27

Tal como se pudo observar en el comportamiento de las gráficas anteriores, así como también en la información recopilada en la Tabla 33, la velocidad de respuesta del control automático para llevar el valor de grados brix al valor ingresado en el Set point, es bastante rápida, comparada con un proceso manual (tal como se observó en la descripción del proceso de dilución de azúcar de forma manual y en la Tabla 1, y la Tabla 2), siendo notable que para todas las pruebas realizadas, el tiempo que tardo en ajustarse el valor de grados brix al valor deseado, fue inferior a los 50 segundos. Además, se destaca que dicha duración de tiempo incrementa, a medida que el valor de grado brix ingresado en el Set-point aumenta.

Código	FDE 089
Versión	03
Fecha	2015-01-27

5. CONCLUSIONES, RECOMENDACIONES Y TRABAJO FUTURO

Se obtuvieron muy buenos resultados en el desarrollo de este proyecto, principalmente gracias a las simulaciones realizas desde el software Simatic Step 7, ya que con este fue posible validar el correcto funcionamiento del sistema de control de la máquina para diluir azúcar, logrando cumplir con el objetivo principal de diseñar una máquina que desarrolle el proceso de dilución de azúcar de una manera en la que sea mejor aprovechado el producto, mejore su calidad y el proceso sea más rápido. A su vez, se cumple con el objetivo de mejorar las condiciones de operaciones de los equipos en el sistema y la disminución del riesgo en los operadores, gracias a la implementación de la pantalla HMI, desde la cual es posible controlar y monitorear todo el proceso y el sistema de control de la máquina para diluir azúcar.

Según las pruebas realizadas en la simulación del proceso de la máquina para diluir azúcar, se observó una gran rapidez de respuesta en el control ejecutado por el PLC para llegar al valor deseado de brix ("Set point de Brix"), lo cual garantiza un buen aprovechamiento de los tiempos de producción.

Gracias al uso del software especializado "Cas 200" desarrollado por la empresa Alfa Laval para el cálculo de intercambiadores de calor, fue posible seleccionar el intercambiador de calor que más se ajusta a las necesidades del proyecto, garantizando una temperatura de 70°C en el fluido del proceso.

Se plantean como futuras mejoras al diseño del sistema de control automático, la integración de dicho sistema a una red de comunicación industrial, basada en el protocolo

Código	FDE 089
Versión	03
Fecha	2015-01-27

de comunicación "Industrial Ethernet", con el fin de poder llevar toda la información del estado de operaciones del proceso (que incluye desde ciclos de funcionamiento, hasta la detección de fallas y alarmas), hacia una base de datos, desde la cual se pueda monitorear y analizar dicha información, para calcular un estado actual de los valores de eficiencia y productividad de la máquina, con el fin de predecir futuros comportamientos de la misma y en base a esto, poder realizar modificaciones y mejoramientos al proceso.

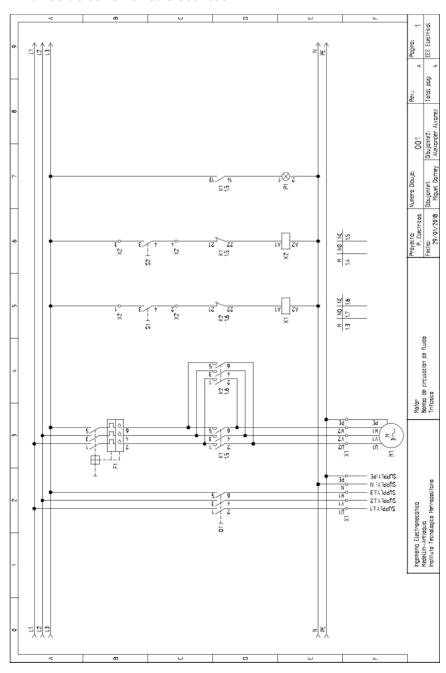
Código	FDE 089
Versión	03
Fecha	2015-01-27

REFERENCIAS

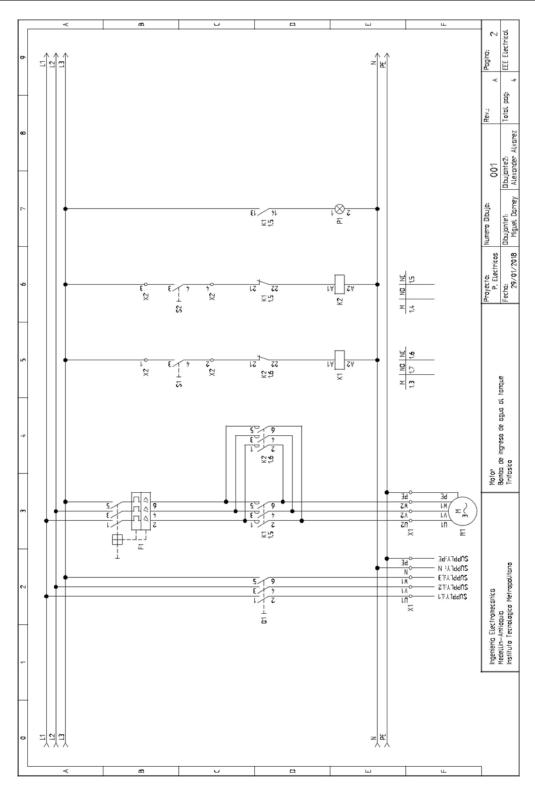
- Autogestión. (11 de marzo de 2015). Obtenido de http://autogestion.stps.gob.mx:8162/
- Britannica, T. E. (Enero de 2018). *Encyclopedia Britannica*. Obtenido de https://www.britannica.com/science/refractive-index
- Buchelli Carpio, L. A., & Andrade, F. (05 de 01 de 2004). *REpositorio DsPace*. Obtenido de Diseño fluidodinamico de un sistema de extracción de polvo en un ingenio azucarero: http://www.dspace.espol.edu.ec/handle/123456789/4304
- Cárcel, L. M., Nevares, I., & Navas, L. M. (2003). Cálculo de transportadores de tornillo sin fin según la Norma UNE. *Alimentación, Equipos y Tecnología (181)*, 121-124.
- Colina, L. (2017). *Mezclado de alimentos fluidos*. Obtenido de http://sgpwe.izt.uam.mx/files/users/uami/mlci/mezclado_fluidos.pdf
- Curiososinea. (2014). Antología. En *Unidad 3: Solubilidad y concentración* (pág. 3.6). Interface. Obtenido de http://www.cursosinea.conevyt.org.mx/cursos/cnaturales_v2/interface/main/recursos/antologia/cnant 3 06.htm
- lesmat. (2018). *Iesmat*. Obtenido de http://www.iesmat.com/Tecnologias-Granulometria.htm
- International Organization for Standardization. (23 de Febrero de 1947). Obtenido de Organización Internacional de Normalización: https://es.wikipedia.org/wiki/Organizaci%C3%B3n_Internacional_de_Normalizaci %C3%B3n

Código	FDE 089
Versión	03
Fecha	2015-01-27

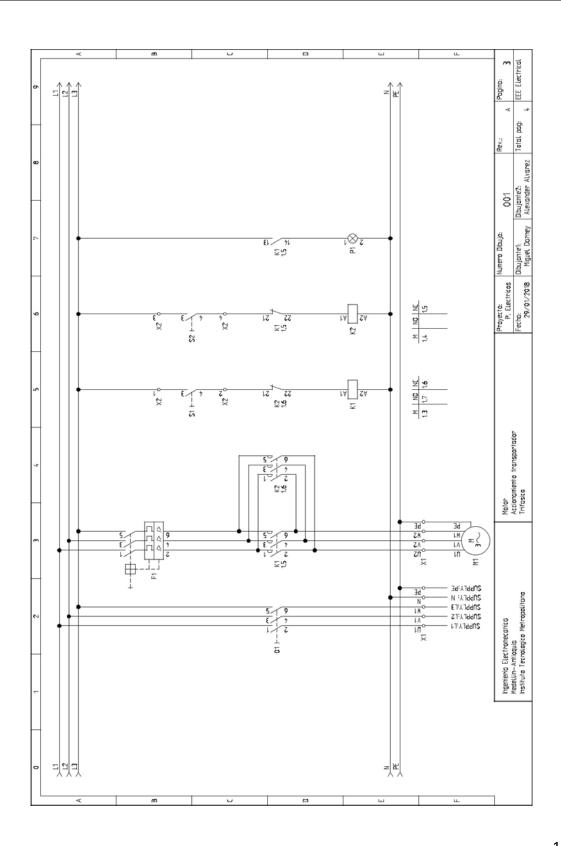
- J.Michel, J. G. (marzo 2015). Operación de los Molinos del Tándem Cañero a dos Niveles de Presión Hidráulica. *Ingenieria, Investigación y tecnologia*, 130.
- J.Ramirez, E. y. (julio 2009). Modelado y Control de Caña de Azúcar usando Accionamientos Eléctricos. *Grupo de Investigación en Control Industrial, Universidad del Valle*, 53.
- Jensen, K. (2013). *Coloured Petri nets: basic concepts, analysis methods and practical use* (Vol. 1). Aarhus: Springer Science & Business Media.
- Meneses, J. E. (6 de Julio de 2015). *Prezi*. Obtenido de https://prezi.com/rilauvfpf89l/mezcla-de-materiales-emulsion-y-homogenizacion/
- Mott, R. L. (2006). Diseño de elementos de máquinas. Mexico: Pearson educación.
- Oliveros, C. E., Sanz, J. R., Ramirez, C., & Mejía, C. (2007). Separador hidráulico de tolva y tornillo sinfín. *Avances Técnicos Ceniface*.
- Rodríguez, H. (Enero de 2018). *Ingemecánica: Ingeniería, Consultoría y Formación*.


 Obtenido de http://ingemecanica.com/tutorialsemanal/tutorialn143.html
- Rogelio Mazaeda, C. d. (Enero 2011). Cristalizador por evaporación al vacío. *Comíte Español Automatica*, 111.
- Rojas Sola, J. I., & Ureña Marín, J. R. (2012). *ProQuest*. Obtenido de https://search.proquest.com/openview/202ce7cbbd8b18879c258a4718603f47/1? pq-origsite=gscholar&cbl=2035736
- Solé, A. C. (2012). *Instrumentación Industrial*. Barcelona: Marcombo.
- Unisima. (2018). Obtenido de https://unisima.com/salud/azucar/

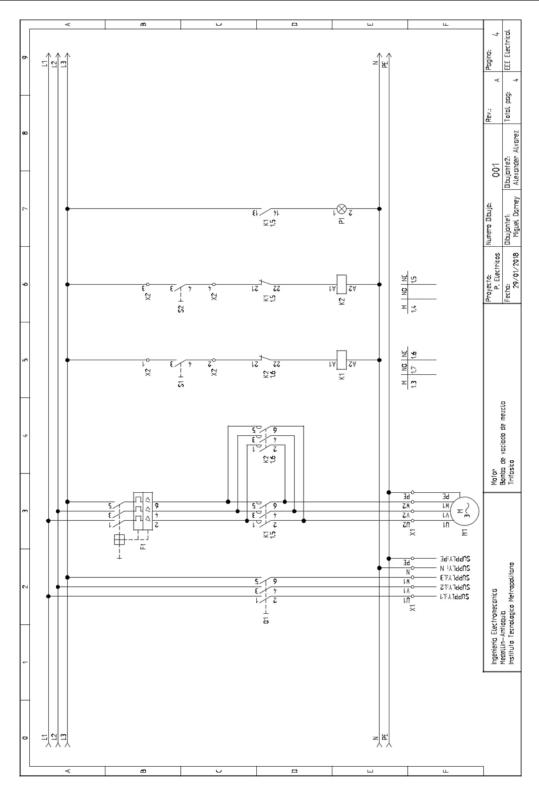
Código	FDE 089
Versión	03
Fecha	2015-01-27


APÉNDICE

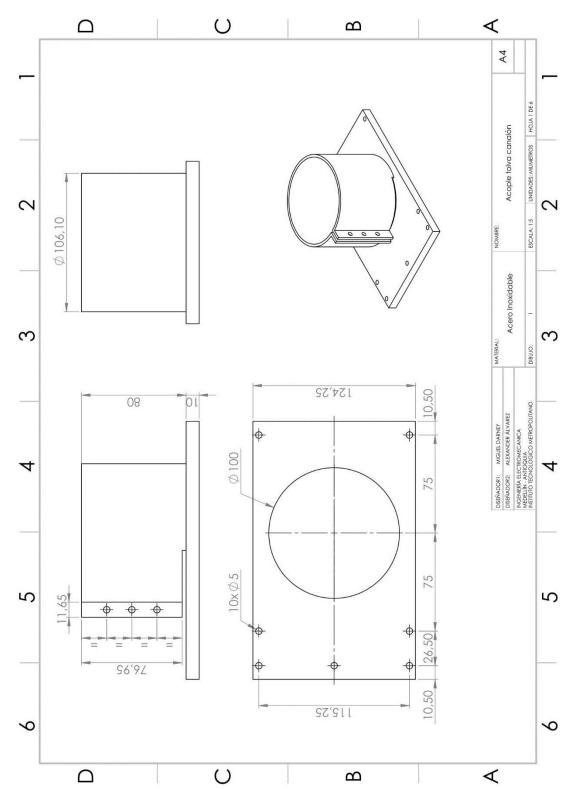
APÉNDICE A: Planos de conexiones eléctricas

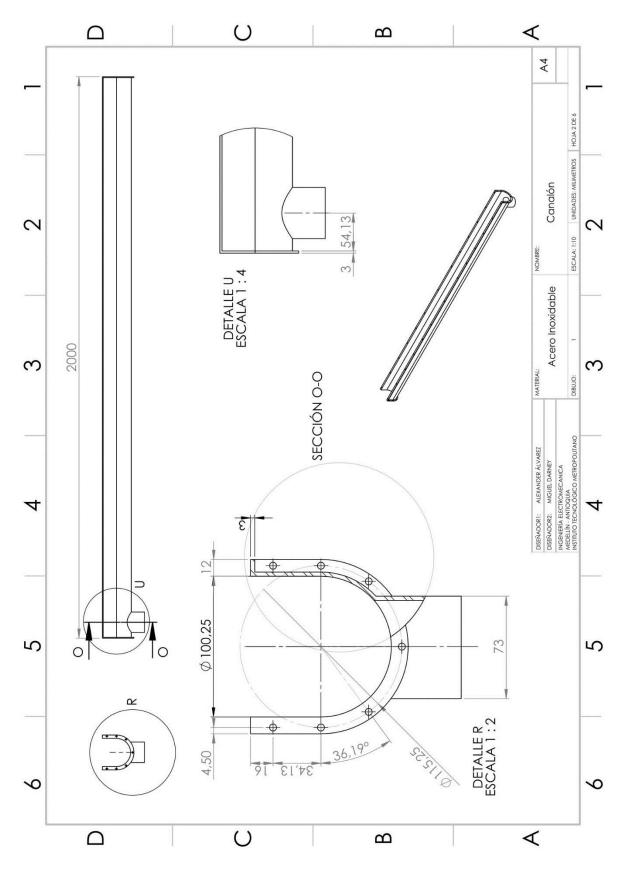


Código	FDE 089
Versión	03
Fecha	2015-01-27

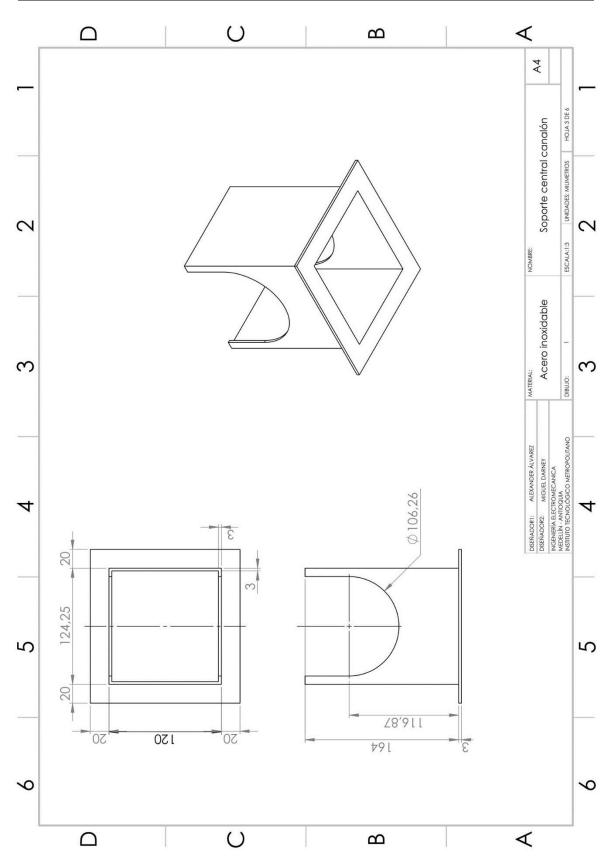


Código	FDE 089
Versión	03
Fecha	2015-01-27

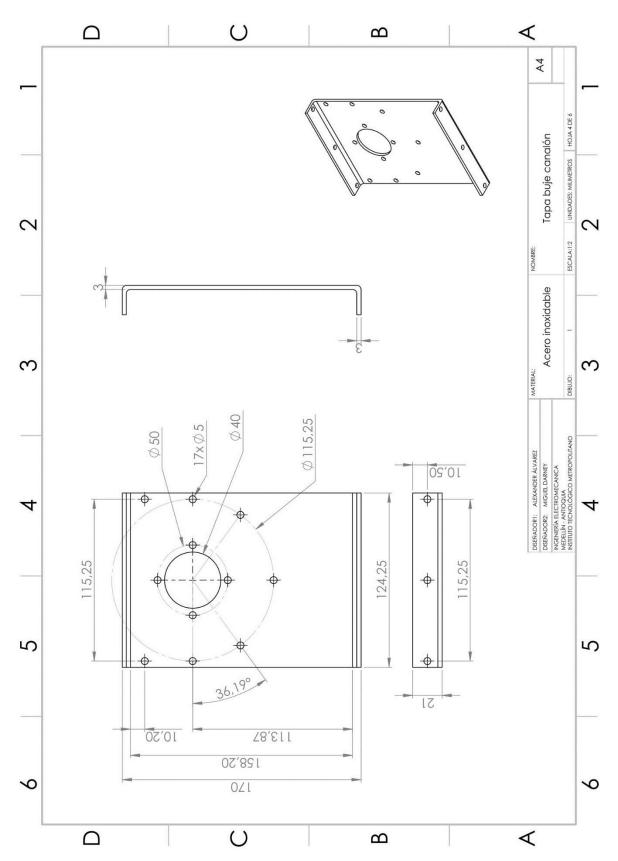

Código	FDE 089
Versión	03
Fecha	2015-01-27


Código	FDE 089
Versión	03
Fecha	2015-01-27

APÉNDICE B: Planos mecánicos

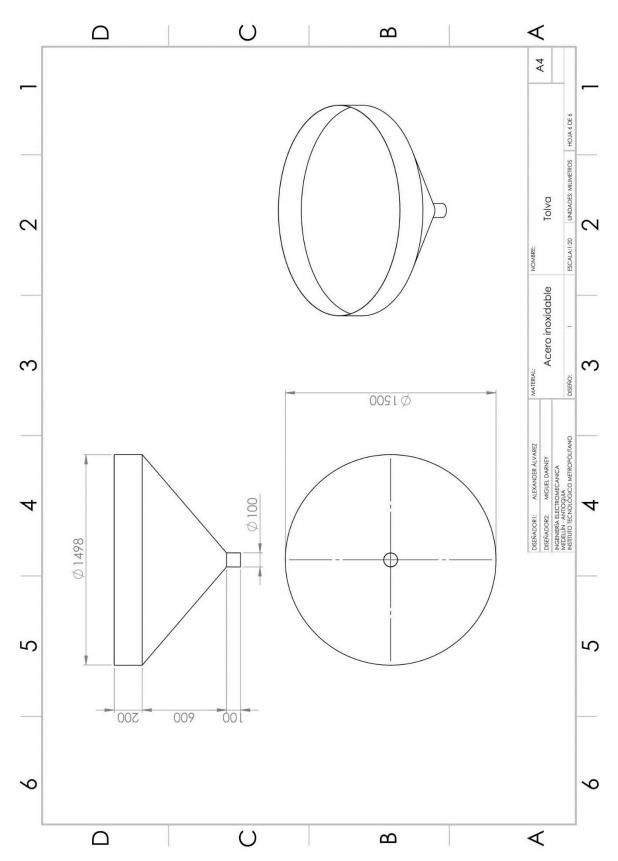


Código	FDE 089
Versión	03
Fecha	2015-01-27

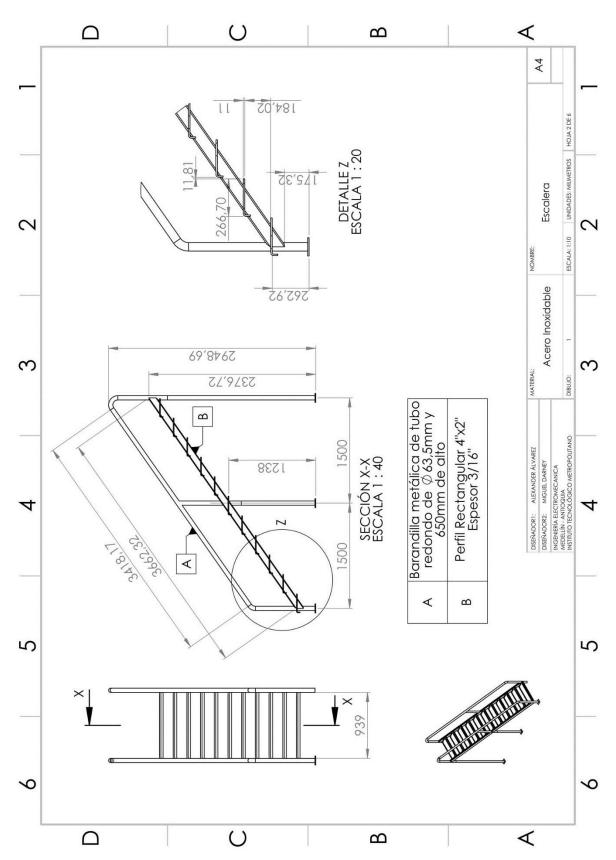


Código	FDE 089
Versión	03
Fecha	2015-01-27

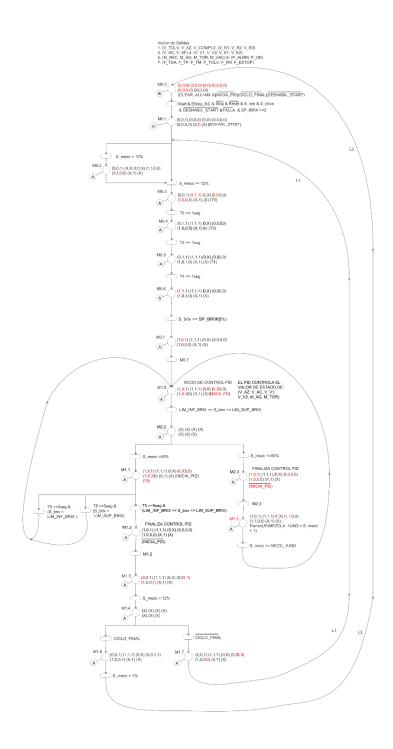
Código	FDE 089
Versión	03
Fecha	2015-01-27

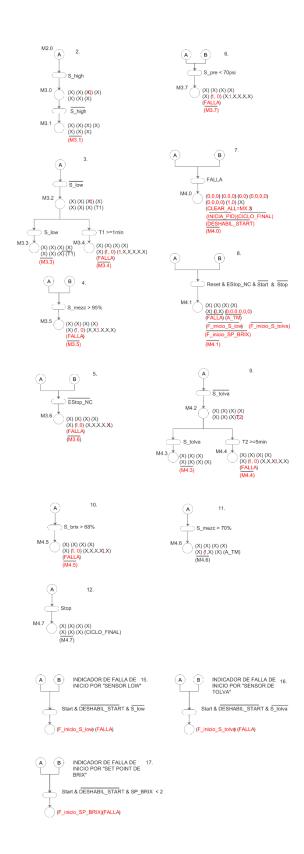


Código	FDE 089
Versión	03
Fecha	2015-01-27



Código	FDE 089
Versión	03
Fecha	2015-01-27


Código	FDE 089
Versión	03
Fecha	2015-01-27


Código	FDE 089
Versión	03
Fecha	2015-01-27

APÉNDICE C: Red de Petri implementada en la programación del PLC

Código	FDE 089
Versión	03
Fecha	2015-01-27

Código	FDE 089
Versión	03
Fecha	2015-01-27

APÉNDICE D: Programación realizada para el PLC

```
OB1 : "Main Program Sweep (Cycle)"
Comentario:
Segm. 1: PROCESO DE DILUCIÓN DE AZÚCAR
Comentario:
 DB1.DBX36.
   0
 Variable
   que
 habilita
  el MODO
 JOG para
 controlar
 todos los
 actuadores
              FC1
  "DB1".
             "PROCESO
 MODO JOG
    \dashv \prime \vdash \vdash
                   ENO
Segm. 2 : CONDICIONES DE EJECUCIÓN EN EL PROCESO
Comentario:
 DB1.DBX36.
    0
  Variable
    que
 habilita
  el MODO
 JOG para
 controlar
 todos los
 actuadores
  "DB1".
                    FC2
 MODO JOG
              "CONDICIONALES"
    +/-
            EN
                               ENO
Segm. 3: SIMULADOR DE LOS SENSORES DEL RPOCESO
Comentario:
                "SIMULACIONES"
                               ENO
```


Código	FDE 089
Versión	03
Fecha	2015-01-27

Segm. 2: INICIO DEL PROCESO CON ACTIVACION DEL PULSADOR START

```
Transición Global.
En este segmento se da inicio al programa con la activacion del pulsador de inicio ("DBI".Start), y siempre y cuando se cumplan las condiciones iniciales del programa que son las siquientes:

Debe estar sin pulsar:

- Pulsador de paro de emergencia("DB1".EStop_NC) (Este es normalmente cerrado)

- Pulsador de Stop ("DBI".Stop)

Debe estar activo:

- El sensor_low del tanque de agua

- El sensor de azucar tolva

Debe estar desactivo:

- Falla (no deben haber fallas en el proceso)

- DeshabilitaStart (Marca que deshabilita el start por seguridad una vez inicia el proceso).
```

```
DB1.DBX11.
                                                                                        DB1.DBX11.
            Deshabilit
             ar
pulsador
                                                                                         Falla en
                        DB1.DBX0.5 DB1.DBX0.4
                         Paro de Pulsador
                                                                                           el
                                                  DB1.DBX0.6
               Start
                         emergencia
                                      de Paro
                                                                                         proceso
            (Deshabili (Normalme
                                                              DB1.DBX0.0 DB1.DBX0.2
                                      (detiene
                                                    Reset
                                                  (resetea
                                                                                         activa
              ta el
                           nte
                                        el
                                                              Sensor-Low Sensor de
             pulsador
DB1.DBX0.3
                                                                Tanque
                                                                            azúcar
                                                   alarmas
Pulsador
             de start
                                                                de Agua
                                                                             tolva
                                                                                        presenta
                         Detiene
                                        al
de Inicio
                            el
                                      finalizar
                                                    que se
                                                                (detecta
                                                                            (detecta
                                                                                          alguna
            seguridad)
                          proceso
                                      un ciclo
                                                  presenten
                                                               si hay un
                                                                             si hay
                                                                                         falla en
inicio al
                         inmediatam
                                      completo
                                                    en el
                                                               nivel de
                                                                           azúcar en
                                                                                           el
                                    de
vaciado)
"DB1".Stop
             "DB1".
proceso)
"DB1".
                         ente)
"DB1".
                                                  sistema )
"DB1".
                                                               agua bajo)
"DB1".
                                                                           la tolva)
"DB1".
                                                                                         sistema)
"DB1".
            DESHABIL_
                                                                                                                    MO.1
                                                                            S_tolva
 Start
             START
                         EStop_NC
                                                   Reset
                                                               S_low
                                                                                         FALLA
                                                                                                                   "M0.1"
                          -|/|-
  \dashv \vdash
                                       -1/-
                                                                                                                    -(s)-
               -1/-
                                                                                        DB1.DBW12
                                                                                        Set Point
                                                                                         de Brix
                                                                                        (almacena
                                                                                         el valor
                                                                                         de brix
                                                                                         deseado
                                                                                        para el
proceso)
"DB1"
                                                                                           SP_BRIX - IN1
                                                                                                 2 - IN2
```

Segm. 3: INICIA EL PROCESO - SE ACTIVAN VALVULA DE COMPRESOR Y PILOTO OK

```
"MO.1"
En este segmento se activa:
-La válvula del compresor
-El piloto de proceso en ejecución

U "MO.1" MO.1

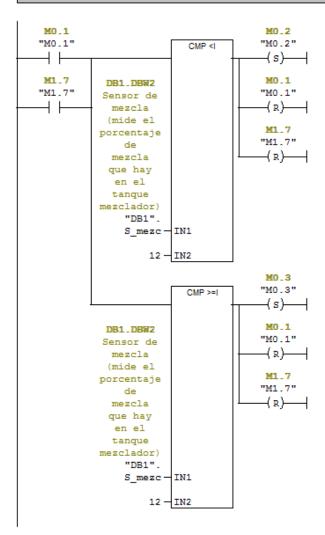
S "DB1".V_COMP DB1.DEX8.2 -- Válvula del compresor (controla el ingreso de aire comprimido al proceso)

S "DB1".P_OK DB1.DEX10.1 -- Piloto de proceso en ejecucion (se activa cuando el proceso está ejecuntándose)

S "DB1".F_inicio_S_low DB1.DEX0.7 -- Falla-Falta agua en tanque agua(Falla de inicio de proceso con start)

R "DB1".F_inicio_S_tolva DB1.DEX1.1 -- Falla-Falta agúa car en la tolva (Falla de inicio de proceso con Start)

R "DB1".F_inicio_S_P_BRIX DB1.DEX1.1 -- Falla-Falta ingresar SetPoint de BRIX (Falla de inicio de proceso con Start)
```


NOP 0

Código	FDE 089
Versión	03
Fecha	2015-01-27

Segm. 4 : SE ANALIZA EL PORCENTAJE EN EL TANQUE DE MEZCLA MAYOR AL 12%

"M0.1", "M1.7" se analiza si el sensor de mezcla detecta un valor por encima o por debajo del 12%

Código	FDE 089
Versión	03
Fecha	2015-01-27

	ita)	TRABAIO DE GRADO		Código	FDE 089	
	Wilderson			Versión	03	
	Institución Universitaria			Fecha	2015-01-27	
		FIRMA ESTUDIANTE	s <u>Migue</u> / Alexaude	Darnej Alvarez	Anas Berrios	
		FIRMA ASESOR		rel Sunga Final: 7/0		
- 1						
FIRMA COMITÉ TRABAJO DE GRADO DE LA FACULTAD						
		RECHAZADO	ACEPTAD		ACEPTADO CON	
		*		ACTA NO.		
			FEC	HA ENTREGA:	:	

Código	FDE 089	
Versión	03	
Fecha	2015-01-27	

		h
	FIRMA CONSEJO DE FACULTAD	
	*	
ACTA NO	•	÷
FECHA ENTREGA:		